Rad. and Environm. Biophys. 12, 205—216 (1975)
© by Springer-Verlag 1975

Concepts of Microdosimetry *

II. Probability Distributions of the Microdosimetric Variables

A. M. Kellerer and D. Chmelevsky**

Department of Radiology, Radiological Research Laboratory, College of Physicians and
Surgeons, Columbia University, New York, USA

Received May 25, 1975

Summary. This is the second part of an investigation of microdosimetric concepts relevant
to numerical calculations. Two different types of distributions of the microdosimetric quan-
tities are discussed. The sampling procedures are considered, which lead from the initial
pattern of energy transfers, the so-called inchoate distribution, to the distribution of specific
energy and their mean values. The dependence of the distributions of specific energy on
absorbed dose is related to the sampling procedures.

Introduction

A preceding article [14] has dealt with the definition and interpretation of
microdosimetric quantities. In the following the probability distributions of these
quantities will be considered. As in the earlier article the purpose is not to give a
survey of theoretical relations or of numerical data and their biological implica-
tions; such surveys exist [22, 23, 12]. Instead certain concepts will be reviewed
which are essential to numerical computations in microdosimetry. All definitions
will be given in terms of the specific energy, z. It will be evident how the definitions
are generalized to the other random variables, namely energy imparted, €, lineal
energy, ¥, and number of ions, n.

In an ideal microdosimetric experiment one would register all the spatial
coordinates of electronic interactions, i.e. of transfer points [14], in charged
particle tracks. However, such an experiment is not feasible with present-day
techniques. Experiments with cloud chambers and evaluation of photographic
emulsions have led to useful information, but these methods do not as yet permit
the spatial resolution which is necessary to establish precise microdosimetric
distributions. The theoretician can, however, derive simulated charged particle
tracks from interaction cross sections which are either measured or interpolated
from experimental data.

The computational approach has been used extensively by Berger [1, 2] who
has also derived microdosimetric data from simulated particle tracks for electrons
of various energies in microscopic tissue regions of cellular or subcellular size.
Paretzke [18, 19], Patau ef al. [20], and Terrissol et al. [26] have developed similar
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methods to generate particle tracks with high spatial resolution of the individual
ionizations and excitations in the track. Caswell and Coyne [4, 5] have obtained a
considerable amount of microdosimetric data for neutrons; in the cases which they
have treated the tracks of the recoil particles can be approximated by straight line
segments without regard to statistical fluctuations.

The following considerations will not be concerned with the derivation of
simulated charged particle tracks. They will deal with the relation between such
particle tracks, i.e. the inchoate distributions [14], and the microdosimetric
distributions. The resulting concepts are germane to the numerical derivation of
the probability distributions; however, the numerical techniques themselves are
not the topic of the present study.

Sampling Procedures Leading to the Different Probability Distributions

General Remarks

There are, as pointed out earlier [14], two distinct ways to look at the micro-
dosimetric variables and their probability distributions. The first possibility is to
consider a single spherical site and the succession of a large number of events
occurring in this site. Each event corresponds to energy deposition due to an
ionizing particle appearing in the vicinity of the site or the site itself. This is the
usual situation in microdosimetric experiments, where a tissue-equivalent
spherical proportional counter is exposed to a radiation field, ¢.e. is submitted to a
succession of events, and where the probability distribution of increments pro-
duced by the individual events is then determined (see e.g. [3, 6—39, 16, 17, 21, 24,
25, 277). An analogous approach can be used in calculations, i.e. one may specify a
microscopic site in an extended medium and randomly generate charged particles
in and around this site. Such a procedure may, however, be wasteful if only a
small part of each particle track is contained in the site. The reason is that all the
information regarding the structure of the track outside the site remains un-
utilized.

For the computational procedure it will therefore in general be more efficient
to consider one or several random tracks, i.e. an inchoate energy distribution, in an
extended medium, and then to sample the values of the microdosimetric variables
throughout the medium. In this second approach one thus uses a large number of
spheres but only one or a few random. tracks. Accordingly the information con-
tained in the simulated tracks is fully used. This approach which reflects the
fact that the problems of microdosimetry are in essence problems of pattern
analysis will be adopted in the following. It will be found useful not only in
computations but also in theoretical considerations. However, it will require
careful attention to the details of the sampling procedure.

Assume that the inchoate distribution-of energy deposition is given in an
extended medium. As pointed out [14] this inchoate distribution can be specified
by the coordinates of the transfer points, T, and the corresponding energy
transfers, &. A transfer point has been defined as a point where an ionizing
particle' loses energy. The definition of the energy transfer, ¢;, can be formalized in
analogy to the definition of the energy imparted which has been cited in the
preceding article [14]:

&= Emn— 2, €ex+ ZQ: (1)



Concepts of Microdosimetry IT 207

where

€in = the energy (excluding rest energy) of the ionizing particle before it under-
goes an interaction at the transfer point, 77,

> €ex = the sum of the energies (excluding rest energies) of all ionizing particles
(including the primary particle) resulting from the interaction,

> @ = the sum of all the energies released, minus the sum of all the energies
expended, in any transformation of nuclei or elementary particles
oceurring in the interaction.

The total volume which is being considered will in the following be called the
sampling region. If one wants to determine the probability distribution or the
expectation value of a microdosimetric quantity, such as specific energy, z, one
must determine its value at various points in the sampling region. These points
will be called sampling points. The specific energy, 2, at a sampling point refers to
the sphere of radius  centered at this point.

In the following, sampling procedures will be discussed which lead to two
important distributions. These distributions are familiar in microdosimetry;
however it is useful to reconsider them in the present context. It will be understood
that the remarks apply equally to the two different interpretations of the micro-
dosimetric quantities which have been suggested in the preceding article [14].

Two Basic Distributions

The most obvious sampling procedure is the random selection of points with
constant probability throughout the sampling region. If one performs such
unwesghted sampling for a sufficiently large number of points in a sufficiently large
sampling region one approximates a probability distribution of z which is often
called the frequency distribution of specific energy. The sum distribution is com-
monly designated as F(z). The value F(z) is the probability to find a specific
energy in excess of z; in other words F (2) is the fraction of the total volume with
values of specific energy exceeding z.

The corresponding differential distribution is f(z). The probability to find a
value of specific energy between z and z+4 dz is equal to f(z)dz; accordingly,
f(2z)dz is the fraction of the total volume with values of the specific energy between
zand z+ dz.

The formal relations between the sum distribution and the differential dis-
tribution are:

F()=[1() & ()
and:
fo)= — 2297, ®3)

The frequency distribution of specific energy determines the relative proba-
bility with which certain amounts of energy are imparted to spherical sites within

* In contrast to normal usage in probability theory the sum distribution is here taken to be
a decreasing function of the random variable, ¢.e. the integration is performed over the part of
the distribution which belongs to high values of z. This has the advantage that this part which
is particularly relevant to the biological effects of different ionizing radiations can be depicted
more clearly. A similar convention will be adopted for the other microdosimetric distributions.



208 A, M. Kellerer and D. Chmelevsky

the irradiated medium; it follows that the mean value of this distribution is the
absorbed dose.

Although sampling with constant probability throughout the irradiated
medium may appear to be the obvious procedure, it is not the only procedure of
interest. The more general situation is outlined in the Appendix; in the present
context it is sufficient to deal with one special case. This special case results if one
uses a weight factor for the sampling points which is proportional to the value z at
these points. In this way one obtains a distribution which is often called the dose
distribution of specific energy; ¢.e. one obtains a distribution of absorbed dose in z
instead of a distribution of the volume in z. The sum distribution is designated as
D (z) and the corresponding differential distribution is d(z). The value D (z) is equal
to the probability to find a specific energy larger than z if one samples with a
selection probability proportional to z. Accordingly d(z)dz is the probability to find
a value of specific energy between z and z4 dz if this sampling procedure is
applied. One can also say that D(z) is the fraction of absorbed dose appearing in
sites with specific energy exceeding z.

The relations between the sum distribution and the differential distribution
are:

D)= d@)d @)
and: :
i@ = - 29 )

The distributions f(z) and d(z) have here been introduced independently as
distributions resulting from two different sampling procedures. This is justified
because the two distributions are of different nature; the one being the distribution
of volume in z, the other being the distribution of dose in z. On the other hand, the
separate treatment of f(z) and d(z) may appear confusing, because d(z) is closely
linked to f(z) and is in fact commonly defined in terms of f(z):

&)=z f(»)/D. (6)

However, as will be seen in the next section, this relation follows readily from the
definitions which have been given here.

Details of the Sampling Procedures
After these general remarks it is useful to consider the sampling procedures in
detail.
The sampling with constant selection probability throughout the medium is
simple. One can use a Monte Carlo technique to generate N points randomly in the

volume of interest and determine the corresponding values 2z, t=1,...N.
The sum distribution F (z) is then approximated by:
F(z)= N.IN, (7)

where N, is the number of sampling points with values 2; exceeding z.
The relation for the differential distribution, f(z), is

f(2) dz= AN, N, 8
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where AN, is the number of sampling points with values z; between z and 2z Az.
The expectation value of a function, g(z), of the specific energy is obtained
from:

9@r= 3 9(z)/N (9)

and for the special case of the mean value of z one has:
zr= 2 ulN. (10)

%

As stated before, Zp is equal to the absorbed dose, D.

The question of the statistical convergence of the expressions will not be
considered in the present context; it will simply be assumed that the number, N,
of sampling points is sufficiently large.

An alternative which avoids Monte Carlo calculations is to determine the
values of the specific energy throughout the region of interest, i.e. to establish a
three-dimensional grid of points throughout the medium with sufficient resolution
and to determine the value of the specific energy on all these points. This latter
procedure may often be inapplicable because it may require excessive computing
times. Nevertheless it is of conceptual interest, since it implies that Eqs. (7 to 10)
can also be written as volume integrals. Thus one obtains for the mean value of a
function, g(2):

g@)r=[g@ dv/fdV, , (11)
14 14

where the integrals extend over the whole sampling region, V, and z is a function
of the spatial coordinates.
In particular one has:

Zp=f2zdV/[dV=D. (12)
1’4 14

One can now consider the second somewhat more complicated situation,
where the sampling is performed with a selection probability proportional to z.
One possibility is to apply one of the methods mentioned above, i.e. to use a
constant selection probability, but to apply the value z as a compensation factor,
in order to arrive at the proper weight factor. It may appear unnecessary in the
present context to introduce the three separate notions of weight factor, selection
probability and compensation factor. The situation can, however, be complicated
in actual computations where it may be advantageous to select certain sub-spaces
in the sampling region, such as straight lines parallel to particle tracks, and to
determine the distribution of the specific energy in these sub-spaces. It is then not
always trivial to determine appropriate selection probabilities and compensation
factors. A precise definition of the concepts is therefore essential, and it will be
helpful to use the rule that the weight factor is equal to the product of the selection
probability and the compensation factor.

Ifz,4=1,... N, are the values of the specific energy at the N sampling points
chosen with constant selection probability, then the sum distribution, D(z2), is
obtained as: '

D)= 3 =l u, (13)

z2e>2 i
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where the summation in the numerator extends over all sampling points with z;
larger than z, and the summation in the denominator extends over all N points.
The corresponding relation for the differential distribution is:

d(z)AzzzANz/z_ 28, (14)

where AN, is again the number of points with values of the specific energy in the
interval which extends from z to z+ Az.
The expectation value of a function ¢(2) of z is obtained as:

9@p= S g) ulSu (15)

and, in particular, the relation for the expectation value of z is:
Zp=>72%[>%. (16)
i d
As in the case of the frequency distribution one can formulate these relations in
terms of volume integrals. Thus one obtains the following formulae for the mean
values:

g(z)ps‘j;g(z)de/gde (17)
and: _
Zp=[2dV][2dV = 2%[zp. (18)
4 4

From Egs. (8) and (14) one obtains Eq. (6) between the dose distribution
and the frequency distribution.

Sampling over Individual Transfers

Use of a constant selection probability of sampling points and subsequent
application of the compensation factor, z, may be disadvantageous insofar as one
may obtain many sampling points with 2= 0. These points are not relevant to the
distribution d(2). It will therefore, in general, be more effective to sample only the
associated volume, ¢.¢. only that part of the sampling region where the specific
energy is larger than 0. The following method can be used to make the selection
probability of sampling points proportional to z.

Assume that one deals with M transfer points T';, with ¢= 1, . .. M. Let & be
the corresponding energy transfers. As a first step one selects randomly a transfer
point; this is done with a selection probability proportional to ;. As a second step
one selects a sampling point, P, randomly in the sphere of radius r around the
transfer point. If the selection of sampling points, P, is performed in this manner
no compensation factors are necessary because the probability to arrive at a point
P is then proportional to the value z at this point. That this is so follows from the
fact that each point, P, can be reached from all those transfer points, 7, which
contribute to the specific energy at P. The selection probability of P is pro-
portional to the sum of the selection probabilities of the points 7. This sum,
however, is proportional to the sum of the transfers ; and therefore to the specific
energy at P.

In practice one can avoid the random choice of transfer points and instead
consider all transfer points consecutively. The value g must then be used as a
compensation factor.
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This method of obtaining the distribution d(2) is not only suitable for numerical
calculations, it will also prove an important tool in theoretical arguments con-
cerning the mean values Zp and 7p. The method will be referred to as sampling over
individual transfers.

According to the procedure one has the followmg expression for zZp:

Zp= > & j'z dV/g:dV )2 &, (19)
St i
where the summations extend over all transfer points, 7';, and the integrals extend
over the sphere, S;, of radius 7 around each transfer point. The expression in the
bracket is the average of z without weight factor over the sphere around a transfer
point; one can also say that it is the average of z in all spheres of radius » con-
taining the transfer point, 7. According to the equation, Zp is the mean of this
average over all transfer points*. One could state this in the following form. If a
transfer point is selected randomly in the exposed medium (with a selection
probability proportional to its energy transfer), then zp is equal to the expected
specific energy in a sphere of radius » which contains the transfer point at a
random position in its interior.
Eq. (19) will be used in the next section to derive the dependence of zZp on
absorbed dose.

Dependenee of the Distributions and Their Mean Values on Absorbed Dose

The microdosimetric distributions depend on absorbed dose; one may indicate
this by writing them in the form f(z; D) and d(z; D) instead of f(z) and d(2).
However, the dose-dependent distributions can be calculated from the distribu-
tions which apply to isolated, 4.e. non-overlapping, charged particle tracks. These
latter distributions are called single event distributions, and are designated by £, (2)
and d, (z). They are independent of absorbed dose. The relations between the dose-
dependent distributions and the single event distributions have been set out in
earlier works (22—24). It will, however, be useful to list the essential points in the
present context.

Report 19 of the ICRU [11] deﬁnes an energy deposilion event as energy
deposition in a region due to an ionizing particle andjor its secondaries. This
definition implies that energy imparted in the same event is due to statistically
correlated particles. In this context it is useful to introduce the notion of a frack as
the entirety of transfer points T; and energy transfers ¢; in an exposed medinm
due to one ionizing particle and its secondaries.

With these conventions the single event distributions can be defined as the
distributions which result if exactly one event has occurred in the region of
reference. Alternatively one can state that the single event distributions result
from samphng the associated volumes of individual, i.e. non-overlappmg, tracks.

* If one deals not with a spherical site with sharp boundary, but with a diffuse site (see
[14]) the integrals are slightly altered. They must then contain the additional factor h(x),
where @ is the distanee from the transfer point. As pointed out in the earlier article, the
function A(x) is a step function if one deals with a site with sharp boundaries while it is a
continuously decreasing funetion, for example a Gaussian distribution, in the case of a diffuse
boundary.



212 A. M. Kellerer and D. Chmelevsky

AR

Fig. 1. Schematic diagram of a particle

track with its associated volume and the

d(2) | frequency distribution, f,(z), and dose
distribution, d,(z), corresponding to the

1L

ol 1| |

4 pattern
o 1 2 3 4 5 & 7 8 9

i It is assumed that each energy transfer

produces a unit increment of z. The
resulting mean values are zr= 3.2 and
SPECIFIC ENERGY (rel. units) 2p =41

The distribution d,(z) is the limit of d(z; D) as the dose goes towards zero:
limd(z; D)= d,(2). (20)

D—0
The same relation does not hold for f,(z). In the dose-dependent distribution
f(z; D) there is always a finite probability for z= 0, while no such component is
included in £, (2). At small doses f(z; D) can be approximated by:

fz; D)= (1—n) d(2)+ n f1(2), (21)
where §(z) is the delta-function at z= 0 and » is the mean event frequency at

absorbed dose D:
n= D[Zp;. (22)

zr, is the mean specific energy produced in one event, and consequently 1/zp, is
the event frequency per unit dose.

From Eqs. (6), (20), and (21) one obtains the relation between the single event
distributions:

dy(2) =2 f1 () fZm. (23)

These distributions are given in Fig. 1 for the same two-dimensional example of a
particle track which has been used in the preceding article. For simplicity it is
assumed that all transfers, ¢;, represented by dots, are equal. In the example the
absolute units are meaningless because one deals with a two-dimensional case;
therefore the contribution of each transfer to z is arbitrarily set equal to 1.

The dose-dependent distributions f(z; D) can be represented as a super-
position of multi-event spectra, f,(2), according to the Poissonian probabilities for
the occurrence of » events, when the mean number of events is n= D[zp;:

=S en

v=0

fo(2) . (24)
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The spectra f,(2) which belong to exactly » events can be obtained as convolutions
of f,(z). There are computational procedures [12] involving Fourier transforms
which permit an even more direct derivation of f(z; D) from f, (2).

The mean value of f(z; D) is, as pointed out, equal to absorbed dose, in fact this
can be considered as the definition of absorbed dose:

zr=D. (26)

The mean value of d, (z) will be designated by Zp,. According to Eq. (23) this
quantity is equal to the ratio of the second to the first moment of £, (2):

Zp; = %2 (26)

Consequently zp, is always larger than zp;.
The mean, zp, of d(z) can be expressed in terms of the mean of d, (2):

Zp=7p,+ D. 27)
This relation has been derived earlier [10, 12], it follows from Eqs. (18) and (24).
However, since the relation is of considerable importance in radiobiology [15], it is
desirable to demonstrate its validity in a more direct and more easily com-
prehensible way. To this purpose one may reconsider the procedure which has been
termed sampling over individual transfers. As stated, such sampling is achieved by
randomly selecting first a transfer point, 7', and then a point in the surrounding
sphere of radius 7. The mean value of z at the resulting points is equal to zZp. At
each point the specific energy is the sum of two independent components. The first
component is the contribution from the track to which 7'; belongs, its mean value
is Zp,. The second component is the contribution from other tracks. These other
tracks are not statistically correlated to the sampling point; their mean contribu-
tion is therefore equal to D. This proves Eq. (27)*. Analogous relations result for
the variables € and n.

A more formal statement of this argument can be based on Eq. (19). In this
equation the variable z under the integral is the specific energy in the vici-
nity around a transfer point, 7';. One can separate z into two components. z, is the
part of z which is due to the energy transfer at 7'; and at other transfer points
belonging to the same track. z, is the contribution of independent tracks. Since
there is no spatial correlation of the region of integration to the other tracks the
expectation value of z, is equal to D. Therefore:

zp= Z & (J(z1+ 25) dV/éde)/Z &

1 St
=2e(zdV/fdV)/Ze+ D. (28)

Since the first term is equal to the limit, Zp,, of Zp as D goes towards zero, one
obtains Eq. (27).

The quantity zp, is of considerable importance in radiobiology [15]. Formulae
for this quantity will be derived in the subsequent, Jast part of this study.
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* The relation holds regardless of the form of the function % (z), %.e. it applies not only to a
sharp boundary but also to a blurred boundary (see [14]).



214 A, M. Kellerer and D. Chmelevsky

Appendix

The microscopic distribution of energy deposition determines the spatial pattern of the
concentration of radiochemical products, such as free radicals, or of cellular sublesions, such as
the single-strand breaks in DNA. The effectiveness of an irradiation may depend in various
ways on the resulting local concentrations. Accordingly, one may consider different micro-
dosimetric distributions. The following remarks will deal with one case of particular impor-
tance, namely a second order reaction of radiation products.

Assume that at the transfer points (ionizations or excitations) of charged particle tracks
two different species, U and E, of free radicals are formed with yields proportional to the energy
transfers ¢, and that these species diffuse over spheres with the radii » and r around their points
of formation. The resulting concentration of the two species at any point in the medium is then
proportional to the variable 2.z, where 2, and 2- are the values of the specific energy belonging
to the radii » and r.

If the cellular effect is proportional to the interaction product of the two types of free
radicals then it is proportional to the spatial average, 2.2, of the variable 2,z

It may neither be easy nor of great practical interest to evaluate this expression in the
general case of two different radii « and r. Nevertheless, it may be of interest to consider the
quantity from a theoretical point of view and to investigate two aspects of the problem, The
first is the dose dependence of the expression, the second is the fact that the frequency average,
zr, and the dose average, Zn, of the specific energy are special cases of the general expression.

It will be convenient to consider the expression zu2,/Z, instead of z4z.. For brevity this
expression will be designated as Zur:

fruzedV

_ Zu2r vV
Zur-—z—-— jzudV . (Al)
14

The quantity Z.r is the expectation value of 2 which results from sampling with the weight
factor zu. Eq. (A.1) corresponds to Eq. (18). Going through the arguments which lead to
Egs. (19) and (28) one obtains an expression which corresponds to Eq. (28), and merely differs
from this equation insofar as the regions of integration are spheres of radius % while the
specific energy under the integral refers to spheres of radius 7. As in the earlier case one there-
fore concludes that the mean value Z, is equal to the absorbed dose plus a term which is
independent of absorbed dose and depends merely on the energy concentration in individual
tracks:

Zur = Zuryy + D, (A.2)
Since according to Eq. (A1) zuzr is equal to D7 one obtains the linear-quadratic equation:
ZuRr = Zuryq D+ D2, (A.S)

This equation applies to the case of two interacting free radicals which has been discussed
above.

In the special case where the diffusion distances of the two radicals are the same the
quantity Zur, , reduces to Zp;.

As stated, 2. is the mean value of 2, which results from sampling with a weight factor zu.
One may go further and consider not only the mean value but also the corresponding proba-
bility distribution which may be designated fu;(z). This function is of interest because it
contains the commonly used probability distributions as special cases.

The first case results in the limit of a large radius u. The weight factor z, is then equal to
absorbed dose, i.e. it is constant. Therefore fur(z) reduces to the frequency distribution f(z).

The second special case is that of two equal radii, % = r. In this case the function reduces
to the dose distribution, d(z).

A third case of interest leads to a distribution which has not been dealt with in this article
but which is useful in certain applications. This distribution results when u goes toward 0, i.e.
when the inchoate density is used as weight factor. Under this condition one samples the values
of the specific energy only for those spheres of radius r which are centered at the transfer points.
The selection probability for each transfer point is proportional to &;. The resulting probability
distribution may be designated by c¢(z); the letter ¢ is chosen because the distribution deter-
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mines the relative frequencies of different values of specific energy in spheres centered at the
transfer points, ¢.e. at lonization and excitations. Accordingly one may call this distribution the
centered distribution of specific energy. C(z) is the probability to find a value of specific energy
exceeding 2 in a sphere of radius r around a transfer point. ¢(z) dz is the probability to find a
value between z and z + dz.

One can apply the centered distribution to situations where sublesions, e.g. single-strand
breaks in DNA, are produced at the transfer points, and where the probability that two such
sublesions interact, e.g. for the formation of double-strand breaks, is a function of their
distance. Although the distribution ¢(z) may in many cases be similar to the distribution d(z)
there appears to be no general mathematical relation between ¢(z) and d(z).

The mean value, Zc, of the distribution ¢(z) is a useful concept. It is the average specific
energy in spherical sites around jonizations and excitations. According to the general relation
expressed in Eq. (A.2) Z¢ consists of a term which is independent of absorbed dose, and a term
which is equal to absorbed dose. The first term is the contribution from the same track, the
second therm is the contribution from other tracks:

Zo=Zc, + D (A.4)

Whenever the first term is larger than the second term, it follows that the intratrack inter-
action of sublesions which leads to a linear component in absorbed dose is larger than the
intertrack interaction which leads to a term which is quadratic in absorbed dose. The numerical
evaluation of zc; shows that even with sparsely ionizing radiations the linear component
dominates in the dose range of a few hundred rad except when the interaction distance, r, is
larger than fractions of a micrometer [13].
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