Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all coauthors, if any, as well as by the responsible authorities at the institute where the work has been carried out; that, if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher; and that the manuscript will not be published elsewhere in any language without the consent of the copyright holders.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, video disks, etc., without first obtaining written permission from the publisher.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

While the advice and information in this journal is believed to be true and accurate at the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, expressed or implied, with respect to the material contained herein.

Special regulations for photocopies in the USA: Photocopies may be made for personal or in-house use beyond the limitations stipulated under Section 107 or 108 of U.S. Copyright Law, provided a fee is paid. All fees should be paid to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970, USA, stating the ISSN 0941-2921, the volume, and the first and last page numbers of each article copied. The copyright owner's consent does not include copying for general distribution, promotion, new works, or resale. In these cases, specific written permission must first be obtained from the publisher.
F. M. Honrubia, E. Ferrer, C. Torron, I. Gonzalez
Study of the retinal fiber layer in patients with acquired immunodeficiency syndrome 1

In vitro anti-human cytomegalovirus activity of liposome-encapsulated foscarnet 5

S. A. Geier, V. Klauss, J. R. Bogner, H. Schmidt-Kittler, I. Sadri, F. D. Goebel
Retinal detachment in patients with acquired immunodeficiency syndrome 9

H. Mietz, B. Kirchhof, K. Heimann
Anterior proliferative vitreoretinopathy in trauma and complicated retinal detachment. A histopathologic study 15

G. Hasenfratz, M. De La Torre, W. Haigis
Evaluation of eyes harbouring perfluorocarbon liquid with standardized ophthalmic echography 19

M. Kleineidam, R. Guthoff
Possible effects of radiobiological parameters on metastatic spread of uveal melanomas treated with 106Ru plaques 22

N. Bornfeld
Discussion 25

S. Bopp, E.-S. El-Hifnawi, H. Laqua
The photoreceptor cells and retinal pigment epithelium of normal and diseased human retinas express different glycoconjugates 27

B. Jurklies, K. Kohler, J. Eikermann, E. Zrenner
Angiotensin II-like immunoreactivity in the retina of some mammalian species 37

F. Fankhauser I, F. Fankhauser II, S. E. Larsen, L. M. Cruz-Orive
Fluctuations of visual field interpretation related to cluster and scotoma analysis by one interpreter 43

G. Michelson, A. Gründler, R. Steinmeier, U. Sigwanz
Simultaneous measurement of ocular micro- and macrocirculation, intraocular pressure, and systemic functions 48

D. F. Graichen, E. Perez, D. B. Jones, R. L. Font
Kappa-immunoglobulin corneal deposits associated with monoclonal gammapathy. Immunohistochemical and electron microscopic findings 54

Y. Sakamoto, K. Sasaki, M. Kojima
Analysis of crystalline lens coloration using a black and white charge-coupled device camera 58

S. Sandramouli, N. Jaffery, N. Nath Sood, R. Sihota
Aqueous humour lactic acid and proteins in eyes with iris neovascularization 61
The German Journal of Ophthalmology is a new periodical printed in English under the auspices of the German Ophthalmological Society. After peer review by an international board, the journal publishes original articles on clinical and basic ophthalmic research that has been presented in part at the annual meetings of the Society. In addition, it encourages submission of free research papers from the outside. The international ophthalmological community is therefore invited to consider the German Journal of Ophthalmology for the publication of their scientific endeavors.

Copyright
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all coauthors, if any, as well as by the responsible authorities at the institute where the work was carried out; that, if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher; and that the manuscript will not be published elsewhere in any language without the consent of the copyright holders.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, video disks, etc., without first obtaining written permission from the publisher.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

While the advice and information in this journal is believed to be true and accurate at the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, expressed or implied, with respect to the material contained herein.

Special regulations for photocopies in the USA: Photocopies may be made for personal or in-house use beyond the limitations stipulated under Section 107 or 108 of U.S. Copyright Law, provided a fee is paid. All fees should be paid to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970, USA, stating the ISSN 0941-2921, the volume, and the first and last page numbers of each article copied. The copyright owner's consent does not include copying for general distribution, promotion, new works, or resale. In these cases, specific written permission must first be obtained from the publisher.

Subscription information
ISSN 0941-2921
Volume 3 (6 issues) will appear in 1994.
Membership in the German Ophthalmological Society includes a subscription to this journal.
Journal of the German Ophthalmological Society

Editor-in-Chief
M. Spitznas, Bonn

Associate Editors
H. E. Völcker, Heidelberg
K. Heimann, Köln

Editorial Board
D. J. Apple, Charleston
R. H. Blach, London
G. Blankenship, Hershey
F. Biodi, Iowa City
M. Blumenthal, Tel Hashomer
W. Breipohl, Bonn
M. Busin, Bonn
G. Coscas, Créteil
W. de Decker, Kiel
W. de Grip, Nijmegen
C. Eckardt, Frankfurt
M. Fahle, Tübingen
F. Fankhauser, Bern
J. Flammer, Basel
R. Font, Houston
V.-P. Gabel, Regensburg
G. Grabner, Wien
F. Grehn, Mainz
R. Guthoff, Rostock
C. Hartmann, Berlin
O. Hockwin, Bonn
H. Hoenders, Nijmegen
K. W. Jacobi, Gießen
A. Kampik, München
G. Kommerell, Freiburg
A. Kreiger, Los Angeles
G. K. Krieglstein, Köln
B. J. Lachenmayr, München
G. Lang, Ulm
H. Laqua, Lübeck
W. R. Lee, Glasgow
K. Lucke, Lübeck
R. Machemer, Durham
J. S. Mindel, New York
G. Niemeyer, Zürich
S. A. Obstbaum, New York
K. F. Ossoinig, Iowa City
Y. Pouliquen, Paris
E. Reale, Hannover
K. G. Riedel, München
H. Ropers, Nijmegen
M. Ruben, London
J. A. Shields, Philadelphia
R. Sundmacher, Düsseldorf
S. R. Thurau, München
H. Treumer, Flensburg
G. van Rij, Groningen
G. von Noorden, Houston

Springer International
Contents of volume 3

Althaus C, Demmer E, Sundmacher R: Anterior capsular shrinkage and intraocular pressure reduction after capsulorhexis 154

Althaus C → Sundmacher R
Arend O → Effert R
Arend O → Wolf S
Atonu A → Wolfensberger TJ
Augustin AJ, Böker T, Seewald S, Klassen PM: Solitary retinal granuloma as a presenting sign of sarcoidosis 71

Bach M → Lagrèze W-D
Baez KA, Ulbig MW, McHugh D, Holz FW, Späth GL: Long-term results of ab externo neodymium: YAG cyclophotocoagulation 395

Baez KA → Späth GL
Bartl-Schmidt KU, Weber J, Heimann K: Validity of two-dimensional data obtained with the Heidelberg RetinaTomograph as verified by direct measurements in normal optic nerve heads 400

Billson F → Coupland SE
Bird AC → Wolfensberger TJ
Birngruber R → Wetzel W
Böker T, Schmitt C, Mougharbel M: Results and prognostic factors in pneumatic retinopexy 73

Böker T → Augustin AJ
Bogner JR → Geier SA
Bopp S, El-Hifnawi E-S, Laqua H: The photoreceptor cells and retinal pigment epithelium of normal and diseased human retinas express different glycoconjugates 27

Bornfeld N: Discussion 25
Bornfeld N → Schilling H
Brinkmann R → Wetzel W
Brunner R → Jacobi PC
Brunner R → Walter P
Bucco MG → Strupe M
Bünz S → Hoffmann F

Carter ND → Wolfensberger TJ
Cinatl J → Gümbel HOC
Coupland SE, Penfold P, Billson F, Hoffmann F: Immunohistochemistry study of the glaucomatous and normal human trabecular meshwork 168

Courtois Y → Rieck P
Cruz-Orive LM → Fankhauser I F

Damato BE → Omulecki W
David T → Rieck P
Demmer E → Althaus C
Doerr HW → Gümbel HOC
Dürr U, Fankhauser F: Optical and thermal mechanisms related to the design of laser sclerostomy 202

Effert R, Wolf S, Arend O, Schulte K, Reim M: Retinal hemodynamics after pars plana vitrectomy with silicone oil tamponade 65

Eikermann J → Jurklies B
El-Hifnawi E-S → Bopp S
Elsner AE → Wolf S

Fahl M, Skrandies W: An electrophysiological correlate of learning in motion perception 427

Fankhauser I F, Fankhauser II F, Larsen SE, Cruz-Orive LM: Fluctuations of visual field interpretation related to cluster and scotoma analysis by one interpreter 43

Fankhauser F → Dürr U
Fankhauser F → Fankhauser AT
Fankhauser II F → Fankhauser I F
Ferrer E → Honrubia FM
Foerster MH → Helbig H
Font RL → Graichen DF
Friedrichs W → Schilling H
Fromm M → Noske W
Funkhauser AT, Fankhauser F: Temporal summation measurements with the Octopus 1-2-3 perimeter 120

Gabel V-P → Tang S
Geier SA, Klauss V, Bogner JR, Schmidt-Kittler H, Sadri I, Goebel FD: Retinal detachment in patients with acquired immunodeficiency syndrome 9

Geier SA, Klauss V, Goebel FD: Study of the retinal fiber layer in patients with acquired immunodeficiency syndrome (Letter to the editor) 258

Geier SA, Klauss V, Görlütor L: Human immunodeficiency virus type 1 and type 2 seroreactivity in cornea donors 182

Goebel FD → Geier SA
Göttinger W → Torger J
Gonzalez I → Honrubia FM
Graichen DF, Perez E, Jones DB, Font RL: Kappa-immunoglobulin corneal deposits associated with monoclonal gammopathy. Immunohistochemical and electron microscopic findings 54

Grehn F → Pfeiffer N
Groh MEM → Groh MJM
Groh MJM, Michelson G, Groh MEM, Gründler AEP: Ocular macro- and microcirculation after topical application of clonidine and metipranolol 175

Gründler A → Michelson G
Gründler AEP → Groh MJM

Güttler L, Geier SA
Guthoff R → Kleineidam M

Häring G → Wetzel W
Haigis W → Hasenfatz G
Hamilton P → Ulbig MW
Hartmann C → Rieck P
Hasenfatz G, Torres De La M, Haigis W: Evaluation of eyes harbouring perfluorocarbon liquid with standardized ophthalmic echography 19

Heidenkummer H-P → Schönfeld C-L

Heimann K → Bartz-Schmidt KU
Heimann K → Mietz H
Heimann K → Walter P
Heimann K → Wiedemann P

Hellier S, Mayer UM: Effect of UV-A light on the catalase activity in the vitreous body of calf eyes 445

Hersh PS → Kenyon KR
Hirsch M → Noske W
Hoffmann F, Tregel M, Noske W, Bunte S: HLA-B and -DR molecules reduces the allograft reaction after keratoplasty 100

Hoffmann F → Coupland SE
Holz FG → Wolfensberger TJ
Holz FW → Baez KA
Honrubia FM, Ferrer E, Torron C, González I: Study of the retinal fiber layer in patients with acquired immunodeficiency syndrome 1

Honrubia López FM: Reply (Letter to the editor) 259

Jacobi PC, Walter P, Brunner R, Krieglstein GK: Reproducibility and intr-individual variability of the pattern electroretinogram 216

Jaffery N → Sandramouilis
Johnen J → Sommer HJ
Jonas JB, Königreuther KA: Macrodiscs in eyes with flat and large corneas 179

Jones DB → Graichen DF
Jurklies B, Kohler K, Eikermann J, Zrenner E: Angiotensin II-like immunoreactivity in the retina of some mammalian species 37

Kähler C → Troger J
Kampik A → Schönfeld C-L
Kellner U → Helbig H
Kenyon BM → Kenyon KR
Kenyon KR, Kenyon BM, Starck T, Hersh PS: Penetrating keratoplasty and anterior segment reconstruction for severe ocular trauma 90

Kieselbach G → Troger J
Kirchhof B → Mietz H
Kirchhof B → Walter P
Klassen PM → Augustin AJ
Klauss V → Geier SA
Kleineidam M, Guthoff R: Possible effects of radiobiological parameters on metastatic spread of uveal melanomas treated with 109Ru plaques 22

Knoz MC: A theoretical model to predict contrast sensitivity with bifocal intraocular lenses 189

Königsreuther KA → Jonas JB
Körner U → Schönfeld C-L
Kohler K → Jurklies B
Kojima M → Sakamoto Y
Kommerell G: The dynamic head-tilt test and the concept of a supranuclear trochlear palsy 186

Author index for abstracts

The numbers correspond to the abstract numbers.

Abraham R. P 277
Adelmann Giselind K 137
Adler D. P 336
Akiyoshi H. V 99
Akova Y. K 72
Alencar J.P. K 136
Alexandrides E. K 432, P 302
Alten Rieke K 455
Althauser S.R. K 139
Amann T. P 233
Amm Marita K 30
Anders N. F 15, V 45, V 92
Anderson D.R. P 208, P 209, P 293
Andrassy K. P 336
Antoniou L. K 359
Anton-Lamprecht Ingrun P 239
Apfelstedt-Sylla E. V 163
Apple D.J. V 91, V 484
Arden G.B. P 224, P 250, V 458
Arend O. K 476, P 235, P 269, V 142, V 376, V 378, V 483, V 496
Arnott E. V 34
Aschoff R. K 108
Asiyoo-Vogel Mary K 350, K 489
Aspacher F. K 95
Atzler U. V 35
Auffarth G.U. V 91, V 484
Aust Reinhold F 3, K 62, K 68, P 184, P 302, V 127
Auw-Härdrich Claudia K 134
Avitabile T. K 456
Baatz H. F 5
Bach M. K 158, K 439, V 461
Bachmeier R. V 150
Baez Karin A. P 224
Bahn H. P 279
Balczewicz I. P 296
Balmes R. K 405, P 297
Banhart F. V 163, V 465
Barraquer Carmen K 42, K 43
Barraquer J.I. K 42, K 43
 Barth T. P 225
Bartsch M. V 111
Bartz-Schmidt K.U. P 17, K 437, R 100, V 101
Baryshova Eva K 480
Bauch J. V 130
Baum Uta P 265
Baumann Britta P 248
Bayer A.U. K 452, P 222, P 290
Baykal H.E. K 146, P 185, V 411
Beck Beate C. V 346
Beck R. P 342
Beck W.-D. V 56
Becker J. K 132, P 176
Becker M. P 325, V 474
Bednarz J. V 63
Behrendt I. P 283
Behrendt S. K 389, V 370
Behrens-Baumann W. K 159
Belak M. P 267
Benda N. V 151
Bende T. R 27
Bengisu M. P 327
Benning H. P 223, P 251, V 374
Berg P. V 414
Berglöff Jutta K 426
Bergmann U. V 76
Bermig J. V 101
Bertram B. V 142
Beyer I. K 159
Bialasiewicz A.A. K 359, K 405, P 297, P 331
Bille J. K 418
Bird A.C. P 242, P 250, V 458
Birkel Christina P 178
Birngruber R. V 39, V 46, V 369, V 370, V 469
Blankenagel Anita P 184, V 492
Bleckmann H. K 455
Blum M. K 135, K 383, P 336
Bodanowitz S. K 360
Boerger K.-P. K 168, P 274, P 327
Bogner J.R. P 308
Bohnderl Tanja K 66
Böhm Claudia P 228
Bohndorf M. P 185
Böhnke M. K 65, P 183, P 188
Böker T. F 6, P 298, V 486
Bolt Sylvia P 290
Bömer T.G. K 439
Böpp Silvia V 361
Borbergh H. P 267
Bormfeld N. P 288
Bossi E. V 110
Botz Natalia P 266
Brandl H. V 50
Bräuer K. V 41
Bräuer-Burchardt C. K 480
Braun M. P 198, P 333
Bräutigam P. K 139
Breer Bettina K 423, V 487
Breipohl W. V 99
Bresgen M. P 265, P 266, V 366, V 462
Brinkmann R. V 39, V 46
Brückner S. P 315
Brunner R. P 267, P 307
Büchner T. V 35
Budde W.M. P 210, P 219, P 313
Buhl R. V 128
Burk R.O.W. P 216, P 217, V 441
Busche Stefanie K 457, V 149
Busin M. P 177, P 298, V 29, V 394
Busse H. K 138, P 260, V 35, V 130, V 357
Carl T. K 379, P 218
Carter N.D. P 188
Cendelin J. P 193
Champion C. V 102
Chan C.C. V 409, V 410
Chofflet J. V 343
Christiansen N. V 444
Chung Y.B. P 295
Cinatl J. K 404
Corson D.W. V 484
Cosmar Evelyn K 82
Coupland Sarah E. P 281, V 406
Courtis Y. V 123
Cruz Zenaída de la P 282
Csuzda I. P 311
Culbertson W.W. P 282
Cusumano A. P 177
Daberkow Ina V 372
Damms T. P 287
Daniel F. P 230
David T. V 123
Davis E.B. P 293
Delori F.C. V 496
Dembinsky B. V 140
Demeler U. K 347
Denffer H.v. P 16
Dettmar T. V 430
Deutsch Claudia K 65, V 444
Dick B. F 13, K 75, K 97, P 202, V 93, V 362, V 500
Diestelhorst M. K 95, K 449, V 131, V 422
Dimiridou S. P 258, P 259
Dithmar S. P 215, P 273
Ditzen K. V 40
Dockhorn-Dworniczak B. K 138
Doepner D. V 149
Doerr H.W. K 404
Domack H. V 475
Domarus D.v. V 490
Dorf M. V 397
Dorn G. V 394
Dornbach Gabriele K 82
Draeger J. K 42, K 43, K 65, K 118, P 183, P 187, R 48, V 34, V 49, V 444
Dröge Gerit V 39, V 370
Duijvestijn A. V 410
Duncker G. F 1, K 30, K 353
Dunker S. P 271
Dütt H. V 413
Ebert D. V 503
Ebner C. K 464
Eckardt C. F 10, F 20, V 106, V 345
Eckardt Ute P 234, V 106
Eckert T. V 345
Eckhardt H.B. K 33, K 36, K 38
Eckstein Anja P 191, P 311
Eckstein-Popp Kerstin P 292
Effert R. V 79
Egger S.F. V 402
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehlers N.</td>
<td>K 42</td>
</tr>
<tr>
<td>Ehrlich D.</td>
<td>P 280</td>
</tr>
<tr>
<td>Eisenmann D.</td>
<td>F 13, P 201</td>
</tr>
<tr>
<td>Eibl G.-K.</td>
<td>V 156</td>
</tr>
<tr>
<td>El-Hifnawi E.S.</td>
<td>V 39, K 350</td>
</tr>
<tr>
<td>El-Shabrawi Y.</td>
<td>P 246</td>
</tr>
<tr>
<td>Emmerich K.H.</td>
<td>K 143</td>
</tr>
<tr>
<td>Engelke W.</td>
<td>P 206</td>
</tr>
<tr>
<td>Engelmann Katrin</td>
<td>K 65, K 405, P 183, P 187, V 63</td>
</tr>
<tr>
<td>Elbel G.-K. V 156</td>
<td></td>
</tr>
<tr>
<td>El-Hifnawi E.S. V 39, K 350</td>
<td></td>
</tr>
<tr>
<td>El-Shabrawi Y P 246</td>
<td></td>
</tr>
<tr>
<td>Emmerich K.H. K 143</td>
<td></td>
</tr>
<tr>
<td>Engelke W.</td>
<td>P 206</td>
</tr>
<tr>
<td>Engelmann Katrin K 65, K 405, P 183, P 187, V 63</td>
<td></td>
</tr>
<tr>
<td>Elbel G.-K. V 156</td>
<td></td>
</tr>
<tr>
<td>El-Hifnawi E.S. V 39, K 350</td>
<td></td>
</tr>
<tr>
<td>El-Shabrawi Y P 246</td>
<td></td>
</tr>
<tr>
<td>Emmerich K.H. K 143</td>
<td></td>
</tr>
<tr>
<td>Engelke W.</td>
<td>P 206</td>
</tr>
<tr>
<td>Engelmann Katrin K 65, K 405, P 183, P 187, V 63</td>
<td></td>
</tr>
<tr>
<td>Elbel G.-K. V 156</td>
<td></td>
</tr>
<tr>
<td>El-Hifnawi E.S. V 39, K 350</td>
<td></td>
</tr>
<tr>
<td>El-Shabrawi Y P 246</td>
<td></td>
</tr>
<tr>
<td>Emmerich K.H. K 143</td>
<td></td>
</tr>
</tbody>
</table>
Retinal detachment in patients
with acquired immunodeficiency syndrome *

Stephan A. Geier 1,2, Volker Klauss 1, Johannes R. Bogner 2, Halgard Schmidt-Kittler 1, Ifta Sadri 2, and Frank D. Goebel 2

1 Universitäts-Augenklinik, Mathildenstrasse 8, D-80336 München, Germany
2 Medizinische Poliklinik der Universität, Pettenkoferstrasse 8, D-80336 München, Germany

Received: 16 December 1992/Accepted: 1 July 1993

Abstract. Cytomegalovirus retinopathy is the most frequent opportunistic infection of the eye in patients with acquired immunodeficiency syndrome (AIDS). We studied 71 patients with cytomegalovirus retinopathy (n = 69) or acute retinal necrosis (n = 2) with respect to the frequency and management of retinal detachment. Retinal detachment was seen in 14 patients (relative frequency, 19.7%). In 2 patients, the retinal detachment was bilateral. In 5 patients, pars plana vitrectomy and silicone-oil tamponade was performed, and in 1 of these patients scleral buckling was applied before vitrectomy. In 3 other patients scleral buckling was performed, and 1 of these individuals had sulfur-hexafluoride injection. In 8 eyes (6 patients), retinal detachment occurred in eyes with completely burned-out retinopathy without relevant function, and no surgical treatment was performed. Long-term retinal reattachment was seen in all 5 patients undergoing pars plana vitrectomy with silicone-oil tamponade. Visual acuity was preserved until the last follow-up in 4 of these 5 patients. In the patients undergoing a buckling procedure alone, no anatomic or functional success was observed. During vitrectomy, reduced retinal vascular perfusion and blood-flow sludging was observed in 2 patients. As the duration of survival of patients with AIDS and cytomegalovirus retinopathy or acute retinal necrosis is increasing, more cases of retinal detachment will be observed. Overall, 5% of patients with AIDS are expected to develop retinal detachment. In conclusion, treatment of cytomegalovirus-associated retinal detachment by pars plana vitrectomy with silicone-oil tamponade seems to be successful and safe and may maintain the patient’s quality of life.

Key words: Retinal detachment – AIDS – Pars plana vitrectomy – Cytomegalovirus retinopathy – Acute retinal necrosis – Microcirculation

* This paper was presented in part at the 90th Meeting of the German Ophthalmological Society (DOG), September 27-30, 1992, Mannheim. This study was supported by the Bundesministerium für Forschung und Technologie and by the Bundesministerium für Gesundheit, Germany, grant FKZ BGA III-002-089/FVP

Offprint requests to: S. A. Geier
Introduction

Cytomegalovirus retinopathy is the most common opportunistic infection of the eye in patients with acquired immunodeficiency syndrome (AIDS). This retinopathy occurs in 20%–35% of patients with AIDS, usually at the more advanced stages of the disease, when the absolute CD4+ helper-cell count drops below 75 cells/μl [27, 29, 31, 41]. Other retinal diseases in patients with AIDS include choroidalretinal toxoplasmosis, choroidoretinal mycobacteriosis, choroidoretinal Pneumocystis carinii infection, frosted branch angiitis, a presumably AIDS-specific zoster-associated retinopathy, and acute retinal necrosis [8, 20, 35]. Of these diseases, cytomegalovirus retinopathy and acute retinal necrosis are often associated with retinal detachment [10, 31].

Treatment with intravenously injected ganciclovir or foscarnet controls cytomegalovirus retinopathy successfully in most cases, and appears to prolong the median duration of survival from approximately 1 to 2.5 months in untreated patients up to 8–12 months in treated patients [4, 19, 24, 28, 29, 46, 47]. As the duration of survival of patients with AIDS and cytomegalovirus retinopathy or other retinal diseases increases, complications such as retinal detachment become more frequent. The purpose of this study was to estimate the frequency of retinal detachment in these patients and to evaluate the different forms of surgical repair.

Patients and methods

A total of 71 patients suffering from AIDS and viral retinopathy were studied. The diagnosis of cytomegalovirus retinopathy or acute retinal necrosis was made by indirect ophthalmoscopy. Patients were diagnosed as having AIDS according to the Centers for Disease Control definition, and all patients were positive for human immunodeficiency virus type 1 (HIV) antibodies as confirmed by Western-blot immunoelectrophoresis. In all, 68 of 70 men reported a homosexual or bisexual orientation, and 2 were i.v. drug addicts. The woman was an i.v. drug addict. According to our routine protocol, patients who had retinopathy with no sign of activity were examined monthly, and patients with signs of active retinopathy were examined every 2 weeks or every week depending on the disease activity. The mean age was 39.3 years (SD, 10.9 years). The mean absolute CD4+ lymphocyte count at the diagnosis of retinopathy was 25.4 cells/μl (SD, 13.8).

In all 14 patients with retinal detachment, prospective data were collected at the time of retinal surgery and at each subsequent ophthalmic examination. In 8 of these patients, the visual acuity before the occurrence of retinal detachment was 0.2 or better and the Karnofsky score was better than or equal to 40 [34]. Therefore, an operative approach was expected to be of benefit for these patients, and a scleral buckling procedure or pars plana vitrectomy with silicone-oil tamponade was performed. The type of the procedure was determined by the surgeon.

Four eyes underwent scleral buckling procedures. In one case, additional insufflation of the long-acting inert gas sulfur hexafluoride was performed. The four rectus muscles were isolated after a limbal peritomy. An encircling number 240 (2.5-mm) band was used in three patients together with a number 279 buckle. In one patient only a number 279 buckle was used. In this patient a rebuckling operation was performed after retinal detachment. In one patient, pars plana vitrectomy with silicone-oil tamponade was performed after redetachment.

Vitrectomy was performed in four patients under local anesthesia and in one patient under general anesthesia using a standard bimanual, three-port technique with 20-gauge vitrectomy surgical instruments. Removal of the posterior hyaloid from all areas of visible retina was attempted. In three cases, argon-laser endophotocoagulation was used in a triple-row fashion; 5000-centistoke oil was used as an internal tamponade and direct fluid-oil exchange was performed. Lensectomy was not needed in any case.

All patients undergoing vitrectomy had internal drainage for their subretinal fluid. Undilated vitreous, subretinal fluid, and retina was obtained intraoperatively in three patients, and culture for HIV-1 was attempted as described earlier [17]. In two patients undergoing vitrectomy we looked for retinal vascular abnormalities, and a crude estimation of the retinal vascular perfusion pressure was obtained by varying the height of the intraocular infusion bottle.

For statistical analysis, data were entered into a data base using a data-management program on a personal computer. No test for statistical significance was computed because of the small sample size. Survival duration and the time between points of interest were calculated by the Kaplan-Meier method [33] using the SPSS/PC+ 5.0 package (SPSS Inc., Chicago). The relative frequency of retinal detachment was calculated by dividing the number of patients with retinal detachment (only the first affected eye and no redetachment was considered) by the number of patients of interest.

Results

In all, 14 of 71 patients with AIDS and retinopathy developed retinal detachment. This accounts for a frequency of 19.7%. In 12 patients the retinal detachment occurred after cytomegalovirus retinopathy, and in 2 patients it developed after acute retinal necrosis. In patients with cytomegalovirus retinopathy the relative frequency of retinal detachment was 17.4%. Bilateral retinal detachment was seen in 2 patients with bilateral cytomegalovirus retinopathy.

Complete long-term retinal reattachment was seen in all 5 patients undergoing pars plana vitrectomy with silicone-oil tamponade (Table 1). In 1 of these 5 patients an unsuccessful buckling operation was performed prior to vitrectomy with silicone-oil tamponade. The visual acuity (with best correction) measured at 1 month after surgery was improved in all 5 patients undergoing pars plana vitrectomy with silicone-oil tamponade. At the 3-month follow-up, the visual acuity had remained stable in 4 patients and had worsened from 0.4 to 0.2 in 1 patient. This patient had the shortest survival duration of our patients undergoing vitrectomy with silicone-oil tamponade. Nevertheless, the visual acuity was equal to or better than 0.2 in all 5 patients during the observation period. After the surgery, 1 patient used contact lenses and 2 patients wore glasses to correct the hyperopic shift. Mild subcapsular cataract formation was observed in 2 cases.

In 4 patients a buckling operation was performed; in all cases, redetachment occurred within 3 weeks. In 1 of these patients a second buckling operation was performed and redetachment was seen again within 3 weeks. In another of these patients, pars plana vitrectomy was performed in the next step, resulting in a stable reattachment with silicone-oil tamponade.

The overall success rate (long-term stabilization or improvement of visual acuity) was 4 of 5 patients treated with pars plana vitrectomy. No patient undergoing a
Table 1. Summary of cases and functional and surgical results in patients with AIDS and retinal detachment

<table>
<thead>
<tr>
<th>Case</th>
<th>Eye</th>
<th>Retinopathy</th>
<th>Treatment</th>
<th>Initial VA</th>
<th>Intervention</th>
<th>VA at last follow-up</th>
<th>Anatomic success</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OD</td>
<td>CMV</td>
<td>G</td>
<td>0.4</td>
<td>Buckle, ppV & Oil</td>
<td>0.3</td>
<td>Attached</td>
</tr>
<tr>
<td>2</td>
<td>OS</td>
<td>CMV</td>
<td>G/F</td>
<td>0.6</td>
<td>ppV & Oil</td>
<td>0.8</td>
<td>Attached</td>
</tr>
<tr>
<td>3</td>
<td>OS</td>
<td>CMV</td>
<td>G</td>
<td>0.2</td>
<td>ppV & Oil</td>
<td>0.2</td>
<td>Attached</td>
</tr>
<tr>
<td>4</td>
<td>OD</td>
<td>CMV</td>
<td>F, I</td>
<td>0.6</td>
<td>ppV & Oil</td>
<td>0.8</td>
<td>Attached</td>
</tr>
<tr>
<td>5</td>
<td>OD, OS</td>
<td>CMV</td>
<td>G, Nulla lux</td>
<td>0.2</td>
<td>ppV & Oil</td>
<td>0.3</td>
<td>Attached</td>
</tr>
<tr>
<td>6</td>
<td>OD</td>
<td>CMV</td>
<td>G, I</td>
<td>0.2</td>
<td>Buckle, SF6</td>
<td>HM</td>
<td>Detached</td>
</tr>
<tr>
<td>7</td>
<td>OD</td>
<td>CMV</td>
<td>G</td>
<td>1.0</td>
<td>Buckle (2 times)</td>
<td>1.0*0.1</td>
<td>Detached</td>
</tr>
<tr>
<td>8</td>
<td>OD</td>
<td>CMV</td>
<td>G/F</td>
<td>0.3</td>
<td>Buckle</td>
<td>0.05</td>
<td>Detached</td>
</tr>
<tr>
<td>9</td>
<td>OS</td>
<td>CMV</td>
<td>G</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>OD</td>
<td>CMV</td>
<td>G</td>
<td>0.3</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>OD</td>
<td>CMV</td>
<td>G</td>
<td>Nulla lux</td>
<td>-</td>
<td>Nulla lux</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>OS</td>
<td>CMV</td>
<td>G</td>
<td>HM</td>
<td>-</td>
<td>HM</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>OD, OS</td>
<td>ARN</td>
<td>A</td>
<td>HM</td>
<td>-</td>
<td>HM</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>OS</td>
<td>ARN</td>
<td>A</td>
<td>HM</td>
<td>-</td>
<td>HM</td>
<td>-</td>
</tr>
</tbody>
</table>

OD, Right eye; OS, left eye; VA, visual acuity; HM, hand motions; ppV, pars plana vitrectomy; SF6, sulfur hexafluoride; CMV, cytomegalovirus retinopathy; ARN, acute retinal necrosis; G, ganciclovir; F, foscarnet; A, acyclovir; I, additional anti-CMV hyperimmune globulins; /, sequential therapy

* Attached for 12 days

Buckling operation had a visual acuity of 0.2 or better at 3 months after surgery.

The median duration of survival after the development of retinopathy according to a Kaplan-Meier analysis was 8.9 months (n = 71). The median time between the occurrence of retinopathy and the development of retinal detachment was 6.2 months. The median survival duration after the occurrence of retinal detachment was 3.8 months in all patients and 6.5 months (range 1–12 months) in patients undergoing surgical treatment. The median survival after the diagnosis of cytomegalovirus retinopathy was 12.8 months in patients undergoing surgical treatment. In patients undergoing vitrectomy with silicone-oil tamponade the median survival duration after retinal detachment was 7 months (range 4–12 months).

In all, 4 patients undergoing surgery received virustatic treatment with intravenous ganciclovir (maintenance dose, 5–7.5 mg/kg daily), 1 patient received intravenous foscarnet (maintenance dose, 80–90 mg/kg daily), and 2 patients received a sequential combination of ganciclovir and foscarnet.

In 2 patients ocular perfusion was observed. Abnormal blood flow and retinal hypoperfusion was obvious as demonstrated by 2 findings:

1. A high granularity in the blood column of the major retinal vessels was present similar to the blood-flow sludging observed in conjunctival vessels in patients with AIDS. This abnormal granularity in the blood column was seen using the operation microscope and an operative contact lens before and during the surgical procedure.

2. The infusion bottle had to be located 15 inches above the body of the patient to avoid intraoperative vascular collapse, and elevation of the infusion bottle above 25 inches caused vascular collapse. The granularity in the blood column did not change during variation of the intraocular pressure until vascular collapse occurred.

Discussion

Retinal detachment due to viral retinopathy represents a major problem in the treatment of patients with AIDS. Cytomegalovirus (CMV) retinopathy can be successfully treated in most cases with intravenously administered ganciclovir or foscarnet. However, retinal detachment may be the cause of poor visual outcome in patients with CMV retinopathy or acute retinal necrosis [6, 11, 12, 32, 39, 43, 45]. Therefore, data concerning the frequency of retinal detachment and the choice of the appropriate surgical approach are important.

In our series, five surgical procedures performed with silicone-oil tamponade were anatomically successful. On the other hand, all three surgical procedures done without silicone oil failed. This result is in accordance with the findings of Jabs et al. [32], who obtained an anatomic and functional success rate of 0% in patients undergoing a buckling procedure. The same authors report a 70% anatomic success rate in eyes undergoing pars plana vitrectomy with silicone-oil tamponade. However, functional success was observed in only 10% of their patients. The discrepancy between these findings and our results, suggesting an anatomic success rate of 100% and a functional success rate of 80%, is interesting. This difference in anatomic and functional success is probably not explainable by our small number of cases alone, because a more recent study by Regillo et al. [43] has resulted in an anatomic success rate of 100% and a functional success rate of 75%, similar to our findings.

Reports on surgical repair with silicone oil in patients with AIDS and retinal detachment due to necrotizing
retinitis other than that caused by CMV show anatomic success [10], but are less encouraging with respect to functional success [45]. Our two patients with acute retinal necrosis had a Karnofsky score of 20. Therefore, no surgical repair was attempted in these patients.

Silicone oil may cause postoperative complications such as subcapsular cataract formation, glaucoma, or keratopathy [9]. The hyperopic shift was well tolerated by all patients. One patient used contact lenses, two used glasses, and two patients accepted the change in binocularity and refractive status without correction. The only adverse effect was a mild subcapsular cataract in two cases. This finding is comparable with the results obtained by Regillo et al. [43], who reported 2 cases of cataract formation among 16 cases, and Sidikaro et al. [45], who reported similar findings. In contrast, Freeman et al. [12] reported no cataract formation and Jabs et al. [31] described only one case of cataract formation, but these observations might have been related to the relatively short follow-up periods involved.

In two patients undergoing vitrectomy we looked for retinal perfusion abnormalities. The observed high granularity in the blood column shows that blood-flow sludging in patients with HIV disease is not limited to conjunctival vessels [7, 48]. Additionally, retinal perfusion pressure was obviously reduced in both patients as measured by the hydrostatic change of the infusion bottle during vitrectomy. Recently, Dugel et al. [6] reported similar changes in retinal perfusion pressure. However, they did not report granular blood flow in retinal vessels that was similar to conjunctival sludge. Retinal microvascular changes occur frequently in patients with HIV disease, and cotton-wool spots are the most frequent manifestation of HIV-related retinal microangiopathic syndrome [13, 27]. Recently, we demonstrated a close association between the number of cotton-wool spots and reduced cerebral perfusion in patients with HIV disease [22]. Moreover, a close association between retinal microvascular abnormalities and cognitive deficits or retinal dysfunction has been described [18, 21]. Taking into account these studies, the finding of a reduced retinal perfusion pressure in patients with AIDS provides additional evidence for the hypothesis that microvascular changes are an important factor in the pathogenesis of functional ocular and cerebral deficits in patients with HIV disease.

The results of different studies on the frequency of retinal detachment in patients with AIDS are summarized in Table 2. The frequency of retinal detachment in patients with AIDS and CMV retinopathy or necrotizing retinitis varies between 15% and 29%. This observation is in accordance with our data showing a frequency of 19.7%. Overall, given a frequency of 25% for the development of viral retinopathy in patients with AIDS [31, 40, 41] and a frequency of 20% for the development of retinal detachment, the expected frequency of retinal detachment in patients with AIDS should be 5%.

The expected frequency of retinal detachment in patients with AIDS seems to be considerably high. Therefore, the safety of surgical repair should be briefly discussed [25]. The estimated risk for infectious HIV transmission by needle puncture injuries is estimated to be 4 per 1000 [2]. HIV type 1 has been found in blood [5], different ophthalmologic tissues [16, 44], and tears by most, but not all, authors [14, 15, 17, 49]. Parenteral exposure to blood, tears, and ocular tissue might occur as well as needle puncture injuries [3, 42]. The reported rate of glove perforations in ophthalmic surgery varies between 0.3% and 15% [37, 38, 42]. These figures are lower than those reported for other surgical subspecialties [23, 30]. Wearing double gloves reduces the frequency of glove perforations in other surgical specialties, and the perforation of inner gloves is significantly lower than that of outer gloves [1, 23, 36].

Vitrectomy with silicone-oil tamponade was well tolerated by our patients, suggesting the maintenance of a good quality of life. This appears to be important, as survival should not be the only endpoint considered in patients with AIDS and should be discussed in relation to quality-of-life issues [26]. The median duration of survival of our patients with retinal detachment undergoing surgery (12.8 months) was longer as compared with that of patients without retinal detachment or as compared with that of an overall collective of patients with CMV retinopathy [18]. This discrepancy may have been due to our indications for surgery, including a Karnofsky score.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Source</th>
<th>Patients with retinopathy</th>
<th>Patients with detachment</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeman et al.</td>
<td>1987</td>
<td>AJO</td>
<td>17</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>Jabs et al.</td>
<td>1989</td>
<td>Archives Ophth</td>
<td>46</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Gross et al.</td>
<td>1990</td>
<td>Ophthalmol</td>
<td>67</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Sidikaro et al.</td>
<td>1991</td>
<td>Ophthalmol</td>
<td>68</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>Dugel et al.</td>
<td>1991</td>
<td>AJO</td>
<td>NA</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>Jabs et al.</td>
<td>1991</td>
<td>Archives Ophth</td>
<td>145</td>
<td>38</td>
<td>26</td>
</tr>
<tr>
<td>Orellana et al.</td>
<td>1991</td>
<td>Ophthalmol</td>
<td>170</td>
<td>31</td>
<td>18</td>
</tr>
<tr>
<td>Regillo et al.</td>
<td>1992</td>
<td>AJO</td>
<td>NA</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>Freeman et al.</td>
<td>1992</td>
<td>Ophthalmol</td>
<td>NA</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>Present study</td>
<td></td>
<td></td>
<td>71</td>
<td>14</td>
<td>20</td>
</tr>
</tbody>
</table>

NA, Not available

* Relative frequency was calculated according to the published data if not concretely calculated by the authors themselves.
of better than or equal to 40 and a reasonable functional visual acuity in the involved eye shortly before detachment. Our decision to perform vitrectomy with silicone-oil tamponade or a buckling operation was not based on these or any other criteria, but our patients were not randomized, and our sample size was small. Nevertheless, the survival after retinal detachment found in our study is comparable with that observed in previous studies reporting median survival periods of 3.1 months [39], 4.5 months [45], 9 months [32], or (mean) 8.5 months [12].

We conclude that retinal detachment should be expected in approximately 20% of patients with AIDS and CMV retinopathy. Consecutively, retinal detachment might occur in at least 5% of patients with AIDS. Pars plana vitrectomy with silicone-oil tamponade provides the best anatomic and functional success rates. Furthermore, vitrectomy with silicone-oil tamponade appears to be a safe procedure for the patient and the surgical team. Therefore, pars plana vitrectomy with silicone-oil tamponade might be the treatment of choice for patients with AIDS and retinal detachment due to viral retinopathy. Screening programs for patients with CMV retinopathy or other virus-related retinopathies in patients with HIV disease are necessary to identify patients with developing retinal detachment.

Acknowledgements. We wish to thank the surgeons Prof. Dr. O.-E. Lund (Director, University Eye Hospital, Munich) Prof. Dr. V.-P. Gabel (Director University Eye Hospital, Regensburg), Priv.-Doz. Dr. O. F. Scheffarth (University Eye Hospital, Munich), Prof. Dr. K. G. Riedel (Augenklinik Karl-Herzog-Theodor, Munich). Prof. Dr. L. Gürtler (Max von Pettenkofer Institute, Munich) attempted the detection of HIV type 1 by culture techniques in ocular tissue.

References