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In recent years, several attentional bias modification (ABM) studies have been
conducted. Previous studies have suggested that explicit instruction (i.e., informing
participants of the contingency of stimuli) enhances the effect of ABM. However, the
specific working mechanism has not been identified. This is partly because reaction time
(RT) data are typically reduced to an attention bias score, which is a mere difference of
RT between experimental and control conditions. This data reduction causes a loss of
information, as RT reflects various cognitive processes at play while making a response
or decision. To overcome this issue, the present study applied linear ballistic accumulator
(LBA) modeling to the outcomes (RT measures) of explicitly guided (compared to
standard) ABM. This computational modeling approach allowed us to dissociate RTs
into distinct components that can be relevant for attentional bias, such as efficiency of
information processing or prior knowledge of the task; this provides an understanding of
the mechanism of action underlying explicitly guided ABM. The analyzed data were RT-
observed in the dot-probe task, which was administered before and after 3-days of ABM
training. Our main focus was on the changes in LBA components that would be induced
by the training. Additionally, we analyzed in-session performances over the 3 days of
training. The LBA analysis revealed a significant reduction in processing efficiency (i.e.,
drift rate) in the congruent condition, where the target probe is presented in the same
location as a negative stimulus. This explains the reduction in the overall attentional
bias score, suggesting that explicit ABM suppresses processing of negative stimuli.
Moreover, the results suggest that explicitly guided ABM may influence prior knowledge
of the target location in the training task and make participants prepared to respond
to the task. These findings highlight the usefulness of LBA-based analysis to explore
the underlying cognitive mechanisms in ABM, and indeed our analyses revealed the
differences between the explicit and the standard ABM that could not be identified by
traditional RT analysis or attentional bias scores.

Keywords: attentional bias modification, linear ballistic accumulator, evidence accumulation model, emotional
cognition, cognitive training
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INTRODUCTION

Selective attention to negative information or attentional bias to
negative information has been repeatedly found in individuals
with depression and anxiety and is also considered a key factor
in the development and maintenance of these psychopathologies
(Mathews et al., 1997; Mathews and MacLeod, 2005; Bar-Haim
et al., 2007; Ouimet et al., 2009; Cisler and Koster, 2010; Peckham
et al., 2010; Koster et al., 2011). As a measure of attentional bias,
MacLeod et al. (1986) introduced the dot-probe task, which is
one of the most widely used behavioral tasks to observe a bias in
allocation of spatial selective attention to emotional (vs. neutral)
stimuli (Kruijt et al., 2016). Some longitudinal studies have
suggested that attentional bias assessed by the dot-probe task
predicts a future increase in psychopathology (MacLeod and
Hagan, 1992; Beevers and Carver, 2003; Ellenbogen et al., 2006;
Johnson, 2009; Sanchez et al., 2013).

MacLeod et al. (2002) also developed a procedure to modify
attentional bias, namely attentional bias modification (ABM),
which trains participants to decrease attention to negative
information. The training procedure is directly adapted from
the dot-probe task with the one exception that a target
probe is always presented on the opposite side to a negative
stimulus. This contingency is supposed to train participants to
disengage their attention from negative materials and thereby
to reduce attentional bias. MacLeod et al. (2002) found that
ABM suppressed negative attentional bias and reduced emotional
reactivity to stress that was induced after training. Subsequent
studies have replicated the finding that ABM successfully
decreases stress reactivity, and also give some support for a direct
intervention effect upon symptoms of anxiety (Amir et al., 2008,
2009a; Li et al., 2008; See et al., 2009; Klumpp and Amir, 2010;
Eldar et al., 2012).

Another line of research suggests that the effect of ABM
can be boosted when participants are explicitly instructed about
the contingency between the emotional stimulus and the target
in the training sessions (Krebs et al., 2010; Nishiguchi et al.,
2015). In these studies, participants were explicitly instructed to
attend to the opposite location when a negative word appeared
on a display, while a typical (or standard) ABM instruction
does not communicate the stimulus-target contingency. The
results showed that the explicit instruction leads to a greater
reduction in attentional bias than the standard instruction, and
that this training effect transfers to performance in a different
spatial attention task (Krebs et al., 2010; Grafton et al., 2014;
Nishiguchi et al., 2015). Although the explicit instruction is a
promising factor to accelerate the reduction of attentional bias,
the mechanism underlying this promotive effect is not yet clear
(see Grafton et al., 2014; Lazarov et al., 2017). Thus, the present
study aimed to investigate the mechanism underlying attentional
bias modulation caused by explicitly guided (compared to
standard) ABM, and to specify the cognitive processes that
changed through the training.

Importantly, explicitly guided ABM may reduce attentional
bias more efficiently than standard ABM; however, this type of
ABM (as well as the standard version) does not necessarily lead to
a greater therapeutic effect. While a number of ABM studies have

been published over the last 10–15 years, recent meta-analyses
suggest that the effect of ABM is quite inconsistent across studies,
particularly when the primary outcome is psychopathological
symptoms (Hakamata et al., 2010; Hallion and Ruscio, 2011;
Mogoaşe et al., 2014; Cristea et al., 2015; Mogg et al., 2017).
Some studies have indeed shown a significant reduction in
psychopathology after ABM training (e.g., Amir et al., 2009a,b,
2011; Wells and Beevers, 2010), whereas others failed to
find such a significant therapeutic effect compared to control
conditions (e.g., McNally et al., 2013; Schoorl et al., 2013).
These inconsistencies in the literature resulted in a relatively
small effect size as reported in recent meta-analytic studies
(Cristea et al., 2015; Heeren et al., 2015; Linetzky et al., 2015).
Moreover, Heeren et al. (2015) showed that explicit explanation
of the therapeutic nature of the ABM can decrease the effect on
psychopathology, and some studies have in fact failed to observe
a significant transfer effect on psychopathology with explicitly
guided ABM (Grafton et al., 2014; Nishiguchi et al., 2015).
The main focus of the present study is the change in cognitive
processes through ABM, but not the effects on psychopathology.
As Grafton et al. (2017) discussed, aside from therapeutic effects,
we can focus on changes in cognitive processes themselves to
understand how and in what conditions ABM works effectively.
Given that explicitly guided ABM robustly reduces attentional
bias (Krebs et al., 2010; Grafton et al., 2014; Nishiguchi et al.,
2015), it was more appropriate to be analyzed for the present
purpose than standard ABM, regardless of the therapeutic effect.
The present study focused on the analysis of the cognitive
processes modified by ABM, but not on the transfer effect on
psychopathological symptoms.

One possible strategy to infer the mechanism of action is
computational modeling of reaction time (RT), which allows
decomposition of RT variance into several different psychological
functions that are involved in the (biased) information
processing. Although attentional bias is typically indexed by
mean differences in RT between conditions (i.e., congruent vs.
incongruent conditions, where a target is presented in the same
vs. opposite location to a preceding negative stimulus), RT
contains a richer amount of information reflecting, for example,
efficiency of information processing, response conservativeness,
a priori bias, stimulus encoding, and response execution (e.g.,
Ratcliff, 1978). Attentional bias can be characterized by inefficient
information processing in a conflicting situation (and thus RT
becomes longer), which may be improved by repetitive practice
to disengage attention from negative stimuli in ABM. The explicit
instruction in ABM gives a priori bias, or prior knowledge of
the contingency, which may also affect the processing efficiency
and help participants to optimize their task performances. To
specify the exact processes that are modified by ABM with the
explicit instruction, in the current study we applied a modeling
approach to RT analyses that was observed in past ABM research
(Nishiguchi et al., 2015). To dissociate a single RT into different
processes that are involved in that response decision, we used a
linear ballistic accumulator model (LBA; Brown and Heathcote,
2005, 2008; Figure 1). In LBA, RT is considered to be the time that
participants take to accumulate evidence to choose a particular
response among potential response options (i.e., correct and
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FIGURE 1 | Conceptual diagrams of Liner Ballistic Accumulator model, created based on Brown and Heathcote (2008) and Annis et al. (2017). Panel (A) indicates a
typical accumulation process that is assumed in a LBA model; Panel (B) (with a low threshold, caused by lower level of maximum starting evidence); and Panel (C)
(with a high drift rate) illustrate the conditions where shorter response time is observed.

incorrect responses in the dot-probe task). It is assumed that
participants collect information from the environment after
a stimulus onset, and that this information is used to make
a specific response (e.g., Donkin et al., 2009). When enough
evidence is accumulated to reach a threshold (or, the required
amount of evidence), a decision is made, and a response emerges.
Previous studies have applied the accumulation model to various
cognitive processes such as lexical decision-making (Ratcliff
et al., 2004; Brown and Heathcote, 2008) or recognition memory
(Ratcliff, 1978; White et al., 2009). A recent study also applied an
evidence accumulation model to performance in a dot-probe task
(Price et al., 2019).

Although the accumulation model has several variants (e.g.,
the drift diffusion model; Ratcliff, 1978; Ratcliff and McKoon,
2008), most of them describe a participant’s decision-making
process with four parameters: drift rate (v), upper limit of the
starting point distribution (A), threshold (b), and non-decision
time (psi). These parameters are often statistically estimated
from RT and response accuracy (Figure 1). The drift rate
represents the speed of evidence accumulation, in other words,
efficiency in information processing. When attention is focused
on a target stimulus, this stimulus is better processed, which
typically leads to a higher drift rate. The starting point is
the amount of evidence that already exists at the start of
evidence accumulation, which is related to response bias. In
the LBA, the starting point is assumed to vary across trials,
and the upper limit of the starting point is represented by A,
with larger values indicating greater variability in the starting
point. The threshold reflects the amount of evidence that is
needed to make a decision. A higher threshold indicates that
participants made a response more cautiously or conservatively.
Note that the absolute threshold is determined by k + A;
therefore, smaller A indicates a lower threshold for evidence
accumulation as well as less variable start points. The non-
decision time is the time that was taken to encode stimuli and
to execute a response.

Under the LBA framework, we hypothesized that two
parameters, v and A, would be changed by the explicitly (but
not implicitly) guided ABM (Krebs et al., 2010; Nishiguchi et al.,
2015). First, given that the explicit instruction induces a reduction

in attentional bias, v parameter would be affected by the training,
because attention allocation to a stimulus influences information
processing efficiency. The prior knowledge given by the explicit
instruction may (a) disturb accumulation (low drift rate) in the
congruent condition, and (b) facilitate evidence accumulation
(high drift rate) in the incongruent condition, both resulting
in a decreased attentional bias to negative stimuli. Second,
the explicit instruction would modulate A parameter, which
represents the variance of starting evidence and also influences
the absolute threshold. This is because prior knowledge of the
contingency would decrease the total amount of information
that is required to make a response (i.e., a higher starting
point and/or lower relative threshold; cf. Brown and Heathcote,
2008; De Loof et al., 2016). These hypotheses were tested
on the dot-probe performances at the pre- and post-training
assessments for the explicit vs. standard ABM. In addition,
we examined participants’ performances during the training,
because we predicted that awareness of the stimulus-target
contingency would enhance the session-by-session progress of
the training. The above described changes in LBA parameters
would already be evident in the training performance, given
that participants who received the explicit instruction would
consciously attempt to direct their attention away from
negative stimuli.

MATERIALS AND METHODS

Dataset
The dataset (Nishiguchi et al., 2015) included responses from 40
Japanese university students without a current diagnosis of any
mental illness. Among a total of 42 participants, two dropped
out during the experimental sessions. All of the participants
received an explanation of the experiment and completed an
informed consent form before the experiment began. Half of
the participants were assigned to the explicit-instruction group
(n = 20; seven women), and the other half were assigned to
the standard-instruction group (n = 20; eight women). Only the
explicit-instruction group was informed of the stimulus-probe
contingency, whilst other experimental details (e.g., content and
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amount of training) were identical between the two groups.
All participants completed three sessions of ABM training with
the modified version of the dot-probe task (one session per
day). Before and after the training, participants performed the
standard dot-probe task and two other behavioral tasks (i.e., the
gap-overlap task and the attention network task) that were not
analyzed in the present study. Participants were fully debriefed
and rewarded with 3,000 Japanese yen (approximately $30 USD)
at the end of the completed session.

Materials and Tasks
Emotional Stimuli
A total of 160 words (80 negative, 80 neutral) from Matsumoto’s
(2006) word list were selected as emotional stimuli. These stimuli
were divided into two sets, each including 40 negative and
40 neutral words. A one-word set was used for pre-training
assessment and ABM training; the other set was used for
post-training assessment only.

Dot-Probe Task
The dot-probe task was used in the pre-training and post-training
assessment. Each trial began with a fixation cross presented at
the center of the screen for 500 ms. Two words appeared at
the left and right of the fixation cross for 1500 ms. Upon the
removal of the words, a target probe (white square) appeared at
the left or right of the fixation cross. Participants had to indicate
the location of the target by a key press within 1000 ms of the
onset of the target. If a response was not made within this time
limit, it was regarded as an error response, and the next trial was
automatically started.

There were three types of trial according to the cue-target
contingency. In the congruent trials, a negative-neutral word
pair appeared on a screen, following which a target probe was
presented at the place that the negative stimulus occupied. In
the incongruent trials, the target was presented at the opposite
location to the negative stimulus. In the neutral trials, the
stimulus pair was both neutral words. In one test session, 80
neutral, 40 congruent, and 40 incongruent trials were presented
in random order, and these trials were separated into two
blocks of 80 trials.

The attentional bias index was calculated with the following
formula: [(average RTs on incongruent trials) − (average RTs
on congruent trials)]/(average RTs on all trials). Higher scores
indicate stronger attentional bias to negative stimuli.

Attention Bias Modification (ABM)
Procedure
The modified version of the dot-probe task which was used for
the ABM training followed the exact same procedure as the
standard dot-probe task that was used in the assessments. The
only exception was that there were no congruent trials in the
modified version. Each training session consisted of 80 neutral
trials and 80 incongruent trials. We expected that if the training
consisted only of incongruent trials, participants might learn to
just search for a neutral word (without attending to a negative
word) to respond to the target efficiently. Because this does not
improve attentional disengagement from negative stimuli, we

implemented neutral trials to prevent participants from learning
this “attend-neutral” strategy. These trials were divided into two
blocks and presented in a random order. Participants completed
three training sessions (one session per day), resulting in a total
of 240 neutral trials and 240 incongruent trials.

Participants received either the explicit or standard
instruction. Participants in the explicit-instruction group
were told that the target always appeared on the opposite side to
a negative word. Thus, participants were expected to attend to the
side opposite a negative word when the participants find one. On
the other hand, participants assigned to the standard-instruction
group were not informed of the cue-target contingency and were
only told that the target appeared on either the left or right side
of the central fixation after a pair of words were presented.

Linear Ballistic Accumulator Model
In an LBA model (Brown and Heathcote, 2008), the evidence
accumulation process is represented by four free parameters (v,A,
b, psi) as described in Figure 1. The drift rate (v) codes efficiency
of evidence accumulation, which starts at point a, sampled at
each trial from a uniform distribution, U[0, A]. The threshold
b denotes the amount of evidence that is needed to make a
response. We followed the formulation of Annis et al. (2017),
where b is determined by the relative threshold (k) and the
maximum starting point (A). With these parameters, the time to
make a response (the decision time) is defined as the distance
between the starting point and threshold divided by the drift
rate. Observed RT normally comprises the decision time and the
time that is spent for perceptual and motor processing, which
are referred as non-decision time, psi. It may be also noteworthy
that LBA can be applied regardless of the number of response
alternatives. An LBA model assumes that each response option
has one accumulator; thus, when there are N (N = 1, 2, 3, . . .)
alternatives for a possible response, N accumulators are assumed.
Unlike other accumulation models such as the drift-diffusion
model (Ratcliff, 1978), LBA assumes that evidence is accumulated
independently across response options. This means that there is
no limit for the number of accumulators that can be included
in a model (Brown and Heathcote, 2008). For example, Zhang
et al. (2012) assumed three accumulators (corresponding to three
response alternatives for one trial) in the LBA model. This feature
also allows us to assume only one accumulator in a model, which
codes the accumulation process solely for correct responses.
The accumulator for incorrect responses was not assumed in
our analyses, because the response accuracy was quite high in
the current data (>99% in pre-tests, post-tests, and training
sessions) and it was not possible to estimate LBA parameters for
error responses.

The LBA model was applied to the entire group of participants,
with the ABM-instruction differences as a between-participant
factor, and the dot-probe trial types and assessment time as
within-participant factors. The parameters could vary across
the trial types and the explicit- and implicit-instruction groups.
To estimate these parameters, we used the Hamiltonian Monte
Carlo (HMC) algorithm in the present study. The HMC is
a parameter estimation method based on Bayesian statistics,
and is a kind of Markov Chain Monte Carlo (MCMC)
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algorithm. The MCMC is a sampling algorithm to generate
sample distributions according to the prior distribution of the
parameters. Parameters are continuously shifted in accordance
with some rule until the sample distribution becomes enough
close to the target distribution. The HMC algorithm applies
the basic principle of Hamiltonian mechanics as the rule.
Compared to traditional MCMC techniques, the HMC improves
the efficiency of parameter estimation, and requires shorter
chains (Hajian, 2007). In the present study, the HMC algorithm
(iteration = 4000, warmup = 2000, thinning = 4) was conducted
to obtain posterior distributions of pre-to-post changes in each
LBA parameter for the 2 (instruction) × 3 (dot-probe trial
type) conditions (Appendix). Four HMC chains were run to
evaluate the convergence, which meets the Gelman-Rubin’s
criteria (Gelman and Rubin, 1992; R̂ close to 1). These analyses
were performed using R (version 3.4.0, R Core Team, 2017) and
the rstan package for HMC (Carpenter et al., 2017; R and Stan
code used in the present study are uploaded here: https://osf.io/
u5cq6/files/).

RESULTS

Performances in the Pre- and Post-test
Assessments
Descriptive Statistics
Average RTs for each condition in the dot-probe task, excluding
trials with errors or extremely short or long RTs1 (average
RTs ± 2SD), are shown in Table 1. As reported in Nishiguchi
et al. (2015), the results of ANOVA (time × group) revealed that
the attentional bias index in the explicit instruction group was
significantly lower for the post-test session, d = 1.07, while there
was no significant difference in the standard instruction group,
d = 0.15 (F(1, 38) = 8.47, p < 0.01, for the interaction between
time and group).

Analyses With LBA Modeling
A total of 12,800 trials of the pre- and post-training dot-probe
task, across all participants and trial types, were submitted
to LBA modeling.2 Satisfactory convergence was found for all

1To keep the consistency with the previous study (Nishiguchi et al., 2015), we used
mean± 2SD as the exclusion criteria for this bias-score analysis.
2We initially applied a LBA model to each individual participant, however, the
Markov chain Monte Carlo (MCMC) chains did not converge to a stationary

TABLE 1 | Mean RTs (ms) and standard errors (SE) for each condition in the
dot-probe task for the pre- and post-test assessments.

Explicit (n = 20) Standard (n = 20)

Pre Post Pre Post

M SE M SE M SE M SE

Incongruent 382 10 355 11 380 8 359 7

Congruent 380 10 365 12 379 9 356 7

Neutral 380 10 362 12 378 9 358 7

estimated parameters according to Gelman-Rubin statistics: all
R̂ < 1.1; all effective sample size (ESS)/total samples > 10%;
all MCSE/SD < 10%. We excluded 124 trials with errors
or extremely short response times (<200 ms) to improve
the accuracy of estimation with LBA. Pre-to-post changes
in LBA parameters (subtracting post- from pre-estimates)
were calculated for each combination of the conditions (trial
type: congruent, incongruent, and neutral; instruction: explicit,
standard). Density plots are shown in Figure 2 for each group and
trial type. In addition, we calculated group differences in changes
in LBA parameters (subtracting pre-post changes in the standard
group from those in the explicit group) to highlight the specific
changes for the explicit but not standard instruction (Table 2).

In terms of the training effect, significant group differences
in the extent of pre-to-post changes were found for the
v (the drift rate) parameter; expected-a posteriori (EAP)
estimate (EAPpost−pre) = −1.840, 95% Credible Interval (CI)
[−3.395,−0.217], which did not include zero. The explicit group
showed a reduction in the v parameter for congruent trials;
EAPpost−pre = −1.528, 95% CI [−2.545, −0.528], which did not
include zero in the interval. This result indicates that the speed
of evidence accumulation was decreased when the target was
presented at the same location as the negative stimulus. On the
other hand, this reduction in the v parameter was not found in
the standard group, EAPpost−pre = 0.312, 95% CI [−0.907, 1.539].

Although there were no other significant group differences,
some within-group changes were found. Firstly, reduced v
parameters were also present in incongruent trials in the standard
group; EAPpost−pre = −1.168, 95% CI [−2.160, −0.131], which
did not include zero. However, there was no change for the
explicit group; EAPpost−pre = −0.543, 95% CI [−1.550, 0.371].
Moreover, the standard group showed a significant reduction in
the EAP of the k (the threshold) parameter in the incongruent
condition; EAP post−pre = −0.762, 95% CI [−1.376, −0.060],
which did not include zero. On the other hand, the explicit group
did not show a significant k-change; EAPpost−pre = −0.116, 95%
CI [−0.979, 0.563].

Performance Changes Across the
Training Sessions
Descriptive Statistics
Average RTs (and SE) for each condition in each training session
are shown in Table 3. There were a total of 19,200 trials over
the 3 days of ABM training. We excluded 1,406 trials with errors
and extremely short response times (<200 ms) to improve the
accuracy of estimates with LBA.

Analyses With LBA Modeling
Temporal changes in LBA parameters across the training sessions
(Day 1–3) were calculated for each condition (incongruent and
neutral trials; explicit and standard instruction) by subtracting
parameters on day 1 from those on day 3 (Figure 3). Satisfactory
convergence was found for all estimated parameters according

distribution. Therefore the model was designed to estimate parameters for each
group and condition, but not for each participant.
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FIGURE 2 | Change in LBA parameter distributions in congruent and incongruent trials from pre- to post-test, calculated by subtracting pre-test distributions from
post-test distributions. Among the four parameters (A, k, psi, v), A parameter represents the maximum amount of initial evidence, and k parameter represents relative
threshold (when b parameter represents the threshold, b – A). psi parameter represents the non-decision time, and v parameter represents the drift rate. White
distributions are those of the explicit group and gray ones are of the standard group.

TABLE 2 | Changes in LBA parameters between pre- and post-assessments.

Explicit instruction
(Post-Pre)

Standard instruction
(Post-Pre)

Group difference

EAP 95% CI EAP 95%CI EAP 95%CI

Congruent A −0.14 [−0.55,0.29] −0.06 [−0.45,0.35] −0.09 [−0.66,0.53]

k −0.64 [−1.41,0.17] 0.13 [−0.79, 1.00] −0.77 [−1.93,0.45]

psi 0.04 [−0.05, 0.11] −0.02 [−0.11, 0.06] 0.06 [−0.06, 0.17]

v −1.53 [−2.55, −0.53] 0.31 [−0.91, 1.54] −1.84 [−3.40, −0.22]

Incongruent A −0.22 [−0.57, 0.20] −0.08 [−0.43, 0.26] −0.15 [−0.66,0.40]

k −0.12 [−0.98, 0.56] −0.76 [−1.38, −0.06] 0.65 [−0.44,1.64]

psi −0.01 [−0.09, 0.08] 0.06 [0.00, 0.11] −0.07 [−0.17, 0.04]

v −0.54 [−1.55, 0.37] −1.17 [−2.16, −0.13] 0.63 [−0.85, 2.02]

Neutral A −0.08 [−0.39, 0.21] −0.03 [−0.34, 0.29] −0.05 [−0.51, 0.37]

k −0.78 [−1.27, −0.24] −0.71 [−1.26, −0.08] −0.08 [−0.89, 0.70]

psi 0.06 [0.01, 0.10] 0.06 [0.00, 0.11] 0.00 [−0.08, 0.07]

v −1.46 [−2.09, −0.76] −0.93 [−1.70, −0.10] −0.53 [−1.59, 0.51]

Group differences in LBA parameters were calculated by subtracting the pre-post changes in the standard group from those in the explicit group. LBA, Linear Ballistic
Accumulation model; EAP, expected-a posteriori, which indicates the parameter for each estimated posterior distribution; v, drift rate; A, upper limit of the starting point
distribution; k, relative threshold; psi, non-decision time.
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TABLE 3 | Mean Reaction Times for each condition in training task.

Explicit instruction (n = 20) Standard instruction (n = 20)

Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

M SE M SE M SE M SE M SE M SE

Incongruent 292 8 277 7 277 7 350 7 348 6 340 7

Neutral 356 8 347 7 336 7 350 7 348 6 344 5

FIGURE 3 | Change in LBA parameter distributions for incongruent trials from Day 1 to Day 3 calculated by subtracting Day 1 parameter distribution from Day 3
distribution. Upper four distributions are those of the explicit group and lower ones are of the standard group.

to Gelman-Rubin diagnosis: all R̂s < 1.1; effective ESS/total
samples > 10%; MCSE/SD < 10%.

As for the pre-post analyses, we computed group differences
in changes in LBA parameters (subtracting Day 1–3 change
scores in the standard group from those in the explicit group).
The results, however, showed that none of the parameters had
significant group differences in the extent of changes. Although
group differences were not clear, we found that the A parameter
decreased in incongruent trials in the explicit group; EAPDay

3−1 = −0.144, 95% CI [−0.243, −0.045], which did not include
zero. This reduction in A can be interpreted as a reduction
of variance in the starting point; in other words, participants
in the explicit group acquired a stable state of preparation
for the target that appeared at the opposite location to the
negative stimuli throughout the training session. Moreover, since
the threshold is represented by k + A in the present LBA
model, reduction in the A parameter also indicates a reduction
in the threshold, which leads to reduced RT, congruent with
the results shown in Table 3. The standard group did not
show this reduction in the A parameter; EAPDay 3−1 = 0.015,
95% CI [−0.355, 0.296].

To test the goodness of fit of the estimated model, we
conducted a posterior predictive check (Gelman et al., 1996;
Gelman and Shalizi, 2013). Based on the estimated LBA
parameters, RT distributions were generated and compared to the
observed RT data for replicability. The results showed that the

distribution of the generated RTs were sufficiently similar to that
of the observed data for all conditions, which suggests a good fit
of the estimated model (Figure 4).

DISCUSSION

In this study, we examined the training effect of explicitly
and standardly guided ABM by using the LBA model. The
computational approach enabled us to clarify the cognitive
processes that are modulated by explicit ABM compared with
standard ABM, which could not be identified by mere RT data
or traditional attention bias scores. Performances in the standard
and modified (i.e., for training) versions of the dot-probe task
were collapsed into LBA parameters including the starting point
(A, maximum amount of initial evidence and absolute threshold)
and the drift rate (v, speed of evidence accumulation). The results
of LBA modeling revealed that the drift rate decreases in the
congruent but not in the incongruent trials after completing
the explicitly, but not standardly, guided ABM. Moreover,
although there were no significant group differences, the v and
k parameters for incongruent trials decreased in the standard
group. Through the training session, the A parameter decreased
in the explicit group but not in the standard group.

The significant reduction in the drift rate suggests that the
explicit instruction causes a slowdown in evidence accumulation
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FIGURE 4 | The example of the post predictive check. The observed data distribution and the generated distribution in the post predictive check in the congruent
trials in the pre- and the post-test sessions for the explicit group.

for the congruent trials. This result is consistent with our
first hypothesis that explicitly guided ABM influences the
accumulation speed and efficiency of information processing.
When being explicitly instructed, participants consciously
practice directing their attention away from a negative stimulus.
This awareness of the incongruent contingency would be
reinforced via repeated practice in the training session (which
have no congruent trials), and could also facilitate response
habituation to the incongruent trials. Such beliefs and training
may disturb the accumulation of evidence in the congruent
condition at post-training assessment, as participants would
direct their attention away from negative stimuli even in the
congruent trials. This reduction in the drift rate can be explained
by Inhibition of Return (IOR; Posner, 1980; Klein, 2000; Hilchey
et al., 2014), which may have occurred if participants attended
to negative stimuli once and then instantly disengaged their
attention from it. IOR causes difficulty in re-orientating attention
to a location where attention was allocated shortly before it
was disengaged. After the intensive and conscious training
of attentional disengagement, IOR could prevent participants
from re-orienting attention to the location where a negative
stimulus appeared.

Interestingly, the drift rate in the incongruent trials was
not increased by the explicitly guided ABM, which is not
consistent with our hypothesis. Given that the explicit instruction
informed participants of the contingency between the target and
negative stimulus, this prior knowledge could have enhanced
evidence accumulation in the incongruent condition, but
may have rather impeded accumulation in the congruent
condition. Although we do not have a clear explanation for
this null result, it may be explained by the overlearning of
attentional disengagement through the ABM. No attentional
bias was found in the pre-training assessment, which means
that the RTs in congruent and incongruent conditions were
not significantly different. Thus, it can be inferred that
attentional disengagement from negative stimuli was not
difficult for the present sample (non-clinical students) and
there was no room to induce a significant change in their

responses to incongruent trials. Instead, participants may have
(over) learned attentional disengagement from negative stimuli,
which automatically guides their attention away from the
negative stimulus even in congruent trials (so that evidence
accumulation is delayed).

On the other hand, the standard group did not show a
significant change in the drift rate in the congruent condition.
This implies that target processing in the congruent trials is
neither enhanced nor inhibited by standardly guided training.
The standard ABM does not instruct participants to attend
or not to attend to negative stimuli, which may have only
partially promoted attentional disengagement from negative
stimuli. Therefore, IOR may not have taken place in the
congruent trials at the post-training assessment. Additionally,
though there was no change in congruent trials, the v and k
parameters were decreased in incongruent trials in the standard
group. The decrease in k means that the required amount
of information to make a response was decreased over the
training period, which typically leads to faster overall RTs
if other parameters are unchanged. On the other hand, the
reduction in v suggests delayed evidence accumulation, i.e.,
slower overall responses, after the training. These results seem
to suggest that the standard ABM may change the way that
information is processed, even though the changes are not
visible in mere RTs or bias indices. However, because there was
no group difference in the v and k parameters, these results
should be interpreted carefully, and further investigations and
replications are warranted.

On top of the pre- and post-training assessment, we focused
on performance changes over the training sessions. The results
indicated that A, which represents the starting point variability
and the absolute threshold, decreased over the training sessions in
the explicit (but not standard) group. With a smaller A value, the
starting point (i.e., a) distributes in a narrower range (i.e., having
smaller variance), and the absolute threshold also becomes lower.
The evidence accumulation starts almost always from the same
point, and participants make a response with a smaller amount
of evidence. Participants in the explicit group were repeatedly
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trained with prior knowledge about the cue-target contingency.
This consequently created a stable preparatory state for the
incongruent target in the training task, which might have resulted
in a decreased A parameter (or decreased variance in the starting
point). Not much evidence was needed for the participants to
make a response in the last session of training, because they
had learned the task to saturation. The relative threshold, k,
may also be changed by prior knowledge or the explicitly guided
ABM (since the absolute threshold is determined by k + A in
LBA). However, when response speed is emphasized in a task
(participants must make a response as quickly as possible), the
threshold is fixed to, or near, the upper limit of the starting point
distribution (i.e., the A parameter; Brown and Heathcote, 2008).
Since participants were instructed to make a response as fast
as possible in the present tasks, the variance of the threshold
might have been completely absorbed by A but not k, and
so the effect of prior knowledge was more prominent on the
A parameter.

The present study revealed the parameters that were changed
by explicitly guided ABM, which is a possible cause of efficient
attentional bias reduction. However, we should carefully interpret
the clinical implications because although previous studies
have suggested that explicitly guided ABM efficiently improves
attentional bias, the effect on psychopathological symptoms and
stress reactivity are less evident (e.g., Grafton et al., 2014).
These contradictory findings may question the hypothesized
mechanism; i.e., that ABM exerts the therapeutic effect on
symptomatology specifically via reduced attentional bias. Future
research must clarify the boundary conditions that predict
whether ABM shows a clinically meaningful effect. One of the
boundary conditions may be an overall reduction in attentional
bias (as theories predict), which may be combined with changes
in other specific cognitive processes. Given that our explicitly
guided ABM was successful in reducing attentional bias, but not
depressive symptoms (Nishiguchi et al., 2015), a change in drift
rate may not be the sole condition necessary to ensure positive
effects on symptomatology. We believe that LBA is a useful tool to
understand the mechanism of attentional-bias reduction through
ABM, especially if our findings are compared with the results of
other ABM trials that successfully reduced symptomatology in
terms of parameter changes in LBA.

The present study has several procedural limitations, many of
which were already discussed elsewhere (Nishiguchi et al., 2015),
such as the short-term and minimal extent of training, there
being no follow-up assessment, and a small sample size. Here, we
focus on LBA-specific issues and limitations that should be noted
when interpreting our results. The four parameters estimated in
LBA (i.e., A, k, psi, and v) often mutually correlate with each
other, which sometimes makes it difficult to reliably distinguish
between each process. One possible solution for this issue is to
have a large enough sample size (Visser and Poessé, 2017). In
our analysis, therefore, we applied the LBA model to the trials
across all participants, allowing the parameters to vary across
conditions and time, but not across participants; this approach
led to a crucial limitation in that the model cannot estimate the
parameters for each individual participant. If a larger number
of observations were available, the individual differences in each

LBA parameter change could be estimated. This provides another
interesting opportunity for further investigation, for example,
whether the correlations between the parameters change over
the training sessions and the performance changes from the pre-
to post-training assessment. Another issue is that we did not
include error trials in the analyses. As there were numerous
error trials in the present dot-probe data (accuracy = 99%),
it was not possible to estimate the accumulator for incorrect
responses. Although the number of alternatives is not restricted
in LBA, it is hoped that this limitation could be resolved by
applying the model to data including more errors, such as
data from clinical samples. A further issue in the present study
is that the posterior distributions of the parameters appear
to be non-normally distributed. Although we do not have a
clear explanation or interpretation for this, our choice of priors
(i.e., weakly informative distributions) may have influenced this
skewness. There was no previous example of LBA modeling
of ABM which we could refer to in the setting of the prior
distribution, thus we assumed a weakly informative distribution
(following the recommendation of the Stan Development Team,
2019). If data on the distribution of LBA parameters in ABM
were available in the future, other options for prior distribution
may be selected, which could lead to normality in the posterior
distribution of the parameters.

In conclusion, the present study is, to the best of our
knowledge, the first that has applied LBA to analyze and model
the effect of ABM. The LBA approach showed that explicitly
guided ABM slows down evidence accumulation in congruent
trials of the dot-probe task, possibly because the training
promotes attentional disengagement from negative stimuli. The
explicit instruction gave participants prior information about
the cue-target contingency, which could enhance the learning
of attentional disengagement from negative stimuli through the
training sessions. Although the non-clinical nature of the sample
limits the clinical implications of our findings, the computational
modeling approach used could deepen our understanding of
processes that can be modulated by ABM. Finally, although the
present study is the first attempt to apply LBA to the analysis of
ABM, computational approaches to attentional bias are getting
attention (e.g., Pe et al., 2013; Price et al., 2019). Future research
needs to apply LBA and other accumulator models to clinical
trials of ABM, which would reveal what process changes take
place behind the bias and symptom reductions in ABM.
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APPENDIX

As we were not aware of previous research on appropriate priors
for Bayesian estimation of LBA models, we assumed that each
parameter follows a weakly informative prior (i.e., half-Normal
distribution), for the i-th accumulator and j-th trial, as follows:

Aij ∼ half -Normal(0, 10),

kij ∼ N(0, 10)T(0),

vij ∼ N(0, 10),

psiij ∼ N(0, 10) T(0).
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