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Summary. This is the seeond part of an investigation of mierodosimetric coneepts relevant 
to numerical ealculations. Two different types of distributions of the microdosimetrie quan- 
tities are discussed. The sampling procedures are eonsidered, which lead from the initial 
pattern of energy transfers, the so-called inchoate distribution, to the distribution of speeifie 
energy and their mean values. The dependence of the distributions of speeifie energy on 
absorbed dose is related to the sampling procedures. 

Introduction 

A preceding article [14] has dealt with the definition and interpretation of 
microdosimetrie quantities. In  the following the probabili ty distributions of these 
quantities will be considered. As in the earlier article the purpose is not to give 
survey of theoretieal relations er of numerical data and their biological implica- 
tions; such surveys exist [22, 23, i2]. Instead certain concepts will be reviewed 
which are essential to numerical eomputations in microdosimetry. All definitions 
will be given in terms of the speeific energy, z. I t  will be evident how the deßnitions 
are generalized to the other random variables, namely energy imparted, e, lineal 
energy, y, and number  of ions, n. 

In  an ideal microdosimetric experiment one would register all the spatial 
coordinates of electronie interaetions, i.e. of transfer points [14], in charged 
particle tracks, t towever,  such an experiment is not feasible with present-day 
techniques. Experiments with cloud ehambers and evaluation of photographie 
emulsions have ]ed to useful information, hut  these methods de not as yet  permit  
the spatia] resolution which is necessary to establish precise microdosimetrie 
distributions. The theoretician can, however, derive simulated eharged partiele 
tracks from interaetion cross seetions which are either measured er interpo]ated 
from experimental data. 

The eomputational approach lias been used extensively by  Berger [1, 2] who 
has also derived microdosimetric data  from simulated particle traeks for eleetrons 
of various energies in microseopic tissue regions of eellular er subcellular size. 
Paretzke [18, 19], Pa tau  et al. [20], and Terrissol et al. [26] have developed similar 
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methods to generate particle fracks with high spatial resolution of the individual 
ionizations and excitations in the track. Caswell and Coyne [4, 5] have obtained a 
considerable amount of microdosimetrie data for neutrons; in the cases which they 
have treated the fracks of the recoil partieles ean be approximated by straight line 
segments without regard to statistieal fluctuations. 

The following considerations will not be coneerned with the derivation of 
simulated charged particle tracks. They will deal with the relation between such 
particle fracks, i.e. the inchoate distributions [14], and the microdosimetrie 
distributions. The resulting concepts are germane to the numerieal derivation of 
the, probability distributions; however, the numerical techniques themselves are 
not the topic of the present study. 

Sampling Proeedures Leading to the Different Probability Distributions 
General Remarlcs 

There are, as pointed out earlier [i4], two distinct ways to look at the micro- 
dosimetrie variables and their probahility distributions. The first possibflity is to 
eonsider a single spherica] site and the suceession of a large number of events 
occurring in this site. Each event eorresponds to energy deposition due to an 
ionizing partiele appearing in the vicinity of the site or the site itself. This is the 
usual situation in microdosimetric experiments, where a tissue-equivalent 
spherieal proportional eounter is exposed to a radiation field, i.e. is submitted to a 
sueeession of events, and wlmre the probability distribution of increments pro- 
duced by the individual events is then determined (see e.g. [3, 6--9, 16, 17, 21, 24, 
25, 27]). An analogous approach ean be used in ealculations, i.e. one Inay specffy a 
microseopie site in an extended medium and randomly generate charged partieles 
in and around this site. Such a proeedure may, however, be wasteful if only a 
small part  of eaeh particle track is contained in the site. The reason is that  all the 
information regarding the strueture of the frack outside the site remains un- 
utilized. 

l~or the eomputational proeedure it will therefore in general be more efflcient 
to consider one or several random fracks, i.e. an inchoate energy distribution, in an 
extended medium, and then to sample the values of the microdosimetric variables 
throughout the medium. In this seeond approach one thus uses a large number of 
spheres but  only one or a few random fracks. Accordingly the information eon- 
tained in the simulated tracks is fully used. This approach which reflects the 
fact that  the problems of microdosimetry are in essence problems of pattern 
analysis will be adopted in ~he following. I t  will be found useful not only in 
computations but  also in theoretieal considerations, ttowever, it will require 
eareful attention to the details of the sampling proeedure. 

Assume that  the inchoate distr ibution of energy deposition is given in an 
extended medium. As pointed out [ i4]  this inchoate distribution can be specified 
b y t h e  coordinates of the transfer points, T~, and the eorresponding energy 
transfers, st. A transfer point has been defined as a point where an ionizing 
particle loses energy. The definition of the energy transfer, e,, can be formalized in 
analogy to the definition of the energy imparted which has been cited in the 
preeeding article [14]: 
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where 

E i n  = the energy (excluding rest energy) of the ionizing particle before it under- 
goes an interaction at  the transfer point, T~, 

~. eex = the sum of the energies (exeluding rest energies) of all ionizing particles 
(including the pr imary particle) resulting from the interaction, 

Q = the sum of all the energies released, minus the sum of all the energies 
expended, in any transformation of nuclei or elementary particles 
õccurring in the interaetion. 

The total  volume whieh is being considered will in the following be called the 
sampling region. I f  one wants to determine the probabili ty distribution or the 
expectation value of a microdosimetric quantity,  such as specific energy, z, orte 
taust determine Rs va]ue at  various points in the sampling region. These points 
will be called sampling pointe. The spcciflc energy, z, at  a sampling point refers to 
the sphere of radius r eentered at  this point. 

In  the foIlowing, sampling procedures will be discussed which lead to two 
important  distributions. These distributions are familiar in microdosimetry; 
however it is useful to reconsider them in the present context. I t  will be understood 
tha t  the remarks apply equally to the two different interpretations of the micro- 
dosimetric quantities which have been suggested in the preceding artiele [14]. 

Two .Basic Distrlbutlons 
The most  obvious sampling proeedure is the random se]eetion of points with 

constant probabflity throughout the sampling region. I f  one performs such 
unweighted sampling for a suffieiently large number of points in a sufficiently large 
sampling region one appioximates a probabflity distribution of z which is oftea 
called the ]requency distribut¢on of specific energy. The sum distribution is com- 
monly designated as E(z). The value F(z) is the probability to find a speeifie 
energy in excess of z; in other words F (z) is the fraction of the total  volume with 
values of specific energy exceeding z. 

The corresponding differential distribution is [ (z). The probabflity to find a 
value of specific energy between z and z + dz is equal to ](z)dz; accordingly, 
[ (z) dz is the fraction of the total volume with valucs of the specißc energy between 
z and z + dz. 

The formal relations between the sum distribution and the differential dis- 
tr ibution are: 

OD 

F(z) = ~ [(z') dz' (2) 
Z 

and: 

/ ( z )=  dF(z)* (3) 

The frequeney distribntion of speciße energy determines the relative proba- 
bility with which eertain amounts of energy are imparted to spherieal sites within 

* In contrast to normal usage in probability theory the sum distribution is here taken to be 
a deereasing function of the random variable, i.e. the integration is performed over the part of 
the distribution whieh belongs to high values of z. This has the advantage that this part whieh 
is particularly relevant to the biologieal effects of different ionizing radiations ean be depicted 
more elearly. A similar eonvention will be adopted for the other mierodosimetrie distributions. 
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the irradiated medium; it follows tha t  the mean value of this distribution is the 
absorbed dose. 

Although sampling with constant probahility throughout the irradiated 
medium may  alopear to be the obvious proeedure, it is not the only proeedure of 
interest. The more general situation is outlined in the Appendix; in the present 
eontext it is suffieient to dem with one special ease. This speeial case results if ehe 
uses a weight faetor for the sampling points which is proportional to the value z at  
these points. In  this way one obtains a distribution which is offen ealled the dose 
distribution of specifie energy; i.e. ehe obtains a distribution of absorbed dose in z 
instead of a distribution of the volume in z. The sum distribution is designated as 
D (z) and the eorresponding differential distribution is d (z). The value D (z) is equal 
to the probabi]ity to find a speeifie energy larger than z if one samples with a 
selection probabili ty proportional to z. Aeeordingly d (z) dz is the probabili ty to find 
a value of specific energy between z and z ÷ dz if this sampling proeedure is 
applied. One can also say tha t  D (z) is the fraetion of absorbed dose appearing in 
sites with specifie energy exceeding z. 

The relations between the sum distribution and the differential distribution 
are: 

and: 

D ( z ) -  d(z ')dz '  (4) 
z 

d D (z) 
d(z)= az (5) 

The distributions ](z) and d(z) have here been introdueed independently as 
distributions resulting from two different sampling procedures. This is justified 
because the two distributions are of different nature; the ehe being the distribution 
of volume in z, the other being the distribution of dose in z. On the other hand, the 
separate t reatment  of / (z)  and d (z) may  appear eonfusing, because ä (z) is closely 
linked to / (z) and is in fact commonly defined in terms of / (z) : 

d(z) = z / ( z ) /D .  (6) 

However, as will be seen in the next  section, this relation fol]ows readily from the 
definitions which have been given here. 

Details el the Sampling Procedures 

After these general remarks it is useful to consider the sampling procedures in 
detail. 

The sampling with constant selection proloabflity throughout the medium is 
simple. One can use a iV[onte Carlo teßhnique to generate Æ points randomly in the 
volume of interest and determine the corresponding values z~, i----l . . . .  ~Y. 
The sum distribution F (z) is then approximated by:  

F(z)  = ;v~/Æ, (7) 

where Zrz is the number  of sampling points with values z~ exeeeding z. 
The relation for the differential distribution,/(z),  is: 

/ (z) Az  = AN~/I~T, (8) 
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where ANz is the number of sampling poirtts with values z~ betweert z and z + Az. 
The expectation value of a furtctiort, g(z), of the speeifie energy is obtained 

from: 

«(Z)F= ~ g(z~)/N (9) 
i 

and for the special case of the mean value of z orte has : 

~Æ = 5 z~lN. (to) 

As stated before, zF is equal to the absorbed dose, D. 
The question of the statistical convergence of the expressiorts will not be 

considered in the present eorttext; it will simply be assumed that  the rtumber, N, 
of sampling points is sufficiently large. 

An alternative which avoids Monte Carlo ealculatiorts is to determine the 
values of the speeifie energy throughout the region of interest, i.e. t o  establish a 
three-dimensional grid of poirtts throughout the medium with suffieient resolution 
and to determine the value of the speciilc energy on  all these points. This latter 
procedure may orten be inapplieab]e because it may require exeessive eomputing 
times. Nevertheless it is of eonceptual interest, siace it implies that  Eqs. (7 to t0) 
ean also be writtert as volume integrals. Thus ehe obtairts for the mean value of a 
function, g (z) : 

g(z)« = f g(z) dV/.[ dV, (Ii) 
v v 

where the integrals extertd erer the whole samp]ing region, V, and z is a function 
of the spatial eoordinates. 

In  particular one has: 

-Sv = I z dV/.[ d V  = D .  (t2) 
v v 

Olle can new eonsider the seeond somewhat more complicated situation, 
where the sampling is performed with a selectiort probability proportional to z. 
One possibility is to apply olle of the methods mentioned above, i.e. t o  use a 
constant selectiort probability, but  to apply the value z as a compensation factor, 
in order to arrive at the proper weight factor. I t  may  appear unnecessary in the 
present context to introduce the three separate notions of weight factor, selection 
probability and eompensation factor. The situation can, however, be complicated 
in actual computations where it may be advantageous to select certain sub-spaces 
in the sampling region, such as straight lines parallel to particle fracks, artd to 
determine the distribution of the speeific energy in these sub:spaces. I t  is then not 
always trivial to determine appropriate selection probabflities and compensation 
factors. A precise definition of the cortcepts is therefore essential, a n d  it will be 
helpful to use the rule tha t  the weight factor is equM to the product of the seleetion 
probability and the compertsation faetor. 

I f  zi, i --- 1 . . . .  N, are the values of the speeifie energy at  the/V sampling poirtts 
ehosen with constant selection probability, then the sum distribution, D(z) ,  is 
obtained as: 

D(z) = ~ z~lZ z~, (13) 
z~,>z i 
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where the summation in the numerator  extends erer  all sampling points with z, 
larger than z, and the summation in the denominator extends erer  all N points. 
The corresponding re]arien for the differential distribution is: 

d(z) Az = z A N z / ~  z,, (14) 
i 

where ANz  is again the number of points with values of the specifie energy in the 
interval whieh extends from z to z ÷ A z. 

The expectation value õf a funetion g (z) of z is obtained as : 

g(z), = Z g(~) z~/Z z~ (15) 
i i 

and, in particular, the relation for the expeetation value of z is : 

i i 

As in the oase of the frequency distribution ehe can formulare these relations in 
terms of volume integrals. Thus one obtains the following formu]ae for the mean 
v a ] u e s  : 

g(z)D = Ig(z)  z dV / f  z d V  (t7) 
v v 

and: 

-~» = f z* d V / y  z d V  = z»/~~,. (iS) 
v v 

From Eqs. (8) and (14) one obtains Eq. (6) between the dose distribution 
and the frequency distribution. 

Sampling erer lndividual ~'rans/ers 

Use of a constant selection probabili ty of sampling points and subsequent 
application of the compensation factor; z, may  be disadvantageous insofar as one 
may  obtain many  sampling points with z =  0. These points are not relevant to the 
distribution d (z). I t  will therefore, in general, be more effective to sample only the 
associated volume, i.e. only tha t  par t  of the sampling region where the specific 
energy is larger than 0. The following method can be used to make the selection 
probabili ty of sampling points proportional to z. 

Assume tha t  one deals with M transfer points Tl, with i = i . . . .  M. Ler e~ be 
the corresponding energy transfers. As a first step one selects randomly a transfer 
point.; this is done with a seleetion probabflity proportional to et. As a second step 
one selects a sampling point, P,  randomly in the sphere of radius r around the 
transfer point. I f  the selection of sampling points, P, is performed in this manner 
no compensation faetors are necessary beeause the prõbabili ty to arrive at  a point 
P is then proportional to the value z at  this point. That  this is so follows from the 
faet tha t  eaeh point, P, ean be reached from all these transfer points '  T,, which 
eontribute to the specifie energy at  P. The seleetion probabil i ty of P is pro- 
portional to the sum of the seleetion probabflities of the points T~. This sum, 
however, is proportional to the sum of the transfers e, and therefore to the speeific 
energy at P.  

In  praetiee one can avoid the random choiee of transfer points and instead 
eonsider all transfer points conseeutively. The value e, taust  then be used as a 
eompensation factor. 
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This method of obtaining the distribution ä (z) is not  only suitable for numerieal 
caleulations, it will also prove an important  tool in theoretieal arguments con- 
cerning the mean vMues -SD and YD. The method will be referred to as sampling over 
inäividual transfers. 

Aeeording to the procedure one has the following expression for ZD: 

"SD = ~ e, (f Z dV/ f  dV) /~  ~~, (i9) 

where the summations extend e re r  all transfer points, T~, and the integra]s extend 
e re r  the sphere, S~, of radius r around each transfer point. The expression in the 
braeket  is the average of z without weight factor e rer  the sphere around a transfer 
point; ehe can also say tha t  it is the  average of z in all spheres of radius r con- 
taining the transfer point, T~. According to the equation, -SD is the mean of this 
average e re r  all transfer points*. One eould stare this in the following form. I f  a 
transfer point is seleeted randomly in the exposed medium (with a seleetion 
probabili ty proportional to its energy transfer), then ZD is equal to the expected 
specißc energy in a sphere of radius r which contains the transfer point at  a 
random position in its interi0r. 

Eq. (t9) will be used in the next  seetion to derive the dependence of ZD on 
absorbed dose. 

Dependenee of the Distributions and Theh" Mean Values on Absorbed Dose 

The microdosimetric distributions depend on absorbed dose; one m a y  indicate 
this by  writing them in the form f (z; D) and d(z; D) instead of /(z) and d (z). 
However, the dose-dependent distributions can be caleulated from the distribu- 
tions whieh apply to isolated, i.e. non-overlapping, eharged particle fracks. These 
latter distributions are ealled single event distributions, and are designated by  fl (z) 
and dl (z). They are independent of absorbed dose. The relations between the dose- 
dependent distributions and the single event distributions have been set out in 
earlier werks (22--24). I t  will, however, be useful to list the essential points in the 
present eontext. 
: Repor t  19 of the ICRU [ l l ]  defines an .energy deposition event as energy 

deposition in a region due to an ionizing partiele and/er i t s  secondaries. This 
definition:implies tha t  energy imparted in the same event is due to statistieally 
correlated partieles. In  this context it is useful to introduce the notion of a travk as 
the entirety of transfer points T~ and energy transfers e~ in an exposed medium 
due to one ionizing particle and its secondaries. 

With these conventions the single event distributions can be defined as the 
distributions which result if exactly one event has oecurred in the region of 
reference. Alternatively 0ne can stare tha t  the single event distributions result 
from samp]ing the ässoclated v01umes Of individual, i.e. non-overlapping, tracks. 

* If  one deals not with a spherical site with sharp boundary, but with a diffuse site (see 
[t4]) the integrals are slightly altered. They taust then contain the additional factor h(x), 
where x is the distance from the transfer iooint. As pointed out in the earlier article, the 
function h (x) is a step function if orte deals with a site with sharp bound~ries while it is a 
continuously decreasing function, for example a Gaussian distribution, in the oase of a diffuse 
boundary. 
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It  is assumed that eaeh energy transfer 
produces a unit increment of z. The 
resulting mean values are zF = 3.2 and 

z» = 4.1 

The distribution d 1 (z) is the limit of  d (z; D) as the dose goes towards zero: 

lim ä (z; D) = d a (z). (20) 
Jo--~0 

The same relation does no t  ho]d for Il(Z). I n  the dose-dependent distribution 
[(z; D) there is always a finite probabfl i ty for z =  0, while no such eomponent  is 
Lacluded in /1  (z). At  sma]l doses ] (z; D) ean be approximated  b y :  

/(z; D ) =  ( i -  n) O(z)+ nf l (Z  ), (21) 

where ~ (z) is the delta-funetion at  z = 0 and n is the  mean event  f requeney at  
absorbed dose D :  

n = Dl-~~ 1 . (22) 

zF1 is the mean  specifie energy produced La one event, and eonsequently l]~p 1 is 
the event  frequeney per uni t  dose. 

F rom Eqs. (6), (20), and (21) one obtaLas the relation between the single event 
distributions : 

d~(z) = z h (z)/~F~. (2a) 
These distributions are given in Fig. i for the same two-dimensional example of  a 
partic]e f rack which has been nsed in the preeeding article. For  simplicity it is 
assumed tha t  all transfers, e~, represented by  dots, are equal. I n  the  example the 
absolute units are meaningless beeause one deals with a two-dimensional case; 
therefore the contr ibut ion of  each transfer  to z is arbitrari ly set equal to I .  

The dose-dependent distributions ] ( z ; D )  can be represented as a super- 
position of  mult i -event  speetra, h (z), aecording to  the Poissonian probabilities for 
the oceurrence of  v events, when the mean  number  of  events is n = . D / z F 1  • 

Bv 
/(z; D)= ~ e-- 7V.h(z ) .  (24) 
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The spectra ]~ (z) which belong to exactly v events can be obtained as convolutions 
of /1  (z). There are computational procedures [12] involving Fourier transforms 
whieh permit an eren more direct derivation of / (z; D) flora/1 (z). 

The mean value of ](z; D) is, as pointed out, equal to absorbed dose, in fact this 
can be eonsidered as the definition oB absorbed dose : 

~F = D. (25) 

The mean value of dl (z) will be designated by -5D1- According to Eq. (23) this 
quanti ty is equal to the ratio of the second to the first moment of fl (z) : 

z B1 : z~l/-5 *v1. (26) 

Consequently zD1 is always larger than zE1. 
The mean, zD, of d (z) ean be expressed in terms of the mean of d 1 (z) : 

-Sb = -5»1 + D. (27) 

This relation has been derived earlier [10, t2], it follows from Eqs. (18) and (24). 
However, since the relation is of considerable importance in radiobiology [t5], it is 
desirable to demonstrate its validity in a more direct and more easiIy com- 
prehensible way. To this purpose one may reconsider the proeedure which has been 
termed sampling over individual transfers. As stated, such sampling is achieved by  
randomly seleeting first a transfer point, Tl, and then a point in the surrounding 
sphere of radius r. The mean valne of z at the resuIting points is equal to -50. At 
each point the speeifie energy is the sum of two independent components. The first 
component is the contribution from the track to which iP~ belongs, its mean value 
is -5»1. The second component is the contribution from other traeks. These other 
tracks are not statistically eorrelated to the sampling point; their mean contribu- 
tion is therefore equal to D. This proves Eq. (27) *. Ana]ogous relations result for 
the variables e and n. 

A more formal statement of this argument can be based on Eq. (19). In this 
equation the variable z under the integral is the speeific energy in the vici- 
ni ty around a transfer point, Tl. One can separate z into two components, z 1 is the 
part  of z which is due to the energy transfer at T~ and at other transfer points 
belonging to the same track, z~ is the contribution of independent tracks. Since 
there is no spatial correlation of the region of integration to the other fracks the 
expectation value of z 2 is equal to D. Therefore : 

~ »=  E e~ q(z~+ z~) d V  5 d V ) / ~  e~ 

~- X e, (S z 1 dV[S d V ) / X  s , +  D .  (28) 
i $~ s i  i 

Since the first term is equal to the limit, -5»1, of -sb as D goes towards zero, one 
obtains Eq. (27). 

The quanti ty z»l is of considerab]e importance in radiobiology [15]. Formulae 
for this quanti ty will be derived in the subsequent, ]ast part  of this study. 
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* The relation holds regardless of the form of the function h (x), i.e. it applies not only to a 
sharp boundary but also to a blurred boundary (see [t4]). 
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Append ix  

The microseopic distribution of energy deposition determines the spatial pattern of the 
concentration of radiochemical produets, such as free radieals, er of cellular sublesions, such as 
the single-strand breaks in DNA. The effectiveness of an irradiation may depend in various 
ways on the resulting loeal concentrations. Accordingly, one may consider different miero- 
dosimetric distributions. The following remarks will deal with ehe case of particular impor- 
tance, namely a second order reaction of radiation products. 

Assume that  at the transfer points (ionizations er exeitations) of charged particle tracks 
two different species, U and R, of free radicals are formed with yields proportional to the energy 
transfers ss and that  these species diffuse over spheres with the radii u and r around their points 
of formation. The resulting concentration of the two speeies at any point in the medium is then 
proportional to the variable zu zr, where zu and z~ are the values of the speeifie energy belonging 
to the radii u and r. 

I f  the cellular effeet is proportional to the interaetion product of the two types of free 

radieals then it is proportional to the spatial average, zuzr ,  of the variable z~zr.  
I t  may neither be easy ner of great practical interest to evaluate this expression in the 

general case of two different radii u and r. Nevertheless, it may be of interest to eonsider the 
quantity from a theoretical polar of view and to investigate two aspects of the problem. The 
first is the dose dependence of the expression, the seeond is the faet that  the frequency average, 
zv, and the dose average, 5», of the specific energy are speeial eases of the general expression. 

I t  will be convenient to consider the expression z,~z~[~u instead of z~,z~. For brevity this 
expression will be designated as ~~~: 

- -  S ZuZ, d V 
Zu Zr V 

zur zu ~zu dV " (AA) 
V 

The quantity 5~r is the expeetation value of z~ which results from sampling with the weight 
facter z~. Eq. (AA) corresponds to Eq. (18). Going through the arguments which lead to 
Eqs. (19) and (28) one obtains an expression whieh Gorresponds to Eq. (28), and merely differs 
from this equation insofar as the regions of integration are spheres of radius u while the 
specifie energy under the integral refers to spheres of radius r. As in the earlier oase one there- 
lore coneludes that  the mean value ~~, is equal to the absorbed dose plus a term which is 
independent of absorbed dose and depends merely on the energy eoncentration in individual 
tracks: 

~=~ = ~~~, ~ + D .  (A.2) 

Since according to Eq. (AA) z,,z~ is equal to D~,~~ one obtains the linear-quadratie equation: 

z,~z~ = 5u~, 1 D + D 2 . (A.3) 

This equation applies to the oase of two interaeting free radicals whieh has been discussed 
above. 

In  the special case where the diffusion distances of the two radicals are the same the 
quanti ty ~~~, 1 reduees to z~i. 

As stated, ~~~ is the mean value of z~ which results from sampling with a weight factor zu. 
One may go further and consider not only the mean value but also the eorresponding proba- 
bility distribution which may be designated ]~~(z). This function is of interest because it  
eontains the common!y used probability distributions as speeial cases. 

The first case results in the limit of a large radius u. The weight facter zu is then equal to 
absorbed dose, i .e .  it is eonstant. Therefore/,~,(z) reduces to th e frequeney distribution/(z).  

The second speeial ease is that  of two equal radii, u = r. In  this case the function reduces 
to the dose distribution, d ( z ) .  

A third ease of interest leads to a distribution which has not  been dealt with in this article 
but  which is useful in certain applications. This distribution results when u goes toward O, i .e .  
when the inehoate density is used as weight faetor. Under this eondition orte samples the values 
of the specißc energy only for those spheres of radius r which are centered at the transfer points. 
The selection probability for euch transfer point is proportional to e«. The resulting probability 
distribution may be designated by c(z); the leiter c is chosen because the distribution deter- 
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raines the relative frequeneies of different values of speeifie energy in spheres eentered at the 
transfer points, i.e. at ionization and exeitations. Aceordingly one may call this distribution the 
centered distribution of specifie energy. C(z) is the probability to find a value of specifie energy 
exeeeding z in a sphere of radius r around a transfer point, c(z) dz is the probability to find a 
value between z and z + dz. 

One can apply the centered distribution to situations where sublesions, e.g. single-strand 
breaks in DNA, are produced at the transfer points, and where the probability that two such 
subtesions interact, e.g. for the formation of double-strand breaks, is a function of their 
distanee. Although the distribution c(z) may in many cases be similar to the distribution d(z) 
there appears to be no general mathematical relation between c(z) and d(z). 

The mean value, ~c, of the distribution c(z) is a useful coneept. I t  is the average specifie 
energy in spherical sites around ionizations and exeitations. According to the general relation 
expressed in Eq. (A.2) Yc consists of a term which is independent of absorbed dose, and a term 
which is equal to absorbed dose. The first term is the contribution from the same frack, the 
second thelm is the contribution from other traeks: 

~c = ~cl + D (A.4) 

Whenever the first term is larger than the second term, it follows that the intratrack inter- 
action of sublesions which leads to a linear component in absorbed dose is larger than the 
intertrack interaction whieh leads to a t e rn  whieh is quadratie in absorbed dose. The numerical 
evaluation of zcl shows that eren with sparsely ionizing radiations the linear component 
dominates in the doso range of a few hundred rad excelot when ?~he interaetion distance, r, is 
larger than fractions of a mierometer [t3]. 
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