Aims and scope

Original papers and reviews in all fields of clinical research will be published. Reviews compatible with the specialist sections of the journal or editorials commenting on original articles are particularly welcome. The publication of rapid communications describing significant new findings will be given priority. Specialist sections linking basic research and clinical investigation will include:

- Molecular medicine
- Clinical pharmacology

The Editors also encourage the submission of:

- Case reports
- Correspondence
- Book reviews
- Relevant news items
- Letter(s) to the editors

To ensure the widest possible readership, only manuscripts in English will be considered. Either British or American usage is permitted, provided the usage is internally consistent.

Manuscripts submitted for publication must contain a statement to the effect that all human studies have been examined by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.

Reports of animal experiments must state that the "Principles of laboratory animal care" (NIH publication No. 85-23, revised 1985) were followed, as well as specific national laws (e.g. the current version of the German Law on the Protection of Animals) where applicable.

The editors reserve the right to reject manuscripts that do not comply with the above-mentioned requirements. The author will be held responsible for false statements or for failure to fulfill the above-mentioned requirements.

Copyright

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all coauthors, if any, as well as by the responsible authorities at the institute where the work has been carried out; that, if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher; and that the manuscript will not be published elsewhere in any language without the consent of the copyright holders.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, video disks, etc., without first obtaining written permission from the publisher.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

While the advice and information in this journal is believed to be true and accurate at the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Special regulations for photocopies in the USA: Photocopies may be made for personal or in-house use beyond the limitations stipulated under Section 107 or 108 of U.S. Copyright Law, provided a fee is paid. All fees should be paid to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970, USA, stating the ISSN 0941-0198, the volume, and first and last page numbers of each article copied. The copyright owner's consent does not include copying for general distribution, promotion, or resale. In these cases, specific written permission must first be obtained from the publisher.

The Canada Institute for Scientific and Technical Information (CISTI) provides a comprehensive world-wide document delivery service for all Springer-Verlag journals. For more information, or to place an order for a copyrighted Springer-Verlag document, please contact Client Assistant, Document Delivery, Canada Institute for Scientific and Technical Information, Ottawa K1A 0Z2, Canada (Tel.: (613) 952-8245; Fax: (613) 952-8245; e-mail: cisti.docdelivery@nrc.ca).

ADOVIS

This journal is included in the ADONIS service, whereby copies of individual articles can be printed out from compact discs (CD-ROM) on demand. An explanatory leaflet giving further details of the scheme is available from the publishers on request.

Subscription Information

North America: Recommended annual subscription rate: approx. US $ 417.00 (single issue price: approx. US $ 40.00) including carriage charges. Subscriptions are entered with prepayment only. Orders should be addressed to: Springer-Verlag New York Inc., Journal Fulfillment Services Dept 333 Meadowlands Parkway Secaucus, NJ 07084, USA Tel. (201) 348-4033, FAX (201) 348-4505

All other countries: Recommended annual subscription rate: DM 586.00 plus carriage charges; (Germany): DM 43.80 incl. value added tax; all other countries: DM 57.00, except for the following countries to which SAL delivery (Surface Airmail Lifted) is mandatory: Japan, India, Australia New Zealand, S.A.L charges and airmail delivery to all other countries are available upon request. Volume price: DM 586.00, single issue price: DM 58.60 plus carriage charges. Subscriptions can either be placed via a bookdealer or sent directly to: Springer-Verlag, Heidelberger Platz 3 D-14197 Berlin, Germany Tel. (0) 30 820 07-0, FAX (0) 30 8214091

Cancellations must be received by September 30 to take effect at the end of the same year.

Changes of address: Allow six weeks for all changes to become effective. All communications should include both old and new addresses (with postal codes) and should be accompanied by a mailing label from a recent issue.

According to § 4 section 3 of the German Postal Services Data Protection Regulations, the German Federal Post Office can inform the publisher of a subscriber's new address even if the subscriber has not submitted a formal application for mail to be forwarded.

Subscribers not in agreement with this procedure may send a written complaint to Springer-Verlag's Berlin office within 14 days of publication of this issue.

Black volumes: Prices are available on request.

Microform

Microform editions are available from: University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106, USA

Production

Springer-Verlag, Beate Uhl Journal Production Department II Postfach 105280 D-69042 Heidelberg, Germany Tel. (0) 6221 487-554, FAX (0) 6221 487625 e-mail: uhlu@springer.de

Responsible for advertisements E. Lückermann, Springer-Verlag Heidelberger Platz 3 D-14197 Berlin, Germany Tel. (0) 30 820 07-0, FAX (0) 30 8207300

Printers

Universitätsdruckerei H. Stütz AG, Würzburg © Springer-Verlag Berlin Heidelberg 1994 Springer-Verlag GmbH & Co. KG D-14197 Berlin Germany

Printed in Germany
Contents of Volume 72

No 1: pp 1–84 published December 6, 1993
No 2: pp 85–166 published January 31, 1994
No 4: pp 251–330 published March 31, 1994
No 5: pp 331–414 published May 6, 1994
No 7: pp 481–554 published July 26, 1994
No 8: pp 555–638 published August 30, 1994
No 9: pp 639–730 published September 19, 1994
No 10: pp 731–814 published October 19, 1994
No 11: pp 815–936 published November 2, 1994
No 12: pp 937–1098 published December 16, 1994

Supplement to Volume 72/issue 6: Erythropoietin and Autologous Transfusion, Dresden, September 14–18, 1993
Knolle Ρ -* Kienast Κ
Kobayashi T -* Kubota K
Kobelt R -* Greninger P
Koch ΚM -* Brunkhorst R
Kochs Μ -* Haug C
Köhler H -* Adamek RJ
Kohler SM -* Krämer BK
Koizumi T -* Takeda M
Komeyama T -* Takeda M
Komlósi P -* Nagy I
Kommerell Β -* Arnold JC
Kommerell B -* Boehme MWJ
Kommerell B -* Schlenker T
König J -* Jost WH
König W -* Fischer A
Konz K -* Luft D
Koray Ζ -* Bayraktar M
Korte W, Feldges A: Increased prothrombin activation in a patient with congenital afibrinogenemia is reversible by fibrinogen substitution 396
Korting HC -* Schäfer-Korting M
Ko Y -* Schmitz U
Ko YD -* Flesch M
Kraft K -* Flesch M
Krämer BK, Ackermann M, Kohler SM, Rieger GAJ: Role of endothelin in hypertension 88
Krämer G -* Kübler A
Kramer ΗU -* Bokemeyer D
Kramer ΗU, Bäcker A, Bokemeyer D, Meyer-Lehnert H: Atrial natriuretic peptide and endothelin: modulators of renal function 703
Kramer JH: Multiple scientific publications 555
Krams M -* Malessa R
Krause T -* Einhaus M
Krauß P -* Jurna I
Krejs GJ -* Wascher TC
Krejs GJ -* Kaufmann P
Krejs GJ -* Stauber RE
Krenning EP -* Jockenhövel F
Krieger S -* Bauer J
Kropp J -* Könár T
Krüger TM -* Stempfle HU
Kübler W -* Niroomand F
Kubota Κ, Tamura Κ, Kurabayashi H, Shirakura T, Kobayashi I: Evaluation of increased serum ferritin levels in patients with hyperthyroidism 26
Kuntz C -* Wolf O
Kurabayashi H -* Kubota K
Kützer C -* Falter B
Lamberts SWJ -* Jockenhövel F
Landthaler R -* de Vries JX
Landthaler R -* Löfler W
Land W: Impact of the reperfusion injury on acute and chronic rejection events following clinical cadaveric renal transplantation 719
Lange S -* Mönig H
Lanzer H -* Halwachs G
Lardelli P -* Vidal-Puig A
Laso FJ, Cordero M, García-Sánchez JE: Esophageal brucellosis: a new location of Brucella infection 393
Laso FJ, Madruga I, Borrás R, Bajo A, González-Buitrago JM, Castro de S: Hypokalemia in opiate overdose 471
La Spada AR -* Danek A
Lassau M -* Hagedorn A
László Jr F -* Nagy I
Leebeau A -* Rob PM
Lechleitner M -* Föger B
Leiderbogen G -* Jockenhövel F
Lehnert H -* Kübler A
Lehnert T -* Wolf O
Leibhammer S -* Düssing R
Leipner N -* Brennemann W
Leonhardt W -* Julius U
Lewalter J -* Evers J
Liegl U, Bogner JR, Goebel FD: Insulin-dependent diabetes mellitus following pentamidine therapy in a patient with AIDS 1027
Lindahl G, Mailly F, Humphries S, Seed M: Apolipoprotein E phenotype and lipoprotein(a) in familial hypercholesterolemia: implication for lipoprotein(a) metabolism 631
Linet OL, Neff LL: Intracavernous prostaglandin E1 in erectile dysfunction 139
Lingenfelser T, Pickert A, Pfohl M, Renn W, Radajdour M, Collet G, Eggstein M, Jakober B: Hypothalamic-pituitary activation does not differ during human and porcine insulin-induced hypoglycemia in insulin-dependent diabetes mellitus 56
Lippoldt A -* Fuxe K
Lis S -* Bauer J
Löfler H -* Harten P
Löfler W -* de Vries JX
Lohrmann E -* Gregor R
Lopez-Hänninen E -* Buer J
Lorenz J, Friedberg T, Paulus R, Oesch F, Röllin B: Oncogene overexpression in non-small-cell lung cancer tissue: prevalence and clinicopathological significance 156
Lüderitz B -* Hagedorn A
Ludvik B -* Capek M
Ludwig M -* Schmitz U
Luft D, Pagallies OB, Konz K, Mann K, Renn W, Eggstein M: Differential diagnosis of neuropathic lesions in diabetic and alcoholic patients 200
Lundin S -* Syed TA
Luska G -* Ranke C
Madruga I -* Laso FJ
Magnani G -* Pedretti G
Mailly F -* Lindahl G
Mailly F -* Seed M
Maio A -* Yasuda G
Mair J -* Vorderwinkler K-P
Malessa R, Diener H-C, Obritsch T, Böhm M, Brockmeyer NH: Successful treatment of meningococcal meningitis caused by Mycobacterium avium intracellulare in AIDS 850
Malir F -* Meilichar B
Mailmann R -* Bye S
Mann K -* Danek A
Mann K -* Luft D
Manns M -* Buer J
Marlinghaus EH -* Wehrmann T
Martínez Matos JA -* Gómez Sáez JM
Martínez E -* Collazos J
Marz W -* Haak T
Maurer I, Zier S: Mitochondrial respiratory chain enzyme activities in tetralogy of Fallot 358
Mayo J -* Collazos J
Meinhold H -* Denišič M
Meinert H -* Hansen PS
Meißner R -* Einhaus M
Mengden T -* Jack T
Mensing H -* Albrecht H
Mergancova J -* Melichar B
Mertens PR, Duque-Reina D, Ittel TH, Keulers P, Sieberth H: Contrast-enhanced computed tomography for demonstration of bilateral renal cortical necrosis 499
Metzela E -* Haug C
Meusel F -* Hellenbeck M
Meyer-Lehnert H -* Bokemeyer D
Meyer-Lehnert H -* Kramer HJ
Meyer zum Büschenfelde K-H -* Herr W
Meyer zum Büschenfelde K-H -* Höhler T
Meyer zum Büschenfelde K -* Wölfl T
Middeke M -* Wagner DR
Miersch W-D -* Gross AJ
Miesenböck G -* Föger B
Mizunashi K, Takay K, Sato H, Mori S, Abe K, Furukawa Y: The time course of renal function and bone turnover in
Takahashi H -> Takeda M
Takayama K -> Mizunashi K
Takeda M, Hatano A, Takahashi H, Tama-
ki M, Komeyama T, Koizumi T, Tsutsui T:
α₁-Adrenoceptors in the human prostat-
ic urethra are different from those of the
human peripheral arteries 55
Takeda M, Komeyama T, Koizumi T, Hata-
no A, Tamaki M, Takahashi H, Tsutsui T,
Mizusawa T, Obara K: Endothelin recep-
tors in the human urinary bladder are
different from those in the human
ureter 213
Takenaka T -> Navar LG
Talmud Ρ -> Seed Μ
Tamaki M -> Takeda M
Tamura J -> Kubota K
Tanahashi S -> Kawamori T
Tanaka T -> Kawamori T
Tegtmeyer KF -> Wetterling T
Telenti A: Molecular diagnostics for infec-
tious diseases: where do we stand? 415
Terres W -> Engelstein E
Teuber G -> Höhler T
Teufelsbauer H -> Erlacher L
Thaiss F -> Stahl RAK
Theilmann L -> Arnold JC
Theisen K -> Christ M
Theisen K -> Stempfle HU
Thiery J -> Windler E
Thoma HA -> Wagner D
Tichy M -> Melichar B
TIMMER J -> Bauer J
Tiran A -> Halwachs G
Tischfeld JA -> Bye S
Torsello G -> Kniemeyer HW
Trauner Μ -> Stauber RE
Traynor-Kaplan AE -> Dobos GJ
Tricker AR -> Einhaus M
Tröbinger G -> Föger B
Tröster S -> Bodmann KF
Tschaikowsky K, Sittl R, Braun GG, Her-
ing W, Rügheimer E: Increased iMet-
Leu-Phe receptor expression and al-
tered superoxide production of neutro-
phil granulocytes in septic and post-
traumatic patients 18
Tsutsui T -> Takeda M
Uhl W -> Briegel J
Ullrich R -> Schneider T
Ulrich W -> Pechersorfer M
Umemura S -> Yasuda G
Ungi I -> Nagy I
Urbach H -> Schröder R
Usadel K-H -> Haak T
Usman A -> Bayraktar M
Vallance D -> Seed M
Vetrie D -> Flinter F
Vetter H -> Düsing R
Vetter H -> Flesch M
Vetter H -> Schmitz U
Vetter W -> Greninger P
Vetter W -> Jeck T
Vidal-Puig A, Muñoz-Torres M, Jodar-Gi-
meno E, García-Caivete C, Lardelli P,
Ruiz-Requena ME, Escobar-Jiménez F:
Hyperinsulinemia in polycystic ovary
syndrome: relationship to clinical and
hormonal factors 853
Villalona C -> Fernández-Real JM
Voboril Z -> Melichar B
Vorderholzer U -> Bauer J
Voelker W -> Knisel W
Voelker W -> Spirydopoulos I
Voelker W -> Waidner T
Vogtseder W, Fille M, Patscheider S, Die-
rich MP, Allerberger F: Molecular epi-
demiology of tuberculosis in Austria
107
Volbracht L -> Malessa R
Vorderwinkler K-P, Jakob G, Mair J, Jud-
maier G, Puschendorf B: Uncoupling of
atrial natriuretic peptide and cyclic
guanosine 3',5'-monophosphate produc-
tion in patients with liver cirrhosis 138
Vorobjev DV -> Grigoriev AI
Voss A -> de Vries JX
Voss A -> Löfler W
de Vries JX -> Löfler W
de Vries JX, Voss A, Ittensohn A, Walter-
Sack I, Löfler W, Landthaler R, Zöllner
N: Interaction of allopurinol and hy-
drochlorothiazide during prolonged oral
administration of both drugs in normal
subjects. II. Kinetics of allopurinol, ox-
ipurinol, and hydrochlorothiazide 1076
Wagenbreth I -> Wagner D
Wagner D, Kern WV, Kern P: Liposomal
doxorubicin in AIDS-related Kaposi's
sarcoma: long-term experiences 417
Wagner D, Wagenbreth I, Stachan-Kun-
stler R, Thoma HA, Hemmerling AE,
Flit J: Hepatitis B vaccination of immu-
nosuppressed heart transplant recip-
ients with the vaccine Hepa Gene 3 con-
taining pre-S1, pre-S2, and S gene prod-
ucts 350
Wagner DR, Eckert F, Gresser U, Land-
thaler M, Middeke M, Zöllner N: De-
posits of paraprotein in small vessels as
a cause of skin ulcers in Waldenström's
macroglobulinemia 46
Wagner H-H -> Ranke C
Wagner L -> Sexi V
Wagner R, Bonifacio E, Bingley PJ, Gen-
ovese S, Reinwein D, Bottazzo GF: Low
interleukin-2 receptor levels in serum of
patients with insulin-dependent dia-
betes 494
Wagner TOF -> Flüge T
Wahm V -> Hornefe G
Wahm V -> Jablonowski H
Waidner T, Franzen D, Voelker W, Ritter M,
Borberg H, Hombach V, Höpp HW, LDL
Apheresis Study Group: The effect of
LDL apheresis on progression of coro-
nary artery disease in patients with fa-
miliar hypercholesterolemia. Results of
a multicenter LDL apheresis study 858
Walewska-Zielecka B -> Habior A
Walli A -> Windler E
Walter H -> Baldus M
Walter-Sack I -> de Vries JX
Walter-Sack I -> Löfler W
Walter-Sack I -> Schienker T
Wang X, Bacher B, Höllt V: Nicotine-in-
duced gene expression of proenkephal-
in in bovine chromaffin cells 925
Wanitschke R -> Herr W
Wanitschke R -> Höhler T
Wanner G -> Bartsch W
Ward D -> Dobos GJ
Warrcke K -> Einhaus M
Wascher TC, Hermann J, Brezinschek HP.
Brezinschek R, Wilders-Truschmig M,
Rainer F, Kressis GJ: Cell-type specific re-
sponse of peripheral blood lymphocytes
to methotrexate in the treatment of
rheumatoid arthritis 535
Weber H -> Hirschl MM
Weber J -> Schröder R
Wegener M -> Adamek RJ
Wehling M -> Christ M
Wehrmann T, Kater W, Martinlhau EH,
Peters J, Caspary WF: Shock wave
treatment of salivary duct stones: sub-
stantial progress with a minilithotripter
186
Weidinger S -> Pechersorfer M
Weilirer J -> Herr W
Weißel M -> Erlacher L
Weiss EM -> Iser G
Weisser B -> Jeck T
Wenisch C, Etzersdorfer E, Breyer S, Gra-
ninger W: Intravenous teicoplanin does
not prevent Clostridium difficile associ-
ated diarrhea 922
Werle E -> Boehme MWJ
Wetterling T, Tegtmeyer KF: Serum α₁-an-
titrypsin and α₁-macroglobulin in Alz-
heimer's and Binswanger's disease
196
Wetter S -> Hagendorff A
Wiedel M -> Muley T
Wienbeck M -> Adamek RJ
Wiesholzer M -> Sexl V
Wilders-Truschmig M -> Halwachs G
Wilders-Truschmig M -> Wascher TC
Willers R -> Jablonowski H
Winder A -> Seed M
Windler E, Ewers-Grabow U, Thiery J, Wal-
li A, Seidel D, Greten H: The prognostic
value of hypocholesterolemia in hospi-
talized patients 939
Wintergerst U, Niinivaara-Kreuzer K, Not-
heis G, Aubeger K, Brückmann C, Gan-
denberger S, Belohradsky BH: High-
dose intravenous immunoglobulins in the
treatment of adolescent and adult
HIV-infected hemophiliacs 122
Wittig B -> Herr W
Witt TN -> Danek A
Witzke O, Kassubek J, Bonnmann E, Musch
E: Cryoglobulinemia: a complication of
fibroendocytosis disease 1048
Wizemann V: Hemodialysis: 70 years 720
Wolf G -> Stahl RAK
Wolf Μ -> Gross AJ
Wolff Μ -> Gross AJ
Wolf O, Glaser F, Kuntz C, Lehnert T: Endorectal ultrasound and leiomyosarcoma of the rectum 381

Wormsley KG → Johnston DA
Wrenger E → Brunkhorst R

Yu D → Kellner H

Zach R → Halwachs G
Zach R → Kaufmann P

Zályanty Jr S → Nagy I
Zehetgruber M → Hirschl MM
Zeitz M → Schneider T
Ziegler R → Feussner G
Ziegler R → Habenicht AJR
Zierer R → Yasuda G
Zierer R → Maurer I
Zierer R → Ostrowitzki S
Zierer R → Schröder R
Zierer S, Mundegar RR, Jerusalem F: Biochemical evidence for heterozygosity in muscular carnitine palmitoyltransferase deficiency 77

Zierer S: Limited trypsin proteolysis renders carnitine palmitoyltransferase insensitive to inhibition by malonyl-CoA in patients with muscle carnitine palmitoyltransferase deficiency 957

Zimmer-Roth I → Pechersstorfer M
Zoller WG → Schewe CK
Zöllner N → de Vries JX
Zöllner N → Löffler W
Zöllner N → Schewe CK
Zöllner N → Wagner DR
Zöllner N: Anecdotal evidence 815
Zöllner N: Habent sua fata libelli 937

Indexed in Current Contents and Index Medicus
Insulin-dependent diabetes mellitus following pentamidine therapy in a patient with AIDS

U. Liegl, J.R. Bogner, F.D. Goebel
Medizinische Poliklinik, Klinikum Innenstadt, Universität München, Pettenkoferstrasse 8a, D-80336 München, Germany

Received: 26 July 1994 / Accepted: 11 August 1994

Abstract. Pentamidine is known to cause severe dysglycaemia by damaging β-cell function of the pancreas. The exact mechanism still remains unclear. We report the case of a 53-year-old man infected with the human immunodeficiency virus who developed insulin-dependent permanent diabetes mellitus 3 days after starting intravenous treatment with pentamidine for pneumocystis carinii pneumonia. Discharged from hospital the daily need of insulin increased continuously over one year now requiring an average dose of 80 units per day. So far, a number of cases of insulin-dependent diabetes mellitus following pentamidine therapy has been reported, but long-term observations are rare.

Key words: Pentamidine – Diabetes mellitus – Human immunodeficiency virus

Insulin-dependent diabetes mellitus (IDDM) following parenteral pentamidine therapy in patients with the acquired immune-deficient syndrome (AIDS) has been described as a rare adverse event of the drug in a number of cases. Little is known about the exact mechanism of action, and there are no reports of long-term follow-up except one case with a follow-up of 8 months after the onset of diabetes mellitus. We report the case of a patient with AIDS developing IDDM after pentamidine treatment. His need of insulin increased continuously over 1 year.

Case report

A 53-year-old white man with known human immunodeficiency virus (HIV) infection since 1985 (current CD4 cell count 40/mm³) presented with fever, dyspnea, and cough requiring hospital admission. Physical examination revealed a patient in reduced general health with a respiratory rate of 42/min and a heart rate of 104/min. Blood gas analysis showed severe hypoxemia (pO_2 49.4 mmHg). Life-threatening Pneumocystis pneumonia was suspected although the patient had used pentamidine inhalations for P. carinii prophylaxis during the past 6 months with very good compliance. After demonstration of P. carinii in the bronchoalveolar lavage fluid high-dose intravenous cotrimoxazole therapy was started. The patient developed severe skin rash after 1 day, and cotrimoxazole was therefore replaced by intravenous pentamidine (4 mg/kg). Methylprednisolone (100 mg/day) was added for 2 days to improve hypoxia. Within 2 weeks the pneumonia resolved; pentamidine was given for a total of 15 days.

After 3 days of pentamidine therapy asymptomatic hyperglycemia occurred, with serum glucose levels ranging up to 520 mg/dl requiring insulin therapy. Before pentamidine administration routine blood glucose tests had been normal. After discontinuation of pentamidine the hyperglycemia persisted, requiring increasing doses of insulin. The patient was discharged from hospital with an average daily dose of 16 U insulin per day. Within 12 months later the average daily dose had increased to 70 U (Fig. 1). No other risk factors for the development of diabetes mellitus were found. There was no family history of diabetes mellitus, hemoglobin Alc was within the normal range at the onset of hyperglycemia, and test results for antibodies against islet cells were negative. Low C peptide levels (1.5 ng/dl postprandial) indicated β-cell dysfunction.

Two weeks after discontinuation of pentamidine the patient had an episode of nausea and vomiting lasting for several days, accompanied by an increase in serum lipase to 490 U/l, serum amylase remaining within normal range. Over a period...
of 5 months lipase levels gradually returned to normal without further specific therapy.

Discussion

Pentamidine, an aromatic diamidine with antiprotozoal activity is used in the treatment of trypanosomiasis, leishmaniasis, and most importantly *P. carinii* pneumonia. It appears to affect oxidative phosphorylation, nucleic acid synthesis, glucose metabolism, and folic acid synthesis, but the exact mechanism of its antiprotozoal effect is not yet known [5]. The drug can be administered by inhalation, intramuscularly, and intravenously. Its volume of distribution is extremely high (3 l/kg) while the plasma half-life is very short (a few minutes) [12]. Experimental animal models show a high concentration of the drug in kidneys, liver, and lungs but also in other organs such as the pancreas after intravenous administration [6]. Seven days later the concentration of the drug in the organs remains almost unchanged [13]. Pentamidine is largely eliminated by renal excretion; a small proportion is also eliminated by liver and salivary glands.

Side effects of the drug are common, the most frequent of which are hypotension and hypoglycemia, the latter occurring in up to 26% of HIV-infected patients treated by intravenous pentamidine [7]. Persistent IDDM following pentamidine has been reported in about 25 cases so far [3, 4, 7, 8, 10, 14]. There are 12 case reports from India on patients treated for kala-azar [8]. Eleven of these developed IDDM, one of whom could be sufficiently treated by oral antidiabetics. All of these patients were followed up over the next 2–5 years and the diabetes persisted. The other reported cases of pentamidine-induced diabetes mellitus are AIDS patients treated with pentamidine for *P. carinii* pneumonia. There is only one case of non-insulin-dependent diabetes mellitus caused by pentamidine [1]. While this was the case with the shortest duration of therapy (9 days), the one with the longest duration (21 days) was accompanied by severe pancreatitis [14]. These clinical observations support the results of animal models in which the toxicity of pentamidine on the β-cells of the pancreas appeared time dependent, dose dependent, and irreversible [2, 3, 11]. Renal insufficiency has been shown to increase toxicity, but liver damage does not seem to affect toxicity of the drug [2]. A similar effect was observed after the administration of streptozotocin, alloxan, and certain rodenticides [9]. Histological examination of the pancreas was performed in one human who had developed diabetes mellitus after pentamidine treatment [14] and in rats exposed to pentamidine [2, 11]. Morphological changes differed from those found in the pancreas exposed to other toxic agents or in the pancreas of patients suffering from IDDM. The pancreas showed a decrease in β-cells and an increase in A-cells without β-cell necrosis or lymphocytic infiltration. There is no further information about the exact mechanism of action of the drug's damaging potential to β-cells.

The case described here emphasizes the toxicity of pentamidine to the pancreas. In this patient we found a slowly increasing need of insulin over 1 year after pentamidine therapy which cannot be explained by dietary failure. Although the drug is known for its persisting and extremely high concentrations in almost all organs [10], it remains unclear how pentamidine can cause an increase of need of insulin even months after discontinuation of therapy. Further investigations must be performed to ascertain the exact mechanism of action of pentamidine's high toxicity.

References

<table>
<thead>
<tr>
<th>Subject Index of Volume 72</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetazolamide 1025</td>
</tr>
<tr>
<td>acetycholine 262</td>
</tr>
<tr>
<td>acetylcholinesterase 262</td>
</tr>
<tr>
<td>acid 12</td>
</tr>
<tr>
<td>α-1 acid glycoprotein 1012</td>
</tr>
<tr>
<td>acidity, buffered 14</td>
</tr>
<tr>
<td>acidity, gastric 12</td>
</tr>
<tr>
<td>acne vulgaris 1086</td>
</tr>
<tr>
<td>acquired hyperostosis syndrome 4 ACTH 481</td>
</tr>
<tr>
<td>ACTH secretion, ectopic 887</td>
</tr>
<tr>
<td>activator protein 1 925</td>
</tr>
<tr>
<td>acute phase reaction 1007</td>
</tr>
<tr>
<td>acute phase response 1012</td>
</tr>
<tr>
<td>acute phase response 843</td>
</tr>
<tr>
<td>acyl coenzyme A cholesterol</td>
</tr>
<tr>
<td>acyltransferase 639</td>
</tr>
<tr>
<td>adenine phosphoribosyltransferase (APRT), deficiency 550</td>
</tr>
<tr>
<td>adenoma 979</td>
</tr>
<tr>
<td>adenoma, hypophyseal 481</td>
</tr>
<tr>
<td>adhesion molecules 598</td>
</tr>
<tr>
<td>adipose tissue, human 94</td>
</tr>
<tr>
<td>adenalegomyctomy 979</td>
</tr>
<tr>
<td>adrenocorticotropin 56</td>
</tr>
<tr>
<td>afferent C fibers 65</td>
</tr>
<tr>
<td>afibrinogenemia 395</td>
</tr>
<tr>
<td>agranulocytosis 390</td>
</tr>
<tr>
<td>AIDS 1, 10, 50, 111, 122, 221, 283, 288, 417, 850, 878, 1020, 1041</td>
</tr>
<tr>
<td>air pollution 215</td>
</tr>
<tr>
<td>airway resistance, total 269</td>
</tr>
<tr>
<td>alanine : glyoxylate aminotransferase 1, peroxisomal enzyme 725</td>
</tr>
<tr>
<td>albumin excretion, urinary 961</td>
</tr>
<tr>
<td>alcoholism 200</td>
</tr>
<tr>
<td>aldosterone 177, 385, 979</td>
</tr>
<tr>
<td>aldosteronism 874</td>
</tr>
<tr>
<td>– primary 979</td>
</tr>
<tr>
<td>alkaline phosphatase 448</td>
</tr>
<tr>
<td>alkalization, cytosolic 817</td>
</tr>
<tr>
<td>alkalosis, hypokalemic 874</td>
</tr>
<tr>
<td>alloantigen 715</td>
</tr>
<tr>
<td>allograft rejection 715, 1007</td>
</tr>
<tr>
<td>aldehydodeoxytocin 193</td>
</tr>
<tr>
<td>allopurinol 1071, 1076</td>
</tr>
<tr>
<td>Alport’s syndrome 728</td>
</tr>
<tr>
<td>alveolar macrophage 269</td>
</tr>
<tr>
<td>Alzheimer’s disease 196, 489</td>
</tr>
<tr>
<td>Amanita 794</td>
</tr>
<tr>
<td>ambulatory blood pressure measurement 864</td>
</tr>
<tr>
<td>amiloride 695</td>
</tr>
<tr>
<td>amines, aromatic 364</td>
</tr>
<tr>
<td>aminoglutethimide 481</td>
</tr>
<tr>
<td>ammonium, urinary 385</td>
</tr>
<tr>
<td>amoxycillin-clavulanic acid combination 616</td>
</tr>
<tr>
<td>AMP, urinary cyclic 341</td>
</tr>
<tr>
<td>amphotericin B 769, 878</td>
</tr>
<tr>
<td>β-amyloid peptide precursor peptide 196</td>
</tr>
<tr>
<td>amyloid, serum 843</td>
</tr>
<tr>
<td>amyloidosis 196</td>
</tr>
<tr>
<td>– primary systemic 462</td>
</tr>
<tr>
<td>amyotrophic lateral sclerosis 882</td>
</tr>
<tr>
<td>analgesic 65</td>
</tr>
<tr>
<td>androgen receptor 882</td>
</tr>
<tr>
<td>androgens 853</td>
</tr>
<tr>
<td>anemia 26</td>
</tr>
<tr>
<td>angina pectoris 30, 307, 442</td>
</tr>
<tr>
<td>angiographic, coronary 30</td>
</tr>
<tr>
<td>angiography – coronary 442</td>
</tr>
<tr>
<td>– digital subtraction 592</td>
</tr>
<tr>
<td>– magnetic resonance 85</td>
</tr>
<tr>
<td>– quantitative 858</td>
</tr>
<tr>
<td>angiomatosis, bacillary 50</td>
</tr>
<tr>
<td>angioplasty 592</td>
</tr>
<tr>
<td>– percutaneous transluminal 673</td>
</tr>
<tr>
<td>angiosarcoma 372</td>
</tr>
<tr>
<td>angiotensin 177, 682</td>
</tr>
<tr>
<td>angiotensin (Ang) II 685, 874</td>
</tr>
<tr>
<td>angiotensin-convertin enzyme 660</td>
</tr>
<tr>
<td>angiotensin-convertin enzyme inhibitor 985, 961</td>
</tr>
<tr>
<td>angulation 138</td>
</tr>
<tr>
<td>ankle/brachial index 592, 1056</td>
</tr>
<tr>
<td>ankylosing spondylitis 4, 321</td>
</tr>
<tr>
<td>anti-HBs response 350</td>
</tr>
<tr>
<td>antibiotics 1015</td>
</tr>
<tr>
<td>antibodies, anti-ganglioside 541</td>
</tr>
<tr>
<td>– anti-nucleolar 541, 762</td>
</tr>
<tr>
<td>– anti-phospholipid 541</td>
</tr>
<tr>
<td>– anti-serotonin 541</td>
</tr>
<tr>
<td>– monoclonal 525, 752</td>
</tr>
<tr>
<td>– platelet-specific monoclonal 424</td>
</tr>
<tr>
<td>– monoclonal 150</td>
</tr>
<tr>
<td>anticoagulation 74</td>
</tr>
<tr>
<td>antidiuretic hormone 168, 179</td>
</tr>
<tr>
<td>antifungal agents 920</td>
</tr>
<tr>
<td>antigen, platelet-specific 424</td>
</tr>
<tr>
<td>– thyroid-specific 788</td>
</tr>
<tr>
<td>antipyrine 830</td>
</tr>
<tr>
<td>antisense 737</td>
</tr>
<tr>
<td>α,-antitrypsin 196</td>
</tr>
<tr>
<td>α,-antitrypsin deficiency 404</td>
</tr>
<tr>
<td>anxiety 233</td>
</tr>
<tr>
<td>aortic aneurysm, abdominal 206, 585</td>
</tr>
<tr>
<td>APACHE II scores 843</td>
</tr>
<tr>
<td>aphasia 465</td>
</tr>
<tr>
<td>apheresis, low-density lipoprotein 660</td>
</tr>
<tr>
<td>aplasia, pure red cell 1051</td>
</tr>
<tr>
<td>apoliprotein 294, 580, 660, 898</td>
</tr>
<tr>
<td>– A 100</td>
</tr>
<tr>
<td>– B 100, 558</td>
</tr>
<tr>
<td>– apolipoprotein B 100 944</td>
</tr>
<tr>
<td>– apolipoprotein B-100, familial defective 1065</td>
</tr>
<tr>
<td>apolipoprotein(a) 558, 631</td>
</tr>
<tr>
<td>APRT gene 550</td>
</tr>
<tr>
<td>aquaporins 698</td>
</tr>
<tr>
<td>arachnoiditis 1025</td>
</tr>
<tr>
<td>ARDS 843</td>
</tr>
<tr>
<td>arginine vasopressin 685</td>
</tr>
<tr>
<td>arrhythmias 775</td>
</tr>
<tr>
<td>arterial obstructive disease, peripheral 592</td>
</tr>
<tr>
<td>arteries, carotid 436</td>
</tr>
<tr>
<td>– coronary 660</td>
</tr>
<tr>
<td>arterioles, afferent 682</td>
</tr>
<tr>
<td>arteriovenous fistula 40</td>
</tr>
<tr>
<td>artery, medial cerebral 331</td>
</tr>
<tr>
<td>– pulmonay 30</td>
</tr>
<tr>
<td>arthralgia 1048</td>
</tr>
<tr>
<td>arthritis, gouty 811</td>
</tr>
<tr>
<td>arthrooestitis, pustulotic 4</td>
</tr>
<tr>
<td>aspergillus 920</td>
</tr>
<tr>
<td>aspirin 673</td>
</tr>
<tr>
<td>asthma therapy 772</td>
</tr>
<tr>
<td>atherogenesis 639</td>
</tr>
<tr>
<td>atheroma 858</td>
</tr>
<tr>
<td>atherosclerosis 435, 558, 580, 631, 660, 858, 908, 944, 951</td>
</tr>
<tr>
<td>atrial natriuretic peptide 138, 430, 685, 703</td>
</tr>
<tr>
<td>atrial pacing 206</td>
</tr>
<tr>
<td>atrophy, testicular 882</td>
</tr>
<tr>
<td>augmentin 616</td>
</tr>
<tr>
<td>autoantibody, anti-neutrophil cytoplasmic 762</td>
</tr>
<tr>
<td>autoimmune disease 1048</td>
</tr>
<tr>
<td>autoimmunity 788</td>
</tr>
<tr>
<td>autopsys 377</td>
</tr>
<tr>
<td>aztreonam 1015</td>
</tr>
<tr>
<td>B-cell 220</td>
</tr>
<tr>
<td>bacteria, sulfate-reducing 742</td>
</tr>
<tr>
<td>Bartter’s syndrome 385, 874</td>
</tr>
<tr>
<td>basic fibroblast growth factor 639</td>
</tr>
<tr>
<td>Behchertew’s disease 1056</td>
</tr>
<tr>
<td>betamethasonevalerate 749</td>
</tr>
<tr>
<td>bile acids 36</td>
</tr>
<tr>
<td>bile fluid 316</td>
</tr>
<tr>
<td>biliary diseases, malignant 316</td>
</tr>
<tr>
<td>Binswangers’s disease 196</td>
</tr>
<tr>
<td>biology, molecular 415</td>
</tr>
<tr>
<td>biomonitoring 364</td>
</tr>
<tr>
<td>biopsies, human muscle 150</td>
</tr>
<tr>
<td>biopsy, renal 462</td>
</tr>
<tr>
<td>– bone marrow 462</td>
</tr>
<tr>
<td>bioterapy 525</td>
</tr>
<tr>
<td>bladder 213</td>
</tr>
<tr>
<td>bleeding, gastrointestinal 74</td>
</tr>
<tr>
<td>– upper gastrointestinal 653</td>
</tr>
<tr>
<td>blood flow, extracerebral 331</td>
</tr>
<tr>
<td>– intracerebral 331</td>
</tr>
<tr>
<td>blood pressure 60, 512, 961, 996</td>
</tr>
<tr>
<td>– arterial 944</td>
</tr>
<tr>
<td>– diastolic 585</td>
</tr>
</tbody>
</table>
hydrochlorothiazide 1071, 1076
hydrocortisone 749, 782, 794
hydrogen ion concentration, titrated 12
3-hydroxy-3-methylglutaryl
hydroxychloroquine 750
hydroxymercuric chloride 190
5′-hydroxymercuric chloride 190
17-hydroxyprogesterone 853
11β-hydroxysteroid dehydrogenase 701
5-hydroxytryptamine 541
5-hydroxytryptamine type 3 receptors 811
5-hydroxytryptamine type 1 A 451
hyperaldosteronism 979
hypercalemia 448
inhibition, therapeutic gastric 12
renal failure 522
– acute 609, 499
– dialysis dependent chronic 430
– end-stage 353, 424, 754
renal function 685, 703
renal insufficiency 277
renal microcirculatory function 682
renal microvasculature 682
renal stone disease 550
renal tubules 698
renin 177
renin control 687
reperfusion injury 719
residual volume 269
resistance 1015
– peripheral 60
resistive index 609
respiratory chain 359
respiratory quotient 568
respiratory tract 215
restenoses 673
restricting fragment length polymorphism 107, 453, 550, 898
retinal microangiopathic syndrome 288
retinoblastoma (gene) 619
retinoic acid 1086
rhadomyolysis 77
rhabdomyosarcomas 150
rheumatoid arthritis 535
rheumatoid factor 535
ribosomes 251
ribozymes 737
ribosomes 251
ribozymes 737
Riedel’s struma 788
Salmeterol 1065
Salmeterol 883
salsalate 40
salbutamol 60
salicylic acid 749
saline infusion 817
saline, isotonic 971
saline, isotonic 971
saline, isotonic 971
salicylic acid 749
saline infusion 817
saline, isotonic 971
salivary duct stones 604
Salyut 168
sarafotoxin 88, 213
sclerotherapy 653, 971
scintigraphy, somatostatin receptor 887
sclerosis 653, 971
self-medication 74
semimana 838
sengstaken 653
sensorimetry, quantitative
sepsis 18, 782
septal defect, ventricular 359
septum, interventricular 462
sacroconversion 122
serotonin 451, 541, 811
serum amyloid A protein 1007
sex hormone metabolism 751
shock 782
– wave treatment 604
– cardiogenic 465
sialolithiasis 604
sicca syndrome 822
signal transduction 353, 713
silent ischemia 307
silibinin 794
single-strand conformation
polymorphism 898
single-photon emission computed
tomography 731
Sjogren’s syndrome 822
skin disease, chronic inflammatory 400
sleep-wake cycle 315
small intestine 313
small nerve fiber function 822
smokers’ urine 190
smokers 269, 364, 804, 930
– habit 512
– passive 364
smooth muscle, vascular 992
SMS 201–995 669
sodium 172, 800, 817
– fluoride 1082
– reabsorption 722
somatostatin 127, 653, 669, 887
space flights, long-term 168
spinal cord 65
spinal muscular atrophy 882
spironolactone 695, 979
spondylarthritis, pustulopuritic
hyperostotic spondylarthritis 4
spondylarthropathies, seronegative 321
sports 399
squamous cell carcinoma 240
standardized mortality ratio 117
steroid, cardiotonic 706
streptococcus mitis 922
streptococcus pneumoniae 1037
strictures 343
study, longitudinal 117
stunning 731
subarachnoid hemorrhage 302
suggestability 512
sulfur dioxide 215
superoxide anion 18
superoxide dismutase 719
superoxide production 353
sural nerve 65
surgery thyroid 967
syncope 372
T cells 321
tachycardia 307
tachycardias, hypotensive 775
Taql RFLP 550
tecloplatin 922
terlypressin 653
testosterone 853
T cells 321
T cells 60
– interferon-gamma 465
– diuretic 240
– fibrinolytic 465
– immunosuppressive 749
– rehydration 167
– substitution 395
thiazides 692
thiobacillus 775
thiocyanate 830
thiosulfate 830
thioureca 830
thrombectomy 40
thrombin activation 395
thromboembolic, prophylaxis 913
thrombomodulin 598
thrombosis 40, 465, 883
thromboxane 673
thymine 409
thyroid cysts 971
thyroid dysfunction 975
thyroid-stimulating hormone 489, 971, 975
– releasing hormone 489
thyroxine 26, 967, 971, 975
tilt table 996
tobacco smoking 238, 930
tobramycin 1015
tramadol 76
trans-3-hydroxycotinine 190
trans-activating factors 687
transferrin 1012
transforming growth factor 558, 713
transplant rejection 715
transplantation 715
– kidney 609
– liver 1007
– renal 1000
– renal cadaveric 719
– transport, mucociliary 215
trauma 18
– multiple 843
tretinoin 1086
trimicinolone 100, 294, 502, 749, 944, 1065
triiodothyronine 26, 944, 971
trilostane 481
triton C-100 77
triton C-100 481
triton C-100 77
triton X-100 957
tuberculosis, pulmonary 107
tubular actions 690
tubuloglomerular feedback 682
tumor biology 156
– cachexy 127
– cell marker 337
– growth 127
tumor necrosis factor 18, 94, 225, 470, 472, 525, 711, 782, 843
tumor suppressor genes 619
– viruses 619
– gastrointestinal 525
– malignant bronchogenic 156
ultrasound 435, 585, 604, 609
– endorectal 381
– thyroid 967, 971
uremia 353
ureter, human 213
urethra, human 55
uric acid 385, 1071
uroolithiasis 725
– 2,8-dihydroxyadenine 550
vaccination 350
valvar heart disease 30
variceal bleeding 653
vascular cell adhesion molecule-1 598
vascular disease 288
vascular system 85
vasculopathy, chronic transplant 719
vasoconstrictor 214
vasopressin 653, 698
ventricular fibrillation 307
ventricular pacing 775
very low density lipoprotein 100, 294, 502, 568, 639, 944, 1065
vigilance 512
vitamin K 794
von Hippel-Lindau syndrome 619, 729
Waldenström's macroglobulinemia 46
Walter reed classification 288
warts, genital 870
water 172
-water-channel-collecting duct 698
-water-channels 698
-water-D_{218}O 830
-water-transport 698
-water-total body 830
-water- tritiated 830
Wegener's granulomatosis 762
weightlessness 168
wild type p53-activated fragment 619
Wilms' tumor (gene) 619
Wilson's disease 134
X chromosome 728
xerophthalmia 822
xerostomia 822
zidovudine 111
zinc, urine 1012
zymosan activated plasma 30