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Abstract 

Multiple system atrophy (MSA) is a sporadic, adult-onset, relentlessly progressive 

neurodegenerative disorder, clinically characterized by various combinations of autonomic 

failure, parkinsonism and ataxia. The neuropathological hallmark of MSA are glial cytoplasmic 

inclusions consisting of misfolded -synuclein. Selective atrophy and neuronal loss in 

striatonigral and olivopontocerebellar systems underlie the division into two main motor 

phenotypes of MSA-parkinsonian type and MSA-cerebellar type. Isolated autonomic failure 

and REM sleep behavior disorder are common premotor features of MSA. Beyond the core 

clinical symptoms, MSA manifests with a number of non-motor and motor features. Red flags 

highly specific for MSA may provide clues for a correct diagnosis. Diagnostic accuracy of the 

second consensus criteria is suboptimal particularly in early disease stages. In this chapter, 

the authors discuss the historical milestones, etiopathogenesis, neuropathological findings, 

clinical features, red flags, differential diagnosis, diagnostic criteria, imaging and other 

biomarkers, current treatment, unmet needs and future treatments for MSA.  

  



I. The history of multiple system atrophy 

The milestones 

The historical roots of multiple system atrophy (MSA) date back to the early 20th century, 

when J. Dejerine and A. Thomas, neurologists at the Salpêtrière hospitals in Paris, first 

described two patients with adult-onset sporadic ataxia, who eventually developed extra-

pyramidal, urinary and probably postural hypotensive symptoms, dying few years afterwards. 

Neuropathological examination of one of these cases showed severe olivopontocerebellar 

atrophy (Figure 1)1.   

Later, in 1925, S. Bradbury and C. Egglestone from the Cornell University in New York 

described three cases of postural hypotension accompanied by anhidrosis and impotence. 

For the first time, these authors postulated the existence of neurogenic orthostatic 

hypotension (OH) and paved the way to the identification of primary disorders of the 

autonomic nervous system, to which MSA belongs2.  

Decades later, in 1960, G.M. Shy and G.A. Drager from the US National Institute of Health 

described a clinical syndrome characterized by marked multi-domain autonomic failure 

associated with severe parkinsonism and ataxia3. One year later, in 1961, R.D. Adams 

reported patients with Shy Drager syndrome to have striatonigral degeneration with 

additional cerebellar, olivary and pontine involvement at neuropathological examination4.  

Reflecting the multifaceted clinical presentation of MSA, scientists had not yet understood by 

that time that they had approached the disease like “blindfolded men examining different 

parts of an elephant and coming away with different impressions of the nature of the beast”1. 



First in 1969 the British J.G. Graham and D.R. Oppenheimer identified the common 

denominator underlying the syndromes described by Dejerine and Thomas, Bradbury and 

Egglestone and Shy and Drager. “Wishing to avoid the multiplication of names for disease 

entities, which in fact are merely the expressions of neuronal atrophy in a variety of 

overlapping combinations…” they coined the umbrella term multiple system atrophy5.  

The neuropathological hallmark of MSA are glial cytoplasmic inclusions, which were first 

described in 1989 by M.I. Papp and colleagues6.  Ten years later, M.G. Spillantini and 

coworkers identified α-synuclein to be the main constituent of such glial cytoplasmic 

inclusion, providing a pathological link between Parkinson’s disease (PD), dementia with Lewy 

bodies (DLB) and MSA: all α-synucleinopathies, in fact7.  

In recent years, major insights have been achieved into MSA natural history and its premotor 

stages8, 9, which include isolated autonomic failure or REM sleep behavior disorders (RBD) 

predating by years the full blown clinical presentation of MSA10-13. Such detailed knowledge 

of MSA disease course is being exploited for an optimized design of upcoming 

neuroprotective trials.  

Diagnostic criteria 

Until 1989, the only available diagnostic criteria for MSA were those from the Mayo Clinic, 

which defined a diagnosis of MSA in the presence of autonomic failure plus parkinsonism or 

cerebellar ataxia. Without considering L-Dopa responsiveness, such criteria did not 

differentiate MSA from PD with autonomic failure. To cover this gap, in 1989, N. Quinn from 

the National Queen Square Hospital in London proposed a 1st set of criteria, in which he 

distinguished three degrees of diagnostic certainty (possible, probable and definite MSA), 



with supporting warning signs (the so called “red flags”) and exclusion criteria1. Building upon 

this approach, the 1st consensus conference on the definition of MSA diagnostic criteria took 

place 10 years later in Minneapolis with the sponsorship of the American Autonomic Society 

and of the American Academy of Neurology14. The 2nd consensus statement on MSA diagnosis 

was published in 2008 with the sponsorship of the National Institute of Health and of the 

American Academy of Neurology and provided a simplified description of clinical features 

required for the clinical diagnosis of MSA15.   

Striving for a cure 

Following the identification of the pivotal role of α-synuclein glial cytoplasmic inclusions in 

the development of MSA, both cellular and transgenic animal models of MSA have been 

developed in the last decades16-18. Latter provided preclinical experimental evidence for 

several interventional trials, which have been run by research consortia such as the European 

Multiple System Atrophy Study Group, the French Multiple System Atrophy Reference Center, 

the U.S. Autonomic Disorders Consortium and other dedicated research teams worldwide.  

Despite preclinical evidence of neuroprotection, recombinant human growth hormone19, 

minocycline20, riluzole21, rifampicin22, rasagiline23 and epigallocatechin-gallate24 showed no 

benefit.  

A randomized, placebo-controlled trial of combined intra-arterial and intravenous autologous 

mesenchymal stem cells attenuated clinical progression in patients with MSA of cerebellar 

type25. In another recent open-label trial, intrathecal administration of autologous 

mesenchymal stem cells was also shown to be associated with dose-dependent clues of 

efficacy in patients with early MSA26.  



Other newly concluded and currently ongoing studies adopted immunomodulatory 

approaches, such as active α-synuclein immunization or myeloperoxidase inhibition and will 

hopefully provide evidence of neuroprotection in the next future.   

MSA advocacies 

The first advocacy groups helping families affected by MSA were grounded in the United 

States in the 80s. Spouses of MSA patients, together with neurologist David Robertson from 

the Vanderbilt University in Nashville, founded the non-profit Shy-Drager Multiple System 

Atrophy Support Group, in 2013 renamed as the MSA-Coalition 

(www.multiplesystematrophy.org)27. The MSA-Coalition provides a toll-free helpline for 

affected families, organizes dedicated support conferences and, thanks to very effective 

fundraising campaigns, finances several strategic research projects, like the Global MSA 

Registry, an online platform bringing together the clinical experience of several MSA research 

teams world-wide28.  

In the UK, patient advocate Sarah Matheson founded a dedicated MSA charity after being 

diagnosed with MSA on her own. Initially called Sarah Matheson Trust, it was later renamed 

as the Multiple System Atrophy (MSA) Trust (www.msatrust.org.uk) and also focuses on 

alleviating the feeling of isolation of MSA patients and their families, as well financing 

promising research protocols.   

In 2010 the “Miracles for MSA” Facebook page created by Anna Langerveld advocated for 

March to be declared the Multiple System Atrophy Awareness Month. In the same year, 

advocates led by Ritje Schouppe-Moons in Belgium declared October 3rd as World Multiple 

http://www.multiplesystematrophy.org/
http://www.msatrust.org.uk/


System Atrophy Day: on this day candles are lit at 8 pm in each local time zone, symbolizing 

awareness and unity for the cause of MSA. 

 

II. Definition and neuropathology 

MSA is defined as a sporadic adult-onset relentlessly progressive and fatal neurodegenerative 

disorder clinically characterized by various combinations of autonomic failure, parkinsonism 

and ataxia29. The presence of oligodendroglial cytoplasmatic inclusions consisting of 

misfolded -synuclein is required for a definite diagnosis of MSA on postmortem 

examination15. Characteristic lesions include selective atrophy and neuronal loss in 

striatonigral and olivopontocerebellar systems30. Neurodegenerative changes also affect 

other parts of the central, autonomic and peripheral nervous systems30. Different 

combinations of motor and non-motor deficits in MSA result from a variable regional 

distribution and severity of underlying neuropathology29.  

Two main morphological variants of striatonigral degeneration (SND) and 

olivopontocerebellar atrophy (OPCA) strongly correlate with two major motor phenotypes of 

MSA with predominant parkinsonism (MSA-P) and MSA with predominant cerebellar features 

(MSA-C) respectively31. Macroscopically, SND is characterized by atrophy and dark 

discoloration due to lipofuscin, neuromelanin and iron accumulation in dorsolateral putamen 

and caudatus and pallor of substantia nigra and locus coeruleus. In OPCA, there is a severe 

atrophy of cerebellar folia, pontine basis and middle cerebellar peduncle, dark discoloration 

of cerebellar white matter and blurring of inferior olivary nucleus with spared superior 

cerebellar peduncles32.  



Atrophy, neuronal loss, pathologic inclusions and reactive astrogliosis are observed 

microscopically. In addition to abundant glial cytoplasmic inclusions, there are less frequent 

-synuclein immunoreactive nuclear inclusions both in oligodendroglia and neurons and 

neuronal cytoplasmic inclusions32.  

Glial cytoplasmic inclusions are composed of filamentous -synuclein and other proteins 

including ubiquitin, tau, LRRK2, DJ-1, p25, GFAP, MBP, among others32. Load of glial 

cytoplasmic inclusions increases with disease progression31. Primary motor and premotor 

cortices are the sites of most abundant accumulation of glial cytoplasmic inclusions. There is 

an inverse correlation between the burden of glial cytoplasmic inclusions and the degree of 

neurodegeneration33. The highest number of glial cytoplasmic inclusions could be found in 

mildly to moderately affected white matter and lowest number in severely affected grey 

matter33.  

The main sites of degeneration in MSA-P are the dorsolateral putamen and caudate nucleus, 

whereas the substantia nigra pars compacta, globus pallidus and subthalamic nucleus are 

affected to a lesser extent. In MSA-C, the Purkinje cells, vermis, dentate nucleus, pontine basis 

and the inferior olivary nucleus are primarily degenerated, and basal ganglia are only mildly 

affected32. The proposed grading system based on predominant affection of SND or OPCA 

(each scored 0-3; SND3 + OPCA1 for MSA-P, OPCA3 + SND1 for MSA-C) demonstrated that 

mixed morphological presentations are present in a majority of MSA cases34, 35. “Minimal-

change” MSA is characterized by a localized neuronal loss in substantia nigra and locus 

coeruleus and widespread glial cytoplasmic inclusions. This peculiar variant is associated with 

an earlier disease onset, early OH and major respiratory impairment36, 37.  



Disruption of the central autonomic network results in autonomic failure in MSA38, 39. The 

dorsal vagal nucleus, sacral part of intermediolateral column of the spinal cord and Onuf’s 

nucleus are universally affected in MSA-P and MSA-C and contribute to erectile and urinary 

dysfunction40. Affection of the hypothalamus, locus coeruleus, pontine micturition center, 

substantia nigra and Purkinje cells also underpin urogenital symptoms40. OH arises from the 

degeneration of medullary cardiovascular centers, thoracic part of intermediolateral column 

of the spinal cord, sympathetic ganglia and to a lesser extent postganglionic fibers40. 

Degeneration of postganglionic sympathetic fibres reflects peripheral autonomic 

involvement, which occurs less frequently compared to PD and can be visualized in vivo 

employing the 123I-MIBG cardiac scintigraphy or sudomotor function tests41, 42.  

Cortical and limbic glial cytoplasmic inclusions, Lewy-body like inclusions and frontal striatal 

deafferentation underlie cognitive impairment in MSA, whereas amyloid pathology is rare43-

45. REM sleep behavior disorders develop after a neurodegeneration of the pedunculopontine 

nucleus and locus caeruleus projections46. Neurodegeneration of nucleus ambiguous, 

serotonergic nuclei raphe and cholinergic projections from pedunculopontine nucleus and 

laterodorsal tegmental nuclei leads to stridor and obstructive sleep apnea40. Affection of the 

medullary respiratory centers underpins the central hypoventilation in MSA46.  Despite 

findings of glial cytoplasmic inclusions, neuronal loss and atrophy of the olfactory bulb are 

less pronounced compared to PD and account for preserved olfaction in patients with MSA47. 

Aggregates of -synuclein are expressed in the cytoplasm of Schwann cells, but the relevance 

of this finding for clinically manifested peripheral neuropathy has not been elucidated yet48.  



Co-pathology of Lewy bodies found in 11% of European MSA cases was not replicated in a 

separate Japanese cohort31, 49. Several cases with dual pathology of MSA and progressive 

supranuclear palsy (PSP) have been reported50.   

 

III. Etiology and Pathophysiology 

Etiology 

No environmental factors have been associated with an increased risk of MSA. Like in PD, 

nicotine as well as alcohol consumption are less common in MSA than in healthy controls, 

possibly representing a pathophysiological link among α-synucleinopathies. An association 

with agricultural employment and occupational exposure to organic solvents, plastic 

monomers, pesticides and metal dusts has been reported in 2 case-control studies51, 52, but 

not replicated in others53.  

MSA is generally considered a sporadic disease29. Nevertheless, MSA pedigrees with both 

autosomal dominant and autosomal recessive inheritance pattern have been reported in 

Europe and Asia54-56.  

A loss-of-function mutation in the COQ2 gene, coding for the coenzyme Q10 synthesizing 

enzyme, was reported in Japanese familial and sporadic MSA cases and is to date the only 

identified cause of monogenic MSA57. Coenzyme Q10 contributes to the electron transfer 

between complexes I, II and III of the mitochondrial respiratory chain and its loss-of-function 

suggests that mitochondrial dysfunction may play an important role in the pathogenesis of 

the disease57, 58. No COQ2 mutation was however detected in North American and European 



MSA natives59. Similarly, a discordant loss of copy numbers of the SHC2 gene was observed 

in monozygotic twins and sporadic Japanese MSA patients, but in not American patients60, 61.  

Mutations, duplications and triplications of the SNCA gene, coding for α-synuclein, may cause 

familial PD with MSA traits in some members62. In particular, the G51D SNCA mutation 

reported in a British pedigree with autosomal dominant juvenile Parkinsonism showed 

neuropathological findings compatible with both PD and MSA63. Two single-nucleotide-

polymorphisms of the SNCA locus showed a significant association with MSA in a large 

European series64. This association was confirmed in following replication studies65, but not 

in the subsequent MSA genome-wide association study59. This same study, to date the largest 

run in European and North-American MSA patients, further identified single-nucleotide 

polymorphisms in the genes FBXO47, ELOVL7, EDN1, and MAPT, which may possibly 

contribute to the pathogenesis of MSA.  

Gain of function mutations of the LRRK2 gene coding for the Serin/Threoninkinase 2 are 

responsible for 1% of sporadic and 4% of familial PD cases. Recently, two cases of 

pathologically proven MSA harboring LRRK2 mutations have been reported66, 67, suggesting 

that α-synuclein hyperphosphorylation may represent another important mechanism of 

disease both in PD and MSA.  

Beyond abovementioned MSA-related genetic mutations, an increasing number of other 

genetic conditions is being recognized to cause MSA-mimicries, the most frequent of these 

being SCA 17 mutations68. MSA mimicries should be always considered in case of an atypical 

disease course or additional features not typically belonging to the MSA core-spectrum69.  



Pathophysiology 

The mechanisms underlying MSA pathogenesis remain to date not fully understood. 

Converging evidence from preclinical and postmortem studies suggests that both neuronal 

and glial dysfunction contribute to the development of the disease, which has been recently 

labelled as an oligodendroglioneural α-synucleinopathy70, 71.  

α-synuclein is a small protein, physiologically folded in tetramers, thought to contribute to 

synaptic vesicle transport and neurotransmitter release58. Adult oligodendrocytes do not 

normally express α-synuclein and this is also not the case in MSA72.   

In MSA, relocalization of p25α, an important stabilizer of myelin integrity, into the soma and 

subsequent oligodendrocyte swelling appear to be very early pathogenic steps73. These are 

followed by an increase in α-synuclein oligodendroglial concentration, possibly uptaken by 

neighboring neurons74, which are unable to degrade it75. The interaction between p25α and 

α-synuclein fosters α-synuclein phosphorylation and its aggregation into insoluble oligomers 

first and glial cytoplasmic inclusions later on. Formation of glial cytoplasmic inclusions, in turn, 

activates quiescent microglial cells, which release pro-inflammatory cytokines and oxygen 

reactive species76, 77. As a result, progressively dysfunctional oligodendrocytes release 

misfolded α-synuclein into the extra-cellular space. In contrast to neuronal α-synuclein 

aggregates seen in PD, which are ribbon-shaped, α-synuclein aggregates forming in an 

oligodendroglial milieau are fibril-shaped and, taken up by neighboring neurons, show a 

higher tendency to induce neuronal cytoplasmic inclusions and cytopathological changes78. 

At this point, neuroinflammation, loss of glial-derived neurotrophic support79  and 

mithocondrial dysfunction due to α-synuclein inclusions58 synergistically promote neuronal 

death and subsequent reactive astrogliosis. α-synuclein toxic species may then propagate in 



a prion-like fashion to other functionally connected brain areas80 and cause the widespread 

neuronal degeneration typical of MSA (Figure 2).  

 

IV. Clinical features and clinical diagnostic criteria  

The onset of MSA is typically in the 6th decade of life, and occasionally between the age of 30 

and 40 years (i.e. young-onset) and after the age of 75 years (i.e. late-onset)36, 81. Natural 

history studies reported a mean survival of 9.8 years with substantial variations in individual 

patients8, 9. A prolonged survival of more than 15 years has been reported in very few 

patients82. The parkinsonian variant of MSA, early onset of symptomatic OH, urinary 

incontinence and retention and respiratory involvement are poor prognostic factors 

associated with shorter survival8, 9.  

Autonomic failure  

Early onset, generalized and rapidly progressive autonomic failure is typical of MSA. Rates of 

autonomic failure of up to 60% are reported at the disease onset (i.e. ”autonomic-first” 

variant of MSA)83-85. Erectile dysfunction is often the earliest symptom, followed by lower 

urinary tract symptoms and symptoms of cardiovascular autonomic failure86. Isolated 

autonomic failure in the absence of parkinsonian or cerebellar signs allows the diagnosis of 

pure autonomic failure. Depending on study setting, conversion rates from pure autonomic 

failure to MSA of up to 28% were reported within few years from disease onset10-12. In 

general, the latency to onset of symptomatic OH and urinary incontinence/retention is 

significantly shorter in MSA compared to PD87 and very late onset autonomic failure has been 

reported in a minority of MSA patients only82, 88.  



Urinary urgency and increased frequency are common in the early disease stages, both often 

apparent in the first years from onset89. Urinary retention leads to the use of catheters in 75% 

of MSA patients after mean 4 years from onset90. In patients over 50 years of age frequent 

non-neurological causes of urinogenital dysfunction, like benign prostatic hypertrophy in men 

or pelvic floor prolapse in women, need to be ruled out91.  

Recurrent syncope in response to sudden postural trigger is a hallmark feature of OH in MSA. 

Less specific symptoms are dizziness, nausea, weakness, nausea and coat hanger pain 

(centered in the neck and shoulders in the upright position). OH is defined as a 

systolic/diastolic blood pressure drop of at least 30/15 mmHg upon 3 minutes of standing15. 

A common accompanying phenomenon is supine hypertension, which is defined as 

systolic/diastolic blood pressure increase of >140/90 mmHg measured after 5 min of rest in 

the supine position in a patient with OH92. Provoking factors, such as dopaminergic and 

antihypertensive medications, diuretics, dehydration, heat exposure and food intake among 

others may worsen the symptoms of OH in MSA patients.  

The presence of OH and/or lower urinary tract symptoms might be useful to differentiate 

MSA-C from SAOA93, but is usually not reliable in the differential diagnosis of MSA-P and PD 

at moderately advanced disease stages due to overlapping symptoms. The more aggressive 

disease progression may eventually suggest MSA in this setting.  

Similarly, anhidrosis in MSA is widespread and progressive in contrast to asymptomatic non-

progressive hypohidrosis restricted to hands and feet in PD39, 94. Among a number of 

symptoms of gastrointestinal dysfunction overlapping with PD, early severe dysphagia is 

peculiar for MSA90, 95. Pupillary autonomic involvement in MSA manifests with blurred vision, 

dry eyes and rarely asymmetric Adie’s tonic pupil or Horner syndrome96, 97.  



Motor phenotype: parkinsonian and cerebellar features  

The distinction into MSA-P and MSA-C is based on the predominant clinical features15. MSA-

P is more common in most countries, with an exception of Japan where MSA-C is the 

predominant phenotype29. While approximately half of the patients with MSA-P develop 

cerebellar signs, even a higher proportion of patients with MSA-C have parkinsonian 

features8, 9. Some authors refer to the combined motor phenotype as “mixed” MSA or MSA-

P+C. However, these terms are not officially accepted, because it is difficult to delineate the 

degree of parkinsonian and cerebellar affection in mixed clinical presentations.  

Ataxia of gait, trunk and limbs, intention tremor and cerebellar oculomotor abnormalities, 

such as sustained spontaneous or gaze-evoked nystagmus are common in MSA. Parkinsonism 

is rapidly progressive, poorly responsive to L-Dopa and often associated with one or more 

atypical features29. Rapid progression to the wheelchair confinement within 5 years from 

symptom onset (termed also “wheelchair sign”) is present in more than a half of MSA 

patients, and in less than 1% of PD patients within 10 years from disease onset90, 95.  Unilateral 

symptoms of parkinsonism occur in 40% of MSA patients and a similar proportion of patients 

retain such asymmetry over the disease course9, 43. A typical "pill-rolling" tremor is present in 

4%-10% of definite MSA patients43, 90. Postural jerky tremor and/or poliminimyoclonus in the 

absence of "pill-rolling" tremor might be useful to distinguish MSA from PD81. Early postural 

instability and gait difficulties coupled with falls are suggestive of atypical parkinsonism rather 

than PD89, 98. Latency to onset of recurrent falls in MSA is significantly shorter compared to 

PD and longer compared to PSP99. Camptocormia, Pisa syndrome and disproportionate 

antecollis are common postural deformities in MSA (Table 1)95.  



Patients with MSA have an early, usually transient, and in general poorer, response to L-Dopa 

compared to patients with PD. Beneficial L-Dopa response was observed in 42%-57% of MSA-

P and 13%-25% of MSA-C patients in the natural history studies8, 9. However, a "dramatic" L-

Dopa responsiveness, as stated in the diagnostic criteria for PD100, could be fulfilled only by a 

small minority of MSA patients. Side effects induced by the acute L-Dopa challenge test are 

also more frequent in MSA compared to PD patients101. L-Dopa induced dyskinesias 

(dystonic>choreatic, primarily affecting craniocervical region) and fluctuations are observed 

in 27% and 24% of definite MSA patients, respectively81.   

Red flags  

The presence of multiple red flags highly specific for MSA in the context of adult-onset 

progressive parkinsonism, ataxia or autonomic failure may provide important clues for a 

correct and early diagnosis (Table 1)95. In the recent clinicopathological study on 203 clinically 

diagnosed MSA patients, a lifetime recorded number of red flags was higher in both MSA-P 

and MSA-C compared to Lewy body disease and PSP90, 95. Nevertheless, no differences were 

found in the frequencies of red flags within 3 years from disease onset between MSA and 

MSA lookalikes90.  

Other non-motor and motor features  

RBD is a premotor symptom of an evolving α-synucleinopathy and, as such, is not peculiar to 

MSA. The frequency of RBD increases with disease duration, with an estimated lifetime 

prevalence in patients with MSA of 90-100%102. A significant proportion of patients with an 

isolated RBD later progress to MSA13, 103. Depending whether clinical presentation is 

parkinsonian or cerebellar, the presence of RBD is useful for the differential diagnosis 



between MSA, SAOA and tauopathy, but not among α-synucleinopathies.  New onset of 

snoring, sleep fragmentation, obstructive sleep apnea and restless leg syndrome are other 

nocturnal problems in MSA. 

Laryngeal stridor occurs in up to one third of MSA patients and is a very uncommon presenting 

symptom of the disease. When stridor occurs early, it is more frequent in the autonomic-first 

variant of MSA and is considered an unfavorable predictor of survival, posing patients at 

higher risk of sudden death during sleep85. Stridor develops after a selective paralysis of the 

vocal cord abductor, glottis narrowing and laryngeal dystonia40.  

Approximately 30% of MSA patients show cognitive impairment most frequently in a form of 

mild frontal executive dysfunction43, 104. However, major cognitive dysfunction is not typical 

of MSA, in contrast to other differential diagnostic entities featuring various degrees of 

dementia, such as DLB, PD with dementia and PSP15.  

Moderate to severe depression affects up to 50% of patients with MSA and an even higher 

proportion of patients have milder symptoms105. Common depressive symptoms are sadness, 

hopelessness, fatigue and decreased satisfaction105. Other mood disturbances in MSA are 

apathy, anxiety44 and dysregulation of emotional expression, which is also a red flag 

supporting a MSA diagnosis (Table 1). By contrast, hallucinations are present in only 9%-13% 

of MSA patients43, 106.  

Sensorimotor axonal neuropathy, present in up to 40% of patients, mostly manifests with 

sensory disturbances107. Pain, reported by at least 80% of MSA patients, occurs in a form of 

rheumatic, sensory, dystonic and levodopa-related pain108, 109.  



Unintelligible speech, resulting from the combination of cerebellar, extrapyramidal (dystonic 

and myoclonic) and spastic dysarthria, arises in approximately half of patients with MSA after 

6 years from onset90. MSA-P patients often develop a high-pitched, quivery and croaky voice, 

whereas MSA-C patients often have scanning dysarthria. Hyperreflexia and Babinski sign are 

present in up to 60% and 40% of MSA patients, respectively8, 9.   

Olfactory dysfunction is a common finding in patients with PD 110, 111. In fact, prospective 

studies in idiopathic RBD suggest that hyposmia may even be a symptom of prodromal PD112, 

113. In contrast, olfactory function remains largely intact in atypical parkinsonian disorders 

including MSA 114-121 and assessment of odor identification can support the differential 

diagnosis 122. The recently revised diagnostic criteria for PD consider olfactory loss (i.e. 

olfactory testing in the anosmic or clearly hyposmic range) as a supportive criterion for the 

diagnosis of PD 100.  

 

Diagnostic criteria 

In the current set of consensus criteria15 probable MSA is the highest and possible MSA the 

lowest level of clinical diagnostic certainty (Table 2)15. A diagnosis of probable MSA is based 

on clinical features, while ancillary diagnostic tests including magnetic resonance imaging, 

positron emission tomography and single-photon emission computed tomography support a 

clinical diagnosis of possible MSA15. In a validation exercise, the sensitivity of the 2nd  

consensus criteria was 41% for possible and 18% for probable at first clinical visit, and 92% 

and 63% at last clinical visit respectively123. Among patients diagnosed with MSA during life 

only 62% and 79% met the pathological criteria for MSA in two recent brain bank studies from 



the Queen Square Institute in London, UK and from the Mayo Clinic in Jacksonville, USA43, 90. 

The most common misdiagnoses in the Queen Square brain bank study were DLB in 13% and 

PSP in 6% of patients90. In the Mayo Clinic Jacksonville cohort, MSA was most frequently 

misdiagnosed as DLB in 14%, PSP in 11% and PD in 6% of patients43. There are several issues 

possibly explaining the suboptimal diagnostic accuracy of the current criteria69. Therefore, 

the 3rd revision of MSA diagnostic criteria was initiated in 2018 by G. K. Wenning and H. 

Kaufmann under the auspices of the International Parkinson and Movement Disorder Society. 

This will ideally allow earlier and more accurate diagnosis of MSA based on the recent 

advances in neuroimaging and biomarker research. 

 

V. Diagnostic biomarkers 

Numerous imaging studies (MRI, radio-tracer imaging, cardiac imaging)124-134 as well as blood 

and tissue biomarker studies135-141 explored the differential diagnostic potential of these 

different methods to reliably discriminate MSA from related disorders including PD and 

sporadic, adult-onset ataxias. A detailed summary of available diagnostic imaging markers is 

provided in Table 4. While numerous studies were performed in cohorts of patients with 

degenerative parkinsonism, only a minority of the studies assessed the diagnostic potential 

of biomarkers for the differential diagnosis of MSA versus sporadic adult-onset ataxias.  

 

Cerebral magnetic resonance imaging 

A comprehensive review on the diagnostic yield of MRI in neurodegenerative parkinsonism 

was published recently142. The underlying neuropathological changes with cell loss, microglial 



as well as astroglial activation can be visualized using different MRI modalities. These include 

regional volume changes, T2- and diffusion-weighted MRI signal changes and increased iron 

deposition. In general, there is insufficient evidence for the differential diagnosis of MSA 

versus sporadic adult-onset ataxias using MRI. In neuropathologically confirmed MSA and PSP 

cases the overall sensitivity of a radiologically-supported diagnosis of MSA or PSP based on 

conventional MRI sequences was 77% and 73%, respectively with no PSP case misclassified 

as MSA or vice versa143. Several MR abnormalities (putaminal and posterior fossa changes; 

figure 3) were reported to be specific for MSA (reviewed in detail in 125). Significant brain 

atrophy has been reported in the putamen144-150, the middle cerebellar peduncles (MCPs)146, 

151, the cerebellum146 as well as in several brainstem regions including the pons, medulla 

oblongata and the midbrain145, 146, 151. Signal increases on T2 weighted sequences (figure 3) 

including the “hot cross bun” sign (a cruciform hypointensity in the pons), the “MCP-sign” (i.e. 

hyperintensitiy in the MCP) and the “putaminal slit” sign (hyperintense signal in the 

dorsolateral margin of the putamen) were reported to have high positive predictive values 

for the diagnosis of MSA152, 153. However, while putaminal atrophy appears to discriminate 

MSA from PD satisfactorily, one has to be cautious in terms of intensity changes since these 

are tightly correlated with the magnetic field strength. In fact, a hyperintense putaminal rim 

is a common finding in healthy adults at 3T MRI154. On the other hand putaminal atrophy 

together with hypointense putaminal signal changes on iron-sensitive routine sequences 

(figure 3) such as T2* or susceptibility weighted imaging (affecting typically the posterior part 

of the putamen) seem to be specific for MSA-P142, 155, 156. Finally, the “hot cross bun” sign is 

only a surrogate of ponto-cerebellar atrophy and was reported in patients with secondary 

parkinsonism due to vasculitis157 as well as in patients with genetically confirmed 

spinocerebellar ataxia type 2 and 3158, 159. Overall, although the sensitivity of MR atrophy 



patterns is far from satisfactory, especially in early disease stages, the specificity of these MRI 

abnormalities differentiating MSA from PD is high.  

Apart from visual interpretation of MRI, MR volumetry with (semi-)automatic segmentation 

techniques have become increasingly popular in recent years 142. Two recent meta-analyses 

160, 161 including voxel-based morphometry (VBM) studies that enrolled patients with atypical 

parkinsonian disorders identified distinct atrophy patterns in patients with MSA or PSP as 

compared to PD. While there were no significant differences in gray matter volume loss 

between PD patients and controls160, 161, patients with MSA-P and PSP showed regions of 

atrophy distinctive to each disease160, 161, including putamen and claustrum in MSA-P, as well 

as the thalamus, midbrain and insula in PSP with mild overlap of GM volume loss between 

PSP and MSA-P161. However, since VBM is based on group-wise comparisons, it cannot be 

exploited for the differential diagnosis at the single-patient level162 and, thus, more recent 

automated image segmentation techniques attempted to characterize regional brain volume 

loss at the individual patient level. Such approaches yielded high diagnostic accuracy for 

discriminating patients with MSA from related movement disorders with putaminal and MCP 

atrophy being shown to be useful in separating MSA from PD148-150. Other quantitative 

measures include brainstem area and cerebellar peduncle widths measurements that can be 

manually obtained in clinical practice with a high reproducibility 142. The MR parkinsonism 

index (MRPI; [area pons/area midbrain] x [width MCP/width SCP]) is able to differentiate PSP 

patients from non-PSP parkinsonism including PD and MSA as well as healthy controls129, 163, 

164. Both a decreased ma/pa-ratio as well as an increased MRPI seems to distinguish PSP from 

MSA, PD, and healthy controls. On the other hand, a MCP diameter <8.0 mm has not only 



optimal diagnostic accuracy in separating MSA from PD165, but seems also to discriminate 

MSA from PSP with fairly acceptable diagnostic accuracy164. 

Differences in putaminal diffusivity (figure 3) are particularly helpful for the differential 

diagnosis of MSA-P vs. PD with patients being discriminated with high sensitivity and 

specificity166. However, putaminal diffusivity measures overlap between MSA and PSP 

patients 167, 168, hence, additional imaging measures such as volume changes or increases in 

diffusivity within the posterior fossa need to be introduced to reliably separate MSA from 

PSP. Intriguingly, conflicting results were reported for diffusivity changes in the MCP – some 

studies reported a high diagnostic accuracy for MSA-P 168, 169, whereas others were unable to 

confirm this finding 170, 171.  

Although quantitative putaminal changes on iron-sensitive MRI sequences are common in 

MSA patients, individual study results vary considerably and no overall conclusion can be 

drawn yet 142.There is preliminary evidence of distinct topographical patterns of abnormal 

subcortical brain iron accumulation in patients with PD, MSA and PSP involving the putamen 

in MSA-P and PSP, as well as red nucleus, dentate nucleus, globus pallidum and thalamus in 

PSP with overlapping patterns between PSP and MSA patients142. However, large-scale 

confirmative studies remain to be performed. 

Several studies 172-176 assessed the diagnostic potential of multimodal MRI. These studies 

commonly include a combination of volumetric, diffusion-weighted imaging measures and 

iron-sensitive MR measures. Various combinations were exploited for the development of 

diagnostic algorithms and these machine-learning-supported algorithms yield good to 

excellent diagnostic accuracy. However, these approaches remain investigational and are 

restricted to highly specialized centres.  



 

Radio-tracer imaging 

Presynaptic dopaminergic denervation along the nigrostriatal pathway was demonstrated in 

numerous studies of neurodegenerative parkinsonian disorders. All of these studies were 

unable to identify a clear-cut difference between PD and atypical parkinsonian disorders 

based on nigrostriatal presynaptic dopaminergic imaging. However, some studies suggest 

that PD can be satisfactorily discriminated from atypical parkinsonian disorders by 

extrastriatal (i.e. brainstem) presynaptic dopamine denervation and distinct patterns of 

striatal dopaminergic denervation177-181. Nigrostriatal presynaptic dopaminergic denervation 

is not only a typical finding in MSA-P patients, but has also been observed in a substantial 

proportion of MSA-C patients 182 and, in 43% of patients with MSA-C, nigrostriatal presynaptic 

dopaminergic denervation preceded a clinical diagnosis based on consensus diagnostic183. 

There is also preliminary evidence that presynaptic dopaminergic imaging can discriminate 

patients with MSA-C from sporadic, late-onset ataxias 182, although markedly reduced FP-CIT 

binding was reported in SCA2 patients184. 

The diagnostic utility of post-synaptic dopamine receptor imaging (figure 3) was studied in 

several small scale studies exploiting different radio-tracers (see Table 4) and different 

modalities (PET, SPECT)185-191. Patients with MSA or PSP regularly showed reductions in 

putaminal dopamine D2 receptor binding, whereas this was normal or slightly elevated in PD 

patients. Hence, patients with neurodegenerative parkinsonism were correctly assigned to 

the “atypical parkinsonian disorders” category, however, postsynaptic dopamine imaging was 

unable to discriminate atypical parkinsonian disorders from one another. 



A number of FDG-PET studies evaluated the pattern of resting regional glucose metabolism 

in neurodegenerative parkinsonian disorders. Cerebellar, brainstem and striatal glucose 

metabolism was commonly reported to be altered in patients with MSA. A recent systematic 

review even demonstrates that the specificity of FDG PET for diagnosing MSA was consistently 

above 90% in the different studies, whereas the sensitivity was more variable (but greater 

than 75% in all instances)192. More sophisticated, automated image-based classification 

exploiting pattern analysis was able to accurately diagnose MSA in independent cohorts 

suggesting that this approach is useful for the differential diagnosis of MSA193-195. There is, 

however, insufficient evidence for the discrimination versus sporadic adult-onset ataxias.  

Cardiac sympathetic innervation can be visualized using different tracers (see table 4) with 

the most commonly used tracer being the 123I-labelled noradrenalin analogue MIBG (figure 

3). Although most MIBG scintigraphy studies demonstrated that myocardial sympathetic 

innervation was normal in MSA patients, mildly reduced sympathetic innervation has been 

reported in some cases196-198. In contrast, multiple imaging studies with MIBG in PD patients 

have shown decreased cardiac uptake, indicating myocardial postganglionic sympathetic 

dysfunction, even when cardiovascular reflexes remain intact196-198. However, in early stages 

of PD, MIBG uptake can be normal199. Overall, recent meta-analyses suggest that MIBG 

imaging is useful to discriminate PD from MSA in moderate to advanced disease stages, but 

unreliable in early stages since early stage PD patients may have a normal cardiac sympathetic 

innervation196-198. Moreover, MSA cannot be discriminated from PSP based on MIBG 

scintigraphy alone200.  

 



Transcranial sonography (TCS) 

In the differential diagnosis of sporadic parkinsonism, normal echogenicity of the substantia 

nigra argues against a diagnosis of PD, rather suggesting the presence of a drug-induced or 

atypical parkinsonian disorder such as MSA201, 202. Overall, TCS is an easy to implement, non-

invasive, and inexpensive technique that could help in the early differential diagnosis of PD 

versus other parkinsonian syndromes including MSA201, 202. However, the diagnostic utlility in 

discriminating atypical parkinsonian disorders from one another is limited, despite recent 

studies suggesting that dilated 3rd ventricle width is of additional value in separating PSP from 

MSA203. It needs to be acknowledged that a missing temporal bone window is present at least 

10% of patients. 

 

Blood and tissue biomarkers 

In recent years, there was an increasing interest in research on diagnostic biomarkers derived 

from body fluids [i.e. blood plasma and cerebrospinal fluid (CSF)]. α-synuclein levels have 

been measured in CSF and plasma of PD patients204, 205 as well as in MSA patients206-208 

reporting decreased CSF α-synuclein levels in MSA and PD compared to age-matched 

controls. These observations suggest that CSF α-synuclein is not useful for the distinction 

between different synucleinopathies. Regarding the usefulness for the discrimination 

between MSA and PSP, study results remain contradictory.  

The early detection of fibrillary aggregates of α-synuclein in peripheral tissues samples (e.g., 

gastrointestinal tract mucosa, salivary glands, skin) is considered a potential biomarker for 

identifying synucleinopathies135, 209. Among the peripheral tissues that have been studied in 



synucleinopathies, the skin appears to be one of the most promising diagnostic marker not 

only for PD, but also for MSA135. A major advantage of skin biopsies compared to biopsies 

from other tissues is that it is an easily accessible organ, and as such suitable for both single 

and repeated sampling135. When looking at the class of nerve fibers affected in skin biosies, 

studies involving patients with MSA found α-synuclein accumulations mainly in unmyelinated 

somatosensory fibers of the subepidermal plexus but not in dermal autonomic fibers, while 

in patients with Lewy body diseases they were observed mainly in autonomic fibers of the 

skin135. Overall, the diagnostic accuracy among different studies vary considerably and 

additional confirmatory studies are required to establish skin biopsies as reliable diagnostic 

biomarker for MSA136, 210-212. The major source of heterogeneity were methodological 

differences including the site of biopsy, tissue thickness, differences in pre-analytics and the 

selection of antibodies (e.g. polyclonal versus monoclonal; total α-synuclein versus 

phosphorylated α-synuclein) for staining and quantification of α-synuclein deposits135. 

Intriguingly, there is preliminary evidence of absence of phosphorylated α-synuclein deposits 

in skin biopsies of patients with 4R-tauopathies such as PSP212, suggesting that this might 

become a reliable marker for discriminating synucleinopathies from 4R-tauopathies.  

While studies have also consistently reported higher CSF neurofilament light chain (NFL) 

levels in MSA compared to PD and healthy controls213-221, CSF NFL concentrations between 

atypical parkinsonian disorders were not different in the majority of studies213-216, 220, 221.  

The most promising approaches exploit biomarker “panels” (i.e. a combination of different 

biomarkers) to discriminate between MSA and related disorders215, 216, 219, 220, 222-225. The most 

frequently studied proteins in these panels are tau, phospho-tau, α-synuclein and NFL. 

Intriguingly, these early studies in relatively small cohorts suggest a high sensitivity and 



specificity of these biomarker panels. However, large-scale, multicentric validation studies are 

missing and it remains to be seen whether the results of these small-scale studies can be 

replicated in large-scale, multi-centre studies. 

 

VI. Current treatments 

Parkinsonism - pharmacotherapy 

The 1st line treatment of a hypokinetic-rigid phenotype is dopaminergic treatment with 

levodopa. However, a poor levodopa response is characteristic to the extent of a diagnostic 

feature of possible and probable MSA-P15. Approximately one third of patients may respond 

to levodopa, although benefit is temporarily limited and compared to patients with PD the 

effect is often markedly reduced226-228. Levodopa response may be considered positive by 

improvement of 30% or more on the motor examination (ME, - part II) of the UMSARS229. 

Overall, the use of levodopa relies on a broad clinical experience, but there is low evidence. 

Even though data on levodopa effect is limited, unresponsiveness to levodopa should only be 

accepted after a treatment period of at least 3 months in daily doses of up to 1 g230 without 

any significant clinical improvement15. In cases with unclear response, withdrawal of 

medication may lead to a deterioration and justify continuation of treatment29. Dopamine 

agonists are not considered a therapeutic option, as they show poor efficacy and may involve 

severe side effects, particularly worsening of OH230, 231. 

Amantadine may be considered as an alternative or additional treatment option for 

parkinsonism (2–4x 100 mg daily). However, also for amantadine, the evidence is weak. In 

anecdotal reports a trend towards reduction of motor symptoms seemed to be present, but 



a placebo-controlled trial did not show a clinically significant antiparkinsonian effect228, 232, 233. 

Side effects therefore need to be considered very carefully in the evaluation of treatment 

effects. Side effects may include leg edema, livedo reticularis and confusion234. 

Cerebellar syndrome - pharmacotherapy  

For cerebellar symptoms such as gait ataxia, scanning dysarthria, ataxia of the limbs, intention 

tremor and oculomotor dysfunction, no efficient drug treatment is available. Anecdotal 

reports describe beneficial effects of aminopyridine on cerebellar symptoms235.  

Dystonia - pharmacotherapy  

Focal dystonia, e.g. blepharospasm, cervical dystonia (especially disproportionate antecollis), 

and limb dystonia, is common in MSA with a prevalence between 12% and 46%81, 236. 

Botulinum toxin injections are described to be effective in the treatment of blepharospasm 

and may reduce symptoms of dystonic limbs237. However, treatment of cervical dystonia with 

botulinum toxin injections is being regarded as potentially harmful, as severe dysphagia very 

rarely may occur238.  

Movement disorders – non-pharmacological therapy  

Non-pharmacological treatment options such as physiotherapy and occupational therapy 

play important roles in improving symptoms and patient’s quality of life. This is even more 

true as the effect of symptomatic therapy is mostly limited. As for pharmacological 

interventions aiming at Parkinsonism, also for non-pharmacological interventions evidence is 

limited. However, a randomized-controlled trial of patients with mild to moderate MSA 

obtaining occupational therapy showed significant improvement of motor function and 

activities of daily life239. Evidence is available regarding improvement of motor function by 



physiotherapy in Parkinson's disease240, but no controlled trials for physiotherapy in MSA are 

available so far. However, single reports suggest that predominant Parkinsonism as 

predominant motor feature may also benefit from physiotherapy241. In degenerative 

cerebellar disorders, intensive physiotherapy as well as resistance training and challenge-

oriented gait and balance training may improve coordination, balance and gait235, 242-245. Even 

though no specific data for MSA are available, physiotherapy aiming at the cerebellar 

component is often integrated in the therapeutic concept. Furthermore, patients with 

cerebellar dysarthria and impairment of swallowing may benefit from speech therapy241. 

Physical support including canes, walkers or wheelchairs will be an option to support patients 

with severe movement disorders provided that patients are capable of using them.  

Deep brain stimulation  

In PD, deep brain stimulation (DBS) has been used very efficiently to improve motor 

symptoms such as hypokinesia and tremor as well as motor complications leading to an 

improved quality of daily life246, 247. The role of DBS for the treatment motor symptoms in 

MSA has not been studied in controlled trials. The limited evidence for DBS in MSA is derived 

from case reports and series248, 249. A review of the literature including 26 patients with MSA 

(12 autopsy-confirmed MSA patients) who underwent DBS surgery, however, highlights the 

poor efficacy of DBS for the treatment of motor symptoms in MSA250. Although DBS may 

improve motor symptoms in MSA patients, especially in those with preserved levodopa‐

response, motor improvement after surgery is typically short-lived and rapidly counteracted 

by the occurrence of disabling MSA symptoms250. Intriguingly, in one case series, about one 

quarter of patients died within one year of surgery250. Overall, based on the limited evidence 



from the literature, DBS cannot be recommended in MSA as suggested by poor outcome and 

the possibility of harmful adverse effects249, 250. 

 

Autonomic failure 

All MSA patients diagnosed using the current diagnostic criteria experience autonomic 

symptoms since these are a mandatory feature in current diagnostic criteria of MSA (see 

above). In detail, a wide variety of non-motor symptoms can be present at a time251, with 

autonomic symptoms being the most important group of symptoms. It has been shown that 

non-motor symptoms correlate strongly with quality of life, much more than motor 

symptoms252. To assure appropriate therapy, non-motor symptoms deserve special attention 

during the assessment of the patients.  

Urge incontinence caused by detrusor hyperreflexia and sphincter detrusor dys-synergy may 

be alleviated by applying anticholinergic substances like oxybutinine (2–3x 2.5–5 mg/d) or 

trospium chloride (1-2 x 15mg/day)29, 241. However, anticholinergic treatment leads to an 

increased risk of worsening urinary retention and cognitive decline: this is less likely with anti-

cholinergics not crossing the blood-brain barrier, like trospium. Alternatively, beneficial 

effects of botulinum toxin injections into the detrusor muscle have been described in single 

cases with detrusor over-activity242, 253. In case of nocturia, again single cases reported 

positive response to desmopressine (5 μg intranasal spray at night) without any observed side 

effects254, 255. Neurogenic incomplete bladder emptying may cause significant morbidity due 

to consecutive urinary tract infections. If feasible, clean intermittent self-catheterization is 

recommended as first-line treatment256. Due to motor impairment permanent suprapubic 



catheterization may be necessary in advanced disease stages. As an alternative, drug 

treatment with urethra-oriented alpha-adrenergic antagonists such as tamsulosin (0,4 

mg/day), prazosin (3x 1 mg) and moxisylyte (3x 10 mg) can be added, even though risk of 

worsening OH has been reported. Therefore, clinical use should be limited to patients unable 

to perform self-catheterization.29  

For the treatment of erectile dysfunction sildenafil has been proven to be efficacious in 

studies of high quality257, 258. However, treatment can cause serious side effects in form of 

exacerbation of orthostatic hypotension. Therefore, the use of sildenafil in MSA should be 

approached with caution. 

For OH – comparable to many other symptoms – a combination of pharmacological and non-

pharmacological interventions might provide best symptom control. Non-pharmacological 

treatment options include elastic stockings, abdominal bands, adequate intake of salt and 

fluid and avoiding exposure to hot, humid environments. Also, postural maneuvers such as 

head-up tilt during the night to increase intravasal volume and reduce hypotension in the 

morning230, 259-263. Available drugs for pharmacological treatment include sympathomimetics 

such as the well-studied midodrin (3 x 2.5–10 mg)264, the norepinephrine precursor L-threo-

3,4-dihydroxyphenylserine (L-DOPS 200 - 2000 mg daily, recently FDA approved)265 and other 

drugs such as ephedrine (3 x 15–45 mg) with no explicit MSA trial data266. The durability of 

the improvement caused by sympathomimetics beyond 2 weeks has not been 

demonstrated267-269. An alternative and widely used drug is fludrocortisone (0.1–0.4 mg/day) 

even though it has not been explicitly studied for MSA, but data is available for PD270, 271.  



Postprandial hypotension may also be addressed by pharmacological and non-

pharmacological measures such as small and frequent meals with low carbohydrate content 

and octreotide (25–50 μg s.c. 30 min before meals)272, 273. 

Neuropsychiatric manifestations 

Depression and anxiety are frequent symptoms in MSA, also cognitive impairment affects up 

to 30% of the patients. For the treatment of anxiety and depression, a combination of 

cognitive behavioral therapy as well as selective serotonergic reuptake inhibitors with lower 

risk of orthostatic hypotension than tricyclic drugs are primarily recommended. Alternative 

treatments with very low evidence that has been described in MSA cases fulfilling psychiatric 

criteria for major depression includes electroconvulsive therapy274. Cognitive impairment of 

patients with MSA usually affects predominantly processing speed and executive functions 

suggesting a predominant fronto-subcortical pattern of cognitive dysfunction275. To date, no 

effective treatment of cognitive impairment is available.  

Sleep disorders 

RBD affects 90–100% of MSA patients29. However, no treatment trial of RBD in MSA has been 

performed so far. Treatment recommendations of RBD in MSA rely on general RBD 

recommendations. Clonazepam (0.5-2 mg) and Melatonin (2-5mg) should be considered for 

the treatment of RBD276, 277.. Often small doses of Clonazepam 0.25 – 0.5 mg are sufficient. 

Melatonin can be combined with Clonazepam and should be the first line choice in case 

clonazepam is not efficient/contraindicated278. 

Nocturnal stridor is a frequent symptom in MSA associated with respiratory failure and 

sudden death during sleep279, 280. Small studies support the use of home non-invasive positive 



pressure ventilation (NPPV)281 and continuous positive airway pressure (CPAP) ventilation282. 

Tolerability of this kinds of treatment is well, especially early in the disease283.  

 

VII. Unmet Needs and Future Treatments 

The most urgent unmet need for MSA, as well as for most neurodegenerative diseases, is the 

development of a treatment option that would be able to modify the clinical disease course. 

Past attempts to modify the clinical disease course have not been successful so far and are 

listed in “striving for a cure” (see above). Currently, we face interesting times in which MSA 

has received increased attention of scientists and companies working on a therapy that aims 

at modifying the clinical disease course284, 285. To increase the chance of success of the 

development of interventions that modify the clinical disease curse, several 

recommendations have recently been made by a panel of international experts. These 

recommendations cover amongst other topics clinical outcome measures and biomarker 

development285. 

Besides this most urgent topic, development of symptomatic treatment for an effective 

relieve of all symptoms including movement disorders is another urgent need284.  

Recently, reasonable and science-based criticism of the current diagnostic criteria (see above) 

has been expressed69. On this basis, a revision has been started. 

Finally, a topic of pivotal importance is the need to raise disease awareness. Work of 

tremendous value is on-going by several organizations. Recommendations regarding the 

increase of knowledge amongst healthcare professionals, the public and to foster 

collaborative networks at several levels have recently been presented285. 



 

  



Figure legends 

Figure 1 – The MSA historical milestones. 

 

Figure 2 – The etiopathogenesis of MSA. From A. Fanciulli and G. K. Wenning, Multiple 

system atrophy, NEJM, 372(3): 249-63; Copyright © 2015 Massachusetts Medical Society. 

Reprinted with permission. 

 

Figure 3 - Imaging methods used to study MSA. 

Part 1: Midsagittal T1-weighted images showing Infratentorial atrophy (pons and 

cerebellum; dilated forth ventricle) (arrow – pons) in a patient with MSA (a) and the 

hummingbird sign (arrow) (atrophy of the rostral midbrain tegmentum) in a patient with 

PSP (b), while there is no relevant brainstem atrophy in a patient with PD (c). Part 2: “Hot 

cross bun” sign (arrow) in a patient with MSA on T2-weighted images. Part 3: Putaminal 

changes (atrophy, hyperintense rim, putaminal hypointensity in comparison with the globus 

pallidus) (arrows) at both sides in a patient with MSA (a) on T2-weighted images compared 

to a patient with PD (b) having no basal ganglia abnormalities. Part 4: atrophy of MCP with 

the MCP-sign (hyperintensity in the MCP) (arrows) on T2-weighted images in a patient with 

MSA (a) compared to a PD patient (b). Part 5: Note the diffuse hyperintensity 

(corresponding to increased diffusivity values) in the posterior part of both putamina 

(arrows) in a patient with MSA (a) compared to a PD patient (b) on DWI. These changes in 

the MSA patient were observed only 6 months after onset of levodopa responsive 

parkinsonism with an anticipation of 18 months in relation to the clinical diagnosis of 

possible MSA-P and of 24 months for the diagnosis of probable MSA. Part 6: Putaminal 

atrophy and putaminal hypointensity (arrows) on SWI in a patient with MSA (a) compared to 



a PD patient (b). As in this MSA patient, putaminal hypointensity start typically in the 

dorsolateral part of the putamen. Part 7: Planar cardiac delayed 123I-MIBG imaging in a 

patient with MSA (a) compared with a patient with early PD (b). There is markedly reduced 

MIBG uptake in the heart (H) in the patient with PD compared to the mediastinum (M). Part 

8: Post-synaptic dopaminergic imaging with 123I-IBZM SPECT shows normal striatal tracer 

uptake in a PD patient (b), while in the MSA (a) patient there is reduced asymmetric striatal 

(arrows) tracer uptake with more marked reduction in the left. 

 

Abbreviations: DWI= diffusion-weighted imaging; IBZM= iodobenzamide; MIBG= 

metaiodobenzylguanidine; MCP= middle cerebellar peduncle; MSA = multiple system 

atrophy; PD = Parkinson’s disease; SWI = susceptibility-weighted imaging  
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