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Overview

Small RNA (sRNA)-mediated RNA interference (RNAi) is a conserved regulatory mechanism

for gene expression throughout the domain Eukarya. Recent studies have shown that sRNAs

can move between a host and an interacting organism to induce gene silencing in trans, a

mechanism termed “Cross-Species RNAi” or, in many cases, “Cross-Kingdom RNAi.” Patho-

gens and parasites transport sRNAs into host cells during infection and silence host defense

genes to suppress immunity, whereas hosts can also deliver their sRNAs into interacting

microbes or parasites to suppress infection. Recent studies of different plant and animal hosts

and their interacting organisms have unveiled extracellular vesicles (EVs) as vehicles of sRNA

exchange in cross-species and cross-kingdom RNAi. The discovery of the pivotal role of

sRNAs and EVs in cross-species and cross-kingdom communication offers innovative tools

for pathogen and pest control in agriculture and biomedicine.

Cross-kingdom RNAi

sRNAs—including microRNAs (miRNAs) that are processed by Dicer-like (DCL) proteins

from single-stranded stem-loop–forming RNA precursors and small interfering RNAs (siR-

NAs) that are processed by DCL proteins from double-stranded RNA (dsRNA) precursors—

are loaded into Argonaute (AGO) proteins to induce silencing of genes with complementary

sequences [1]. Some sRNAs from diverse classes of pathogens and parasites are transported

into host cells and induce cross-kingdom or cross-species RNA silencing to facilitate infection

(Fig 1). Fungal pathogens, including ascomycete and basidiomycete species, can deliver

sRNAs into their respective hosts [2–6]. In detail, Botrytis cinerea, the grey mold fungal patho-

gen that infects over 1,000 plant species, delivers sRNAs into plant cells and hijacks host RNAi

machinery by loading its sRNAs into the Arabidopsis AGO1 protein to trigger silencing of host

immunity genes, including mitogen-activated protein kinases (MAPKs), cell-wall–associated

kinases, and other defense and signaling proteins [2]. A panel of sRNAs from Verticillium dah-
liae, which causes Verticillium wilt in many plant hosts, also move into plant cells and associate

with the host AGO1 protein to silence host genes involved in plant defense [4]. A genome-

wide association study shows that the white mold fungal pathogen Sclerotinia sclerotiorum
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produces sRNAs that, to facilitate infection, can target plant genes associated with quantitative

disease resistance [5]. A miRNA-like sRNA from Puccinia striiformis, the causal agent of the

destructive wheat stripe rust, targets wheat pathogenesis-related genes and suppresses host

immunity to achieve successful infection [3]. Likewise, the parasitic plant Cuscuta campestris
(dodder) transports several miRNAs into A. thaliana and Nicotiana benthamiana to promote

invasion [7].

Cross-kingdom sRNA trafficking from a fungal pathogen to an animal host was also

observed recently. Beauveria bassiana, an insect fungal pathogen, exports a miRNA-like RNA

(bba-milR1) to the host mosquito, which induces cross-kingdom RNAi to suppress host

immunity [6]. Strikingly, this insect fungal pathogen-derived bba-milR1 also binds to host

AGO1 and silences mosquito target gene Toll receptor ligand Spätzle 4 [6], which is consistent

with the mechanism used by transported sRNAs from plant fungal pathogens [2, 4].

In addition to eukaryotic pathogens, prokaryotic microbes can also use cross-kingdom

RNA trafficking to manipulate gene expression in the hosts. Specifically, the root-nodule bac-

terium Rhizobium delivers tRNA-derived sRNA fragments (tRFs) into soybeans to suppress

host genes involved in nodule formation and root development, which enhances nodulation

efficiency [8]. Surprisingly, these Rhizobium tRFs also function through host AGO1 [8], just

like fungal pathogen-derived sRNAs that are bound with host AGO1 to silence host target

genes [2, 4, 6]. Furthermore, it has long been known that virus- or viroid-derived sRNAs can

target various host protein-coding genes to facilitate infection in both plant and animal hosts

[9–14]. A recent study revealed that the targeting of a long noncoding RNA in tomato by

tomato yellow leaf curl virus-derived sRNAs contributes to disease symptoms [15].

Cross-kingdom RNAi is bidirectional. Plant hosts also transport sRNAs into fungal patho-

gens to suppress the expression of virulence-related genes, which contributes to plant defense

Fig 1. Cross-species and cross-kingdom RNAi between host and coinhabitants. (A) Cross-species RNAi between mammals and parasites.

Parasites produce EVs containing parasitic sRNAs, which are internalized by mammalian cells to silence host genes involved in inflammation

and innate immunity. Animal cells can deliver sRNAs into interacting organisms. They also secrete EVs (e.g., exosomes or MVs) containing

host sRNAs. It is likely that animal hosts may also transport sRNAs using EVs into parasites to suppress parasitic genes. (B) Cross-kingdom

RNAi between plants and fungal pathogens. Fungal sRNAs translocate into plant cells and hijack host AGO protein of the RNAi machinery to

suppress plant immune responses. It is still unclear how pathogens transport sRNAs. Conversely, plants secrete EVs to transport host sRNAs

into pathogens to silence fungal genes involved in virulence. The “?” indicates a prediction that has not been validated experimentally. AGO,

Argonaute; EE, early endosome; ER, endoplasmic reticulum; EV, extracellular vesicle; MV, microvesicle; MVB, multivesicular body; RNAi,

RNA interference; sRNA, small RNA; TGN, trans-Golgi network.

https://doi.org/10.1371/journal.ppat.1008090.g001
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responses. Translocation of plant endogenous sRNAs into fungi was clearly demonstrated by

sRNA profiling of fungal cells purified from infected plant tissue [16]. Cai and colleagues

developed an innovative sequential protoplastation method, which allowed for the removal of

all plant cells and the purification of B. cinerea protoplasts/cells from infected Arabidopsis tis-

sue [17]. These purified fungal cells contain host miRNAs and siRNAs, including Trans-acting

siRNAs, also called secondary phasing siRNAs (phasiRNAs) [16]. These Arabidopsis sRNAs

are delivered into interacting B. cinerea cells to induce silencing of fungal genes that are

involved in pathogenicity, many of which are related to vesicle trafficking [16]. Mutated B.

cinerea strains with a deletion in these target genes displayed reduced pathogenicity on plant

hosts [16]. Another study found that cotton miRNA166 and miRNA159 accumulated in the

mycelium of V. dahliae grown on artificial agar medium 30 days post re-isolation from

infected tissue, which suggests that cotton miRNAs can translocate into V. dahliae [18]. Both

cotton miRNAs trigger silencing of V. dahliae genes involved in virulence, Ca2+-dependent cys-
teine protease (Clp-1), and isotrichodermin C-15 hydroxylase (HiC-15), which enhances disease

resistance against this vascular pathogen [18]. Similarly, the wheat miRNA1023 suppresses an

alpha/beta hydrolase gene in Fusarium graminearum, which is important for fungal infection

[19]. Plant sRNA-induced silencing of pathogen genes is not restricted to fungi. A similar phe-

nomenon was later observed in the interaction between plants and an oomycete pathogen,

Phytophthora capsici. Arabidopsis may use secondary sRNAs to silence Phytophthora genes

during infection [20].

Cross-species RNAi also exists in animal–parasite interactions. Some mammalian parasites

use cross-species RNAi strategies to silence host genes and enable infection. For instance, the

gastrointestinal nematode Heligmosomoides polygyrus (also known as H. bakeri) secretes

sRNAs, including miRNAs, which suppress type II innate immune response in the murine

host [21]. Conversely, some animal hosts also deliver sRNAs into parasites. Patients who suffer

from sickle cell anemia show abnormal erythrocyte development but exhibit resistance to the

malaria parasite Plasmodium falciparum. One of the reasons for malaria resistance is that these

patients accumulate higher levels of a specific panel of miRNAs, which are transported into the

parasite and suppress P. falciparum virulence [22]. Though P. falciparum lacks canonical

RNAi components, such as DCLs and AGOs, the authors demonstrated that cross-kingdom

RNA regulation occurs through impaired ribosomal loading by the fusion of host miRNAs

with the parasite target mRNAs. This chimerization blocks target mRNA translation and

causes an inhibition of parasite growth [22]. Anti-Plasmodium cross-kingdom RNA regulation

was also reported based on the human miR-451/140 targeting the P. falciparum antigen eryth-
rocyte membrane protein-1 (PfEMP1). Human miR451 was found in the parasitic cell in com-

plex with human AGO2, providing the first example of cross-kingdom delivery of an sRNA–

AGO complex [23].

In the mammalian gut, miRNAs secreted by human and mouse intestinal epithelial cells

were shown to influence gene expression even in gut bacteria that lack canonical RNAi

machinery, suggesting a regulatory role of host miRNAs in gut microbiome homeostasis [24].

Furthermore, dietary plant miRNAs can also enter gut bacteria through plant-derived exo-

some-like nanoparticles, further shaping the gut microbial community [25]. RNAi does not

exist in prokaryotes per se; however, bacteria have various ribonucleases, including type III

ribonucleases [26], which may interact with the host or dietary miRNAs to interfere with bac-

terial mRNA expression. The increasing number of discovered cases of cross-species and

cross-kingdom RNAi or RNA Trans-regulation across diverse host–microbe and host–parasite

systems has made it clear that cross-species and cross-kingdom RNA communication is likely

a ubiquitous mechanism in host–microbe and host–parasite interactions.
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EVs in animal–parasite interactions

In mammals, RNAs circulating through body fluids are often encapsulated in extracellular ves-

icles (EVs). EVs are membrane-surrounded vesicular compartments released by cells to the

extracellular environment to transport proteins, RNAs, lipids, and other molecules to other

cells or to interacting organisms [27]. EVs are categorized into multiple classes based on their

biogenesis pathways and associated protein markers. In mammalian systems, multiple classes

of EVs have been shown to carry sRNAs. In particular, exosomes, which are derived from mul-

tivesicular bodies (MVBs) and have tetraspanin proteins as one of the key protein markers

[28], play an important role in sRNA trafficking [29]. Microvesicles, which bud from the

plasma membrane, can also transport sRNAs into recipient cells [30]. Both types of EVs are

involved in cell-to-cell communication in homeostasis, immune signaling, and neural net-

works [31, 32]. While exosomes and microvesicles are secreted during normal cellular pro-

cesses, apoptotic bodies are formed during programmed cell death [33]. Functional molecules,

including RNAs, can be detected in apoptotic bodies [34, 35]. Some reports have shown that

apoptotic bodies can transport these functional molecules into recipient cells [35, 36], though

whether they are also involved in cross-kingdom communication between parasites/microbes

and animal hosts remains to be explored.

It is not surprising that pathogens and pests would evolve to exploit or target these natural

cell-to-cell communication pathways. Diverse parasites have been shown to use EVs to deliver

sRNAs to host cells and modulate host gene expression (Fig 1A) [37]. The miRNA-containing

EVs that are released by the gastrointestinal nematode—or helminth—H. polygyrus are inter-

nalized by host mouse cells and suppress inflammation and innate immune responses during

infection [21]. Many of the nematode miRNAs share common ancestry and identical seed sites

with miRNAs of the mouse host, such that they would be expected to be able to tap into exist-

ing miRNA target networks in the mouse cell. However, the RNAi mechanisms used between

these two animals are complex, as the nematode packages a nematode-specific AGO protein

(extra cellular worm Argonautes [exWAGO]) into the EVs bound to siRNAs from rapidly

evolving nongenic regions of the parasite genome [38]. Indeed, these studies suggest that dif-

ferent parasites and pathogens might have diverse tools for RNA-mediated suppression of host

genes. The study of these pathogen RNA transmission mechanisms may guide new strategies

for effective therapeutic delivery of RNAs (for example, delivering RNA–AGO complexes,

rather than RNA alone) [39]. Since the EVs from helminths are immune suppressive, the EVs

and their RNA cargoes also represent another potential therapy for treating colitis and allergies

in humans [21, 40, 41].

In mammalian systems, EVs have been shown to transport sRNAs between cells within the

organism; we speculate that EVs may also be used by the host cells to deliver sRNAs to its

interacting organisms, such as parasites and pathogens.

EVs in plant–microbe interactions

In 1967, plant EVs were initially observed in carrots by electron microscopy [42]. Forty years

later, Regente and colleagues isolated plant EVs from extracellular wash fluids of imbibed

sunflower seeds [43]. However, the origin of plant EVs still remained unknown. In mammals,

exosomes are a class of EVs derived from MVBs. Mammalian tetraspanins cluster of differenti-

ation (CD)63, CD81, and CD9 are enriched in exosome membranes and are commonly used

as biomarkers to isolate and phenotype exosomes [28]. Arabidopsis encodes 17 members of the

TETRASPANIN (TET) family [44], and two Arabidopsis TETs (TET8 and TET9) are induced

upon infection by B. cinerea. Moreover, TET8-associated vesicles accumulated to a high level

at the fungal infection sites [16]. TET8 is colocalized with Arabidopsis MVB-marker Rab5-like
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GTPase ARA6 inside the cell, and TET8-associated vesicles are secreted into the apoplast [16],

suggesting that TET8-associated EVs are derived from MVBs and secreted into apoplastic

space and can, therefore, be considered bona fide plant exosomes. These exosomes contain

plant-endogenous sRNAs and are efficiently taken up by B. cinerea fungal cells. Plant exo-

somes deliver sRNAs into fungal pathogens to suppress fungal infection by inducing silencing

of fungal virulence-related genes. Similarly, Arabidopsis also transports secondary phasiRNAs

from PPR gene clusters into an oomycete pathogen, P. capsici, likely also by EVs, which silence

target genes in the pathogen [20]. Thus, plants have adapted EV-mediated cross-kingdom

RNAi for immune responses during the coevolutionary arms race with interacting pathogens

(Fig 1B).

In addition to exosomes, PENETRATION (PEN)1-associated EVs, which contain several

stress-response–related proteins, were identified in Arabidopsis [45]. The biogenesis pathway

of PEN1-associated EVs remains unclear, although PEN1 was originally identified as a

plasma-membrane–associated plant-specific syntaxin [46]. PEN1-associated EVs were purified

from the apoplast wash fluid of Arabidopsis leaves using an ultracentrifugation speed (40,000g)
[45, 47], which is slower than that used to isolate TET-associated exosomes (100,000g) [16].

Secretion of PEN1-assoiated EVs was increased during infection by a bacterial pathogen (Pseu-
domonas syringae) or following treatment with the phytohormone salicylic acid [45]. Baldrich

and colleagues analyzed the sRNA population in these EVs isolated from uninfected Arabidop-
sis leaves and found that these EVs carry predominantly “tiny RNAs,” which are 10–17 nucleo-

tides in length and derived mainly from the positive strand of mRNA transcripts [48]. It is not

clear whether these tiny RNAs have any biological function. Since pathogen-infected samples

were not included in this study, whether this class of EVs is also involved in plant and patho-

gen interactions and whether tiny RNAs are delivered into pathogen cells via these EVs remain

unclear. PEN1 and the ATP-binding cassette (ABC)-transporter PEN3 are incorporated into

extracellular encasements surrounding the haustoria of the powdery mildew fungus, Golovino-
myces orontii, suggesting that PEN1-asociated EVs contribute to defense responses against

powdery mildew [45, 49, 50]. A third type of plant EV, which is derived from a novel double-

membrane–bound exocyst-positive organelle (EXPO) [51], has been reported in plants. These

EXPO-derived EVs were discovered through transient expression of exocyst subunit exo70

family protein E2 (Exo70E2), a component of exocyst complex, in protoplasts from Arabidop-
sis suspension-cultured cells. Whether EXPO-derived EVs contain RNAs and are involved in

cross-kingdom communication remains to be discovered.

Similar to animal EVs, which comprise diverse, heterogeneous, and cell-type–specific popu-

lations with a wide range of biological functions in cell-to-cell communication [52], the previ-

ously cited studies suggest that plant cells also secrete different classes of EVs that may contain

specific cargoes. Establishing plant EV biomarkers (such as TET8, PEN1, and Exo70E2) will

enable immuno-based analysis of EVs to further understand the biological functions of EVs in

complex biological systems such as plant–microbe interactions.

Though EV-mediated transport is a key mechanism for RNA secretion and delivery

between hosts and microbes/pests, nonvesicular extracellular RNAs have also been discovered.

Specifically, in human plasma, extracellular RNAs were found within RNA–protein com-

plexes, including AGO proteins and high-density lipoprotein complexes [53–56]. Additionally,

exomeres, extracellular nonmembranous nanoparticles, have recently been discovered in

mammalian systems containing AGO1, AGO2, and AGO3 proteins; amyloid precursor pro-

teins; RNAs; and DNAs. Notably, these exomeres contained a profile of macromolecules dis-

tinct from exosomes [57, 58]. In a plant system, Baldrich and colleagues found that sRNAs

were still present in apoplastic wash fluid, which they believe was depleted of EVs by centrifu-

gation at 40,000g [48]. However, small, RNA-containing EVs, such as exosomes, are mostly
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collected at higher speeds (between 100,000g and 120,000g) from various plant and mamma-

lian systems [52, 59–61], as well as from fungi [62, 63]. Furthermore, plant tetraspanin-labeled

exosomes, which transport sRNAs from the hosts to fungal cells, were much more enriched

after centrifugation at a speed of 100,000g than at 40,000g [16]. Therefore, it is unlikely that

plant EVs can be depleted at 40,000g, and, consequently, whether nonvesicular RNAs are

secreted by plants requires further investigation. Furthermore, the origins of nonvesicular

RNAs and their potential role in cross-kingdom RNAi remain to be explored.

RNA and EV-based innovative tools for disease control

Global disease control mainly relies on chemical protection measures using fungicides, pesti-

cides, and antibiotics, which not only threatens the health of humans and ecosystems but also

generates novel uncontrollable drug-resistant pathogenic strains [64]. We are in urgent need

of innovative, durable, and eco-friendly fungicides and antimicrobial drugs to avoid a global

collapse in our ability to control pathogen/parasite infections in both plants and animals,

including humans.

One direct application of cross-kingdom RNAi is host-induced gene silencing (HIGS), a

promising technology in which transgenic plants express dsRNAs or sRNAs that target patho-

gen or insect virulence-related genes to combat plant diseases [65, 66]. This approach has also

made it possible to control multiple pathogens spontaneously by designing dsRNA and sRNA

constructs that target multiple genes from different pathogens [4]. Although HIGS is effective,

it involves the generation of genetically modified organisms (GMOs), which is not only techni-

cally challenging in many crop species but unfortunately still a concern for many consumers.

Furthermore, GMOs are banned in European agricultural productions, rendering HIGS not

practically usable, at least in the near future.

Environmental RNAi, initially discovered in the nematode Caenorhabditis elegans [67], is

the cellular uptake of RNAs from the environment and the induction and spreading of sys-

temic gene silencing. Forward genetics screening in C. elegans revealed that Systemic RNA
interference deficient (SID)-1 and SID-2 encode for two dsRNA transmembrane channel pro-

teins, which are required for dsRNA uptake and systemic gene silencing [68, 69]. In this inver-

tebrate system, there is higher uptake and silencing efficiency for long dsRNA (>60 bp) than

short (<25 bp) or single-stranded RNA [70, 71]. Inspired by environmental RNAi of C. ele-
gans, Wang and colleagues tested whether fungal cells can also take up RNAs from the envi-

ronment and observed rapid RNA uptake by B. cinerea cells [4]. These RNAs induce silencing

of fungal genes in a sequence-specific manner. Unlike C. elegans, which primarily takes up

long dsRNAs, fungal uptake of environmental RNAs seems less dependent on RNA size,

because both short sRNA duplexes and long dsRNAs are taken up by fungi and induce robust

gene silencing in the fungal cells [4]. Fungal environmental RNAi allowed plant scientists to

design spray-induced gene silencing (SIGS) to control fungal and potentially other pathogens

through spray application of pathogen gene-targeting dsRNAs and sRNAs (Fig 2A) [4, 72, 73].

Wang and colleagues demonstrated that spray application of long dsRNAs or sRNA duplexes

that target B. cinerea DCL1 and DCL2 genes can effectively suppress grey mold diseases on

fruits, vegetables, and flowers [4]. Koch and colleagues have shown that SIGS can also effec-

tively control a fungal disease in the monocot barley [73]. Spray application of a long dsRNA

that targets fungal cytochrome P450 lanosterol C-14α-demethylase genes on barley leaves can

inhibit F. graminearum infection [73]. Similarly, application of exogenous dsRNAs helps pro-

tect Brassica napus from infection by S. sclerotiorum and B. cinerea [74]. These pathogen gene-

targeting dsRNAs and sRNAs represent a novel class of eco-friendly fungicides, “RNA fungi-

cides” (Fig 2A).
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Exogenous RNAs can either be directly internalized into fungal cells [4] or indirectly via

passage through plant tissue before transport into interacting pathogen cells [75]. Further-

more, Koch and colleagues observed inhibition of F. graminearum growth in the distal

nonsprayed barley leaf tissue [73], suggesting that sprayed dsRNAs taken up by plant cells

moved through vasculature systemically. While the molecular mechanism of RNA uptake in

C. elegans and some nematodes is based on SID proteins, which are not present in plants or

fungi, the mechanisms for uptake of environmental RNAs into fungi and plants need further

investigation.

Obviously, the effectiveness of SIGS relies on extracellular RNA stability and RNA uptake

efficiency of pathogens. To technically improve RNA stability, Mitter and colleagues docked

an antiviral dsRNA onto double hydroxide clay nanosheets, which increased the efficacy of

plant antiviral protection [75]. In addition, the use of artificial vesicles or liposomes to protect

RNAs could be an effective strategy to improve SIGS for plant protection and to develop

potential antifungal drugs for therapy, as some fungi are capable of taking up EVs efficiently

(Fig 2) [16, 76]. Since EV trafficking is also a natural RNA transport mechanism in mammals,

it is exciting to consider the potential for extension of artificial vesicle-protected RNA-based

antifungal strategies in humans (Fig 2B). Indeed, lipid-based nanoparticles have been used to

stabilize therapeutic compounds, including sRNAs, in biomedical applications [77]. For exam-

ple, liposomal amphotericin B, the world’s leading antifungal drug, was based on liposomal

formulation of amphotericin B to reduce toxicity [78]. Moreover, Walker and colleagues have

observed that amphotericin B–containing liposomes remained intact during transit through

the cell walls of phylogenetically distant fungal pathogens, Candida albicans and Cryptococcus
neoformans, although liposomes (60–80 nm) are larger than the theoretical cell wall porosity

Fig 2. SIGS is an efficient disease control strategy in plants and potentially in humans. (A) Spray application of

dsRNAs and sRNAs that target pathogen/pest genes can potentially control plant diseases. The SIGS-based protection

can be prolonged by incorporating RNAs into artificial vesicles (black circle) or nanoparticles (pink rhombus) to

protect RNAs from degradation or water rinsing. (B) Future RNA-based antifungal drugs have the potential to control

human mycoses. Artificial vesicles/liposomes will likely facilitate the RNA delivery. Figures were created with

BioRender. The “?” indicates a prediction that has not yet been validated experimentally. dsRNA, double-stranded

RNA; SIGS, spray-induced gene silencing; sRNA, small RNA.

https://doi.org/10.1371/journal.ppat.1008090.g002
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(approximately 5.8 nm)[79]. This work suggests that the fungal cell wall is deformable and vis-

coelastic to allow liposomes to pass, which makes it possible to efficiently deliver new genera-

tion of antifungal drugs, including RNA-based drugs, using liposomes/artificial vesicles [79].

In 2018, the Food and Drug Administration (FDA) approved the very first therapeutic siRNA

drug, patisiran, to treat hereditary transthyretin-mediated amyloidosis, a rare, debilitating and

often fatal genetic disease [80]. Patisiran uses a lipid nanoparticle delivery mechanism to trans-

fer 21-bp siRNA duplex into cells in the liver [80]. Besides patisiran, there are at least 6 other

RNAi therapeutics already in phase III clinical trials [80].

Although more than 300 human or animal pathogenic fungal species have been recorded

and fungal infections display disproportional high mortality rates, mycoses are rather

neglected in infection biology research [81]. Survival rates of patients suffering from respira-

tory and systemic fungal infections often caused by the opportunistic fungi Candida (candidia-

sis), Aspergillus (aspergillosis), or Cryptococcus (cryptococcosis) are low due to limited

availability of antifungal drugs. Drug-resistant fungal strains have already emerged to all the

commonly used antifungal drugs [64]. Therefore, innovative drugs to combat fungal infections

are urgently needed, and based on the effects observed for antifungal SIGS approaches in

plants, development of novel antifungal RNA therapeutics and artificial vesicle/liposome-

mediated delivery methods may be effective in the fight against mycoses.

Future perspectives

The field of cross-species and cross-kingdom communication via RNA is still in its infancy,

yet an increasing number of studies across diverse systems demonstrate that mobile RNAs are

key regulatory molecules that shape the interactions between hosts and interacting pathogens

or organisms. Plants and animals deliver sRNAs into interacting (micro-)organisms to inhibit

infection, and pathogens and parasites can, in turn, transport sRNAs into the host to suppress

host immunity. Current studies show that EVs play an essential role in transporting sRNAs

from the plant hosts to pathogens and from parasitic nematodes to mammalian hosts, and it is

very likely that mammalian hosts could also utilize EVs to deliver sRNAs into their parasites

and pathogens, though this is currently just speculation. Recent advances in methodology

development for isolating different classes of EVs in mammalian systems provide excellent

tools and guidelines to study RNA delivery in cross-species and cross-kingdom RNAi [82, 83].

Although there is diversity in the properties of EVs based on their cell and tissue origin (and

purification techniques, which can also impact the exact profile of RNAs and proteins found

in EVs), it is clear that small EVs, including exosomes, play an important role in delivering

sRNAs [60, 84, 85].

The discovery of cross-species and cross-kingdom RNAi and fungal RNA uptake has

inspired scientists to design novel disease control strategies against pathogens and pests in

agriculture, such as HIGS and SIGS. Structural and mechanistic studies of EVs in sRNA traf-

ficking allows for the development of innovative delivery methods of sRNAs using artificial

vesicles, or nanoparticles, which may also be considered for therapeutic applications in mam-

malian systems. We speculate that future development and application of a new generation of

RNA-based fungicides and antifungal drugs will be an important research direction to control

diseases caused by eukaryotic pathogens and parasites.
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