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Abstract

Karrikins are smoke-derived compounds presumed to mimic endogenous signalling mole-

cules (KAI2-ligand, KL), whose signalling pathway is closely related to that of strigolactones

(SLs), important regulators of plant development. Both karrikins/KLs and SLs are perceived

by closely related α/β hydrolase receptors (KAI2 and D14 respectively), and signalling

through both receptors requires the F-box protein MAX2. Furthermore, both pathways trigger

proteasome-mediated degradation of related SMAX1-LIKE (SMXL) proteins, to influence

development. It has previously been suggested in multiple studies that SLs are important reg-

ulators of root and root hair development in Arabidopsis, but these conclusions are based on

phenotypes observed in the non-specific max2 mutants and by use of racemic-GR24, a mix-

ture of stereoisomers that activates both D14 and KAI2 signalling pathways. Here, we dem-

onstrate that the majority of the effects on Arabidopsis root development previously attributed

to SL signalling are actually mediated by the KAI2 signalling pathway. Using mutants defec-

tive in SL or KL synthesis and/or perception, we show that KAI2-mediated signalling alone

regulates root hair density and root hair length as well as root skewing, straightness and

diameter, while both KAI2 and D14 pathways regulate lateral root density and epidermal cell

length. We test the key hypothesis that KAI2 signals by a non-canonical receptor-target

mechanism in the context of root development. Our results provide no evidence for this, and

we instead show that all effects of KAI2 in the root can be explained by canonical SMAX1/

SMXL2 activity. However, we do find evidence for non-canonical GR24 ligand-receptor inter-

actions in D14/KAI2-mediated root hair development. Overall, our results demonstrate that

the KAI2 signalling pathway is an important new regulator of root hair and root development

in Arabidopsis and lay an important basis for research into a molecular understanding of how

very similar and partially overlapping hormone signalling pathways regulate different pheno-

typic outputs.
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Author summary

Karrikins are plant signaling compounds from smoke, which induce germination of fire-

following plants. They likely mimic endogenous plant hormones (KAI2-ligand, KL),

because Arabidopsis karrikin receptor mutants display shoot developmental phenotypes.

Perception of karrikins/KL is very similar to that of another plant hormone class, strigo-

lactones (SLs). Both hormones bind to the related α/β-fold hydrolase receptors KAI2 and

D14 respectively, which both interact with the F-box protein MORE AXILLIARY

BRANCHES2 (MAX2), for ubiquitylation and subsequent degradation of KL- or SL-sig-

nalling specific proteins of the SMXL family. Based on max2 mutant phenotypes it has

been suggested that the development of Arabidopsis root architecture and root hairs is

regulated by SL signaling. However, max2 does not distinguish between the two signalling

pathways. We genetically dissected the role of KL and SL signalling in root and root hair

development in Arabidopsis seedlings and show that most root traits are regulated by KL

and not by SL signaling: lateral root density is controlled by KL and SL signalling together,

while root growth direction, root straightness and root hair development are determined

by KL signalling alone. Thus, KL signalling regulates vital plant traits for nutrient and

water uptake as well as anchorage to the ground.

Introduction

Plant roots continually integrate environmental information to make decisions about their

development, and to optimize their growth for optimal nutrient uptake and anchorage.

Increased lateral root formation and root hair growth are necessary to compensate for low

nutrient availability in the soil by increasing the root surface area for nutrient uptake, while

directional growth is required to avoid stressors such as salt, obstacles or to reach moisture [1–

5]. Root development is regulated by a number of phytohormones, low-molecular-weight sig-

nalling molecules, which mediate localized developmental responses as well as transmission

and integration of information across long distances. Among them, SLs have been suggested

to act as important regulators of Arabidopsis seedling root architecture and root hair develop-

ment [6–9]. However, the exact role of SLs in root development remains uncertain, due to

interpretational difficulties inherent in the materials used by those studies, namely max2
mutants and the synthetic strigolactone racemic-GR24 (see below, [10]).

Genes involved in SL biosynthesis have been identified in several plant species [10]. The

universal SL precursor carlactone is synthesized from β-carotene by a core pathway of three

enzymes; the isomerase DWARF27, and the carotenoid cleavage dioxygenases CCD7 and

CCD8 (MAX3 and MAX4 in Arabidopsis) [11]. Carlactone is then modified by a variety of

enzymes, including the cytochrome P450s of the MAX1 sub-family, to create a range of active

SL molecules [12]. SLs are perceived and hydrolysed by the α/β hydrolase receptor DWARF14

(D14) [13–16]. D14 interacts with the SCFMAX2 E3 ubiquitin ligase complex to induce ubiqui-

tylation and subsequent degradation of target proteins, essential to trigger SL signal transduc-

tion [15, 17].

A second, closely related signalling pathway also acts through the SCFMAX2 complex [18,

19]. In this pathway MAX2 is thought to interact with KAI2 (KARRIKIN-INSENSITIVE2), an

α/β hydrolase receptor protein, which is encoded by an evolutionary older paralog of D14 [20–

22]. KAI2 was originally identified as a receptor for karrikins, a family of butenolide com-

pounds found in the smoke of burnt plant material [19, 23]. In fire-following species, karrikins
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are used as germination cues, indicating the removal of competing plants. However, karrikins

promote germination in a range of flowering plant species, which do not germinate after fire

[24–26] and KAI2 is required for a number of developmental traits in Arabidopsis not related

to germination as well as for arbuscular mycorrhiza symbiosis in rice [19, 27–30]. Because of

these roles of KAI2, karrikins are thought to mimic the action of a yet unknown endogenous

plant signalling molecule, which is currently denoted KAI2-ligand (KL) [31–33].

Since KAI2 and D14 act through the same F-box protein MAX2, max2 mutants are insensi-

tive to both SLs and karrikins, and display the combined phenotypes of d14 and kai2 mutants

[18, 19, 27, 28]. Most studies aimed at understanding the role of SLs in Arabidopsis root devel-

opment have used max2 mutants—likely for historical reasons because they were available

prior to d14 and kai2. However, if only max2 mutants are employed without comparison with

the specific receptor mutants, the root phenotypes cannot be reliably attributed to either SL or

KL signalling. The second difficulty in interpreting previously published root phenotypes

arises from the experimental use of the strigolactone analog GR24, which in standard prepara-

tions is a racemic mix of two stereoisomers (rac-GR24). While one stereoisomer (GR245DS) is

a potent activator of D14 signalling, the non-natural stereoisomer (GR24ent-5DS) appears to

stimulate KAI2 signalling [31, 34]. As such, the indiscriminate use of rac-GR24 has created a

legacy of interpretational problems in previous studies, and incorrect attribution of phenotypic

effects to SL signalling [10, 34].

Genetic and biochemical evidence indicates that the D14-SCFMAX2 and the KAI2-SCFMAX2

complex target a group of regulators–the SMXL (SMAX1-LIKE) family of proteins with weak

homology to ClpB type chaperonins–for ubiquitylation and subsequent proteolytic degrada-

tion. In Arabidopsis, the genetically defined degradation targets of KL signalling are SMAX1

(SUPPRESSOR OF MAX2 1) and SMXL2, while the targets of SL signalling are SMXL6,

SMXL7 and SMXL8 (hereafter SMXL678) [27, 35–37]. In the shoot, the hormone-induced

turnover of SMXL678 proteins is key to correctly shaping shoot architecture [38]. The exact

molecular function of the SMXL proteins is poorly understood. SMXL678 and their rice ortho-

log D53 have been associated with transcriptional regulation, since they physically interact

with TOPLESS-RELATED (TPR) co-repressor proteins [27, 39, 40]. Rice D53 interacts with

IPA1, a SQUAMOSA PROMOTER-BINDING FAMILY LIKE (SPL) transcription factor in

the regulation of shoot branching and may recruit TPR to repress IPA1-mediated transcrip-

tion [41]. However, they have also been found to be involved in enhancing PIN1 accumulation

at the basal membrane of stem xylem parenchyma cells and auxin transport [38]. The role of

SMXL proteins in root and root hair development has not been comprehensively addressed.

Initial observations suggested mutations of SMXL678 suppress the enhanced lateral root den-

sity phenotype of max2 [27], while unexpectedly the increased root skewing phenotype,

recently described for kai2 and max2 mutants was also suppressed by smxl678 [29]. These data

have been used to propose the existence of non-canonical D14/KAI2 signalling cascades in the

context of lateral root development and root skewing [10, 29].

In this study, we dissected the roles of SLs and KLs in the control of root development in

Arabidopsis. We aimed to test the important hypothesis that root development might be medi-

ated by non-canonical receptor-target interactions between D14, KAI2 and SMAX1/SMXL2,

SMXL678. Our results show that KAI2 is much more important than previously realized in the

regulation of root development, and that many effects previously attributed to SL signalling

are actually mediated by KAI2 (and therefore KL signalling). We find no evidence for non-

canonical receptor-target interactions, but conversely find surprising evidence of non-canoni-

cal GR24 ligand-receptor interactions in both KAI2 and D14 signalling.

SMXL1/SMXL2 regulate root development
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Results

Strigolactones have relatively minor effects on seedling root architecture

SLs have previously been described to regulate primary root length (PRL), lateral root density

(LRD) and root hair development [6, 8, 9, 42]. We re-assessed the specific roles of SL signalling

in root development in mutants specifically affected in SL biosynthesis, namely the SL biosyn-

thesis mutants max3-9, max4-5 and max1-1 (here arranged in pathway order). Surprisingly,

we found that SLs only have subtle effects on root architecture. We observed decreased pri-

mary root length (PRL) and increased lateral root density (LRD) in SL biosynthesis mutants

across many experiments, but rarely at the same time (summarized in S1 Fig). For instance,

Fig 1A shows reduction in PRL relative to Col-0 in all SL biosynthesis mutants, but in the same

experiment LRD was not altered (S1 Fig). Conversely, Fig 1B shows increased LRD in SL bio-

synthesis mutants relative to Col-0, but PRL was not altered in the same experiment (S1 Fig).

Thus, consistent with previous reports [8], we found that SL signalling has subtle, and possibly

mutually exclusive, effects on PRL and LRD of Arabidopsis, which appear to be sensitive to

small differences in growth conditions.

We also examined root hair formation in the suite of SL biosynthesis mutants. Contrary to

previous assumptions [7] we found that neither root hair density (RHD) nor root hair length

(RHL) are altered in any of the SL biosynthesis mutants (Fig 2A, 2C and 2D). Thus, the previ-

ously observed root hair phenotypes of max2 mutants must be caused by defects other than SL

signalling, for example in KL signalling.

D14 and KAI2 co-regulate lateral root density

The phenotypes present in SL-specific biosynthesis mutants are insufficient to account for pre-

viously described effects of max2 on root development. We therefore hypothesized that KAI2

signalling may play an important role in the regulation of root and root hair development, and

we therefore compared and contrasted root development in d14 and kai2 mutants. In the case

of LRD, we observed that d14-1 causes increased LRD and/or reduced PRL, consistent with

the phenotypes of SL biosynthesis mutants (Fig 1A–1D). We also observed that two allelic kai2
mutants (kai2-1, kai2-2) in the Col-0 background, showed increased LRD of around the same

magnitude as d14-1 (Fig 1D, S2A Fig), with no clear effect on PRL (Fig 1C). This phenotype in

kai2 was particularly evident at 6dpg, and became less evident at later time points. For d14, the

opposite pattern was seen, and the LRD phenotype only became evident at later time points

(Fig 1D, S2B Fig). Thus, at least some of the confusion about the role of these pathways in reg-

ulation of lateral root development may result from the staging of experiments. Taken

together, our results suggest that both SL and KL signalling regulate LRD in Arabidopsis. We

further tested this idea by examining LRD in d14 kai2 double mutants. The d14-1 kai2-2
mutant showed a very strong and consistent increase in LRD in comparison to Col-0, d14-1
and kai2-2 (Fig 1D, S2B Fig). The increase in LRD was always greater in d14-1 kai2-2 than in

the single mutants (Fig 1D). Thus, both KL and SL signalling regulate LRD in an additive man-

ner, possibly by affecting lateral root development at different developmental stages and time

points.

KAI2 but not D14 regulates root hair development

Given the lack of root hair phenotype in SL biosynthesis mutants, we hypothesized that KAI2

and not D14 signalling would regulate root hair development. Consistent with this hypothesis,

we observed no RHD or RHL phenotype in d14-1 (Fig 2B–2F). Conversely, RHD and RHL

were strongly decreased in two allelic kai2 mutants in Col-0 as well as Ler, and they perfectly

SMXL1/SMXL2 regulate root development
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phenocopied the root hair phenotype of max2 mutants (Fig 2B, 2E–2H). Thus, the root hair

phenotypes previously observed in max2 mutants and attributed to the lack of SL signalling

are actually caused by a lack of KL signalling. To confirm this, we assessed whether root hair

development can be influenced by exogenous addition of karrikin. Treatment with 1 μM

KAR2 increased RHD and RHL relative to control treatments in a KAI2 and MAX2-dependent

manner (Fig 2G and 2H), corroborating the role of KL-signalling in promoting root hair

development.

KAI2 signalling regulates root skewing and waving

In addition to lateral root and root hair phenotypes, we observed that kai2 mutants display

increased skewing along the surface of vertically-oriented agar plates, in the Col-0 and in the

Ler ecotype (Fig 3A–3D, S3 Fig), consistent with a recent report that described this phenotype

in kai2 mutants in Ler [29]. This right-handed skewing is a well-established effect of growing

Arabidopsis roots on the surface of agar plates, and probably arises from a combination of

Fig 1. SL and KL signalling additively regulate lateral root density. (A) Primary root length (experiment 3 in S1 Fig) and (B) lateral root density

(experiment 1 in S1 Fig) of Col-0 wild type, the strigolactone perception mutant d14-1 and the strigolactone biosynthesis mutants max3-9, max4-5
and max1-1 (arranged in pathway order). (C) Primary root length and (D) lateral root density in the d14-1 kai2-2 double mutant and the respective

single mutants. Data in (C) form part of the same dataset in (A), and PRL for the Col-0 and d14-1 genotypes are also shown in (A). LRD was recorded

at 10 dpg. The outline of the violin plots represents the probability of the kernel density. Black boxes represent interquartile ranges (IQR), with the red

horizontal line representing the median; whiskers extend to the highest and lowest data point but no more than ±1.5 times the IQR from the box;

outliers are plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey, p� 0.001 (A) F4,111 = 11.81, n = 19–25

(B) F4,58 = 5.626, n = 8–18 (C) F3,88 = 17,83, n = 21–26 (D) F3,63 = 19.82, n = 11–18).

https://doi.org/10.1371/journal.pgen.1008327.g001
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circumnutation and thigmotropic responses [43, 44]. Increased skewing is also observed for

max2 mutants, but not for SL biosynthesis mutants, nor d14 (Fig 3B and 3C; S3A Fig). The

skewing phenotype of the d14-1 kai2-2 double mutant in the Col-0 background is equal to

kai2-2 (Col-0), confirming that SL perception is not involved in regulating root growth direc-

tion (Fig 3C).

The increased skewing in the kai2 and max2 mutants is accompanied by increased root

waving, which is displayed as a decrease in root ‘straightness’ (Fig 3A, 3E and 3F, S3B Fig).

Again, this waving phenotype is not observed in d14-1 or SL biosynthesis mutants (Fig 3E, S3B

Fig). The waving phenotype is separable from the skewing phenotype, and growth on plates

inclined at 45˚ generally increases waving relative to plates grown at 90˚, while altering skew-

ing only in the Ler but not in the Col-0 wild type (S3C–S3G Fig).

KAI2 regulates skewing independently of epidermal cell elongation and

root diameter

Skewing is often associated with epidermal cell file rotation [44]. To determine whether skew-

ing of kai2 and max2 mutants is associated with cell file rotation [45], we inspected epidermal

cells between 2 and 3mm above the root tip in kai2 mutants. Cell length was reduced in kai2
and max2 mutants relative to wild-type in both Col-0 and Ler backgrounds (with a concomi-

tant increase in cells/mm) (Fig 4A and 4C, S4A and S4C Fig). However, a careful microscopic

inspection of the root surface of kai2 and max2 mutants did not show any signs of epidermal

cell file rotation, instead they were clearly vertically orientated (Fig 4B, S4B Fig). This is in con-

trast to the results of [29], who observed increased cell file rotation in kai2 and max2 mutants

in Ler at a 45˚ growth angle. Since at a 90˚ growth angle we observed a skewing phenotype but

no cell file rotation, we conclude that there is likely no connection between any cell file rota-

tion phenotype in KL perception mutants and their skewing phenotype. Interestingly, also the

SL perception mutant d14 displayed the short epidermal cell phenotype but had no skewing

phenotype, clearly demonstrating that there is no connection between epidermal cell length

and skewing in these receptor mutants (Fig 4A and 4C; S4A and S4C Fig).

It has also been speculated that a smaller root cell diameter in kai2 mutants may cause tissue

tensions leading to skewing [29]. We also observed that kai2 mutants in both the Col-0 and

Ler background had thinner primary roots than wild-type. Quantification of root diameter at

2.5 mm above the root tip confirmed that the primary roots of kai2 and max2 mutants but not

of the d14 mutant are thinner than those of the wild type (Fig 4D, S4D Fig). This indicates that

the regulation of root thickness is specific to KL signalling. However, we could genetically sep-

arate the thin root diameter from the skewing and waving phenotypes because the root diame-

ter phenotype of max2 could be suppressed by smax1 without altering the waving phenotypes.

Conversely, the max2 root diameter phenotype could not be suppressed by smxl2 alone, but

Fig 2. KL perception mutants are impaired in root hair development. (A) Diagram showing the primary root zone used for root

hair phenotyping (curly bracket). Root hair density and length were quantified in 1 mm primary root length between 2 and 3 mm

from the root tip. (B) Representative images of root hair phenotypes of the indicated genotypes. Scale bar, 1 mm. (C,E,G) Root hair

density and (D,F,G) root hair length in (C,D) Col-0 wild type, the strigolactone perception mutant d14-1 and the strigolactone

biosynthesis mutants max3-9, max4-5 and max1-1 (arranged in pathway order), (E,F) the indicated karrikin perception mutants

and (G,H) Ler wild type and indicated karrikin perception mutants, treated with solvent (70% Methanol) or 1 μM KAR2.. The

outline of the violin plots represents the probability of the kernel density. Black boxes represent interquartile ranges (IQR), with the

red horizontal line representing the median; whiskers extend to the highest and lowest data point but no more than ±1.5 times the

IQR from the box; outliers are plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey,

(C) F4,65 = 0.242, n = 10–18; p�0.05, (D) F4,718 = 1.291, n = 10–13, p�0.05, (E) F4,88 = 28.9, n = 11–24, p�0.001), (F) F4,825 = 23.43,

n = 10–13, p� 0.001, (G) F7,96 = 60.79, n = 10–15, p� 0.001, (H) F7,975 = 45.39, n = 10–13, p� 0.001).

https://doi.org/10.1371/journal.pgen.1008327.g002
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Fig 3. KL perception mutants display exaggerated skewing and waving. (A) Diagram showing how skewing-angle and root straightness

were determined. Skewing was quantified by measuring the angle between the vertical axis (Ly) defined as 0˚, and the root tip. Right or

left skewing is indicated by positive or negative values, respectively. Straightness was calculated as the ratio of the straight line between the

hypocotyl-root junction and the root tip (green line, Lc) and the total root length (L). (B) Images of representative 5-days-old seedlings of

the indicated genotypes. Scale bars, 1 mm. (C, D) Root skewing and (E and F) root straightness of the indicated genotypes. The outline of

the violin plot represents the probability of the kernel density. Black boxes represent interquartile ranges (IQR), the red horizontal line

representing the median; whiskers extend to the highest and lowest data point but no more than ±1.5 times the IQR from the box; outliers

are plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey, p� 0.001, (C) F3,315 = 16.08,

n> 60 (D) F4,347 = 4.762, n> 50 (E) F3,315 = 13.62, n> 60 (F) F4,347 = 4.28, n> 50).

https://doi.org/10.1371/journal.pgen.1008327.g003
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smxl2 was sufficient to suppress the skewing phenotype (Fig 5A and 5C; S5A and S5C Fig).

Thus, decreased root diameter is unlikely to cause the skewing and waving phenotypes in kai2
and max2 as previously suggested [29].

KAI2 regulates skewing and waving through SMAX1/SMXL2

The mechanism by which KAI2 regulates root skewing has been proposed to include the non-

canonical degradation of SMXL678 [29]. We tested this important hypothesis in more detail,

by using different combinations of smxl alleles. We observed that, for skewing, smax1 or smxl2
were both independently sufficient to suppress the max2 phenotype (Fig 5A and 5B, S1 Table),

indicating that skewing may be very sensitive to the stoichiometry of SMXL proteins or that

SMAX1 and SMXL2 act in different cells. smax1 and smxl2 could not suppress the max2 wav-

ing phenotype individually, but in combination they were able to completely suppress this

Fig 4. KL perception mutants exhibit decreased epidermal cell lengths and root diameter. (A) Number of root epidermal cells per mm of the indicated

genotypes. (B) Images of representative roots between 2 and 3 mm from the root tip of 5-days-old seedlings of the indicated genotypes. Scale bars, 0.1 mm.

(C) Root cell length and (D) root diameter of the indicated genotypes. The outline of the violin plots represents the probability of the kernel density. Black

boxes represent interquartile ranges (IQR), the red horizontal line representing the median; whiskers extend to the highest and lowest data point but no

more than ±1.5 times the IQR from the box; outliers are plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey,

(A) F4,52 = 4.715, n = 9–13, p� 0.01, (C) F3,392 = 10.64, n = 10–11, p� 0.001, (D) F4,50 = 15.95, n = 10–12, p�0.001).

https://doi.org/10.1371/journal.pgen.1008327.g004
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phenotype (Fig 5C and 5D, S1 Table), indicating that SMAX1 and SMXL2 act redundantly to

promote waving. These results are thus consistent with SMAX1 and SMXL2 acting genetically

downstream of KAI2 and MAX2 to regulate root growth patterns. Notably, the effect of kai2,

Fig 5. SMAX1 and SMXL2 regulate skewing and root straightness. (A, B, E, F) Root skewing and (C, D, G) root straightness in Col-0 wild type and the indicated

genotypes (the mutant alleles are max2-1, smax1-2, smxl2-1, smxl6-4, smxl7-3 and smxl8-1). The outline of the violin plot represents the probability of the kernel density.

Black boxes represent interquartile ranges (IQR), with the red horizontal line representing the median; whiskers extend to the highest and lowest data point but no more

than ±1.5 times the IQR from the box; outliers are plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey, p�0.001 (A) F3,345

= 7.612, n> 60; (B) F5,259 = 5.051, n> 30; (C) F3,440 = 16.32, n> 60; (D) F5,261 = 6.57, n> 30 (E) F3,209 = 8.784, n> 45 (F) F3,209 = 10.22, n> 45; (G) F5,127 = 21.07,

n = 21). [M] = experiment performed in Munich, [L] = experiment performed in Leeds.

https://doi.org/10.1371/journal.pgen.1008327.g005
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smax1 and smxl2 on skewing was consistent between plants grown in Munich [M] and Leeds

[L].

Consistent with the results of [29], we observed a reduction in skewing in smxl678 max2-1
relative to max2-1 in plants grown in Munich [M] (Fig 5E). However, this was not the case in

Leeds [L], where root skewing was often increased in smxl678 relative to wild-type, and in

which there was an additive increase in skewing in smxl678 max2-1 (Fig 5G). We also did not

observe any suppression of the max2-1 waving phenotype in smxl678 (Fig 5F). Thus, our anal-

ysis of smxl678 mutants indicates that SMXL678 proteins likely do not act downstream of

KAI2/MAX2 in the regulation of root growth patterns, but rather, that SMXL678 regulates

skewing in parallel to the KAI2-SMAX1/SMXL2 pathway.

SMAX1, SMXL2 as well as SMXL678 regulate lateral root density

Previous results showed that the max2 LRD phenotype was suppressed in a smxl678 back-

ground but not in a smax1 background [27], suggesting that the max2 LRD phenotype arises

solely from excess SMXL678 protein accumulation. Since our results show that both D14 and

KAI2 regulate LRD, this would again imply non-canonical regulation of SMXL678 by KAI2.

To again test this hypothesis, we re-examined the regulation of LRD using more recently-avail-

able smax1 smxl2 double mutants [35]. We found that smax1 smxl2 was as efficient in reducing

LRD of max2 as smxl678 (Fig 6). However, consistent with a role of both SL and KL signalling

in regulating LRD neither smax1 smxl2 nor smxl678 appeared to be completely epistatic to

max2 (Fig 6). The most parsimonious explanation for these results is that the max2 LRD phe-

notype arises from the accumulation of both SMAX1/SMXL2 and SMXL678, and that SL and

KL signalling act together in the regulation of LR development by their canonical pathways: SL

signalling by promoting SMXL678 turnover, and KL signalling by promoting SMAX1 SMXL2

turnover.

SMAX1 and SMXL2 but not SMXL678 regulate root hair development

We also assessed, whether regulation of RHD and RHL by KAI2 occurs through canonical or

non-canonical signalling. For both RHD and RHL, we found that smax1 smxl2 have increased

RHD and RHL, and are epistatic to max2-1 in both of these phenotypes. smxl2 but not smax1
single mutants display an increased RHL with respect to the wild type, suggesting that SMXL2

may be more important in regulating RHL than SMAX1. Conversely, smxl678 mutants have

no RHD or RHL phenotype, and no effect on the max2 phenotype (Fig 7A–7F). This is consis-

tent with our observation that kai2 and not d14 phenocopies the root hair phenotype of max2
and that root hair development is regulated by KL signalling under standard conditions.

The stereoisomers GR245DS and GR24ent-5DS non-specifically enhance root

hair development through both D14 and KAI2

As a final test for non-canonical signalling in root development, we examined ligand-receptor

interactions, using the easily scorable, karrikin-responsive root hair phenotypes as a system.

Exogenous application of rac-GR24 was previously shown to promote root hair elongation [7,

42]. In light of the effects of KAI2 mutations on root hair development, we hypothesized that

rac-GR24, and in particular the GR24ent-5DS stereoisomer, would modulate RHD and RHL, in

a manner dependent on KAI2 [34]. Similar to KAR2, rac-GR24 treatment increased both RHD

and RHL in Col-0 (Fig 8A and 8B), and this effect was dependent on MAX2 as previously

reported [7, 42]. However, unexpectedly, it was independent of KAI2, suggesting that rac-
GR24 might promote RHD and RHL via D14 (Fig 8A and 8B). We assessed this in detail

and quantified RHD and RHL after treatment with the pure stereoisomers GR245DS and
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GR24ent-5DS, which are thought to specifically activate D14 and KAI2, respectively [34]. We

observed that both GR245DS and GR24ent-5DS promote RHD and RHL in the wild-type, but

their effects in d14 and kai2 mutants were intriguingly divergent from expectations. In d14-1,

only GR24ent-5DS promotes RHD (as expected), but both GR245DS and GR24ent-5DS promote

RHL to a similar degree in kai2, suggesting that both can be perceived by KAI2 to promote

RHL (Fig 3A and 3B). Furthermore, both stereoisomers cause increased RHD and RHL in

kai2-2, although the ‘canonical’ D14 ligand GR245DS has a significantly stronger effect than

GR24ent-5DS (Fig 8A and 8B). Neither stereoisomer promoted RHD and RHL in the d14-1 kai2-2
double and max2-1 mutants (Fig 8), confirming that no additional unknown receptor is involved

in the response to rac-GR24. The first major implication of these results is that D14 can act to pro-

mote root hair development, when stimulated with ligand, even if that is not the standard function

of D14 (Fig 2). The second major implication is that in roots, contrary to previous suggestions for

the regulation of Arabidopsis hypocotyl elongation [34], D14 can perceive GR24ent-5DS ligands

when KAI2 is absent, and KAI2 can perceive GR245DS ligands when D14 is absent.

Since these results are unexpected we wondered whether the GR24 stereoisomers we used

are really pure and determined their purity by nuclear magnetic resonance (NMR), circular

dichroism (CD) spectroscopy and polarimetry (S6 Fig). Both 1H-NMR, 13C-NMR and CD as

well as rotation values determined by means of polarimetric measurements confirmed the

purity of the compounds and recapitulated previously published NMR- and CD-spectra for

(+)-5-Desoxystrigol and (–)-ent-5-Desoxystrigol [46, 47]. Since the stereoisomers are pure, we

conclude that they do not specifically act through KAI2 or D14 but that both molecules can

bind to and trigger both receptors in the context of root hair development.

Fig 6. Lateral root density is regulated by both SMAX1/SMXL2 and SMXL678. Lateral root density in Col-0 wild

type and the indicated genotypes (the mutant alleles are max2-1, smax1-2, smxl2-1, smxl6-4, smxl7-3 and smxl8-1). The

outline of the violin plots represents the probability of the kernel density. Black boxes represent interquartile ranges

(IQR), with the red horizontal line representing the median; whiskers extend to the highest and lowest data point but

no more than ±1.5 times the IQR from the box; outliers are plotted individually. Asterisks indicate a significant

difference with wild type (ANOVA, posthoc Dunnett´s test comparing to wild-type, F5,90 = 10.62, n = 10–17; �p� 0

.05, ��p� 0.01, ���p� 0.001).

https://doi.org/10.1371/journal.pgen.1008327.g006
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Previous Arabidopsis hypocotyl elongation assays suggested specific roles of GR245DS and

GR24ent-5DS in triggering D14- vs KAI2-mediated signalling respectively because GR245DS

suppressed hypocotyl elongation specifically in kai2 mutants and GR24ent-5DS in d14 mutants

[34]. We re-examined the effects of the GR24 stereoisomers on hypocotyl elongation (S7 Fig).

Similar to root hair elongation and contrary to a previous report [34] the d14-1 mutant

responds equally to GR245DS and GR24ent-5DS with a decrease in hypocotyl growth, showing

that in the hypocotyl KAI2 can mediate responses to both molecules. The kai2-1 mutant also

responds to both molecules but to a lesser extent to GR24ent-5DS, suggesting together with the

above results that D14 is more effective in mediating responses to its previously suggested

ligand GR245DS than to GR24ent-5DS [34]. Similar to root hair development, the d14-1 kai2-2
double mutant and the max2-1 mutant do not respond to any molecule in this assay, confirm-

ing that in the hypocotyl response to the GR24 stereoisomers no additional receptor is

involved. In summary, we show that GR245DS and GR24ent-5DS can activate both signalling

through KAI2 and through D14 in the regulation of RHL as well as hypocotyl elongation.

Fig 7. SMAX1 and SMXL2 regulate root hair development. (A, C, E) Root hair density and (B, D, F) root hair length in Col-0 wild type and the indicated genotypes

(the mutant alleles are max2-1, smax1-2, smxl2-1, smxl6-4, smxl7-3 and smxl8-1). The outline of the violin plot represents the probability of the kernel density. Black

boxes represent interquartile ranges (IQR), with the red horizontal line representing the median; whiskers extend to the highest and lowest data point but no more than

±1.5 times the IQR from the box; outliers are plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey, p� 0.001 (A) F17,385 =

79.17, n = 9–13 (B) F3,44 = 67.45, n = 9–11 (C) F3,39 = 20.33, n = 9–11 (D) F3,615 = 30.02, n = 9–11 (E) F3,44 = 67.45, n = 9–15 (F) F3,410 = 38.66, n = 8–11).

https://doi.org/10.1371/journal.pgen.1008327.g007
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Discussion

Root systems flexibly adapt their architecture and morphology to heterogeneous soil environ-

ments and to the physiological needs of the plant. A network of plant hormone signalling

pathways is essential for translating environmental signals and physiological states into devel-

opmental outputs [48]. Strigolactones (SLs) have been assumed to play an important role in

modulating root development [7–9]. Here we demonstrate that under standard growth condi-

tions KL signalling plays a much larger role than SL signaling in shaping root and root hair

development (Fig 9).

KL signalling regulates lateral root density together with SL signalling

Previous reports showed increased LRD in max2 and suppression of lateral root emergence by

rac-GR24 [8, 9]. Our study indicates that these effects are mediated through both the KAI2

and D14 signalling pathways, in an additive manner. We observed that lateral root density

(LRD) is consistently higher in kai2 mutants than wild type (particularly at earlier time points).

We found SL biosynthesis and perception mutants also displayed subtle changes in root archi-

tectural parameters, such as primary root length (PRL) and LRD. In a range of experiments

with SL mutants, we either observed strongly decreased PRL or strongly increased LRD, but

not both phenotypes together. This suggests that the effects of SL signalling on PRL or LRD

are to some extent mutually exclusive, and that expression of one phenotype reduces expres-

sion of the other, which may explain some of the previous contradictory reports regarding

effects of SLs on root development [8, 9]. We also found that the time after germination mat-

ters for the LRD phenotypes. Thus, confusion about the role of SLs in LR development may

also reflect differences in the physiological timing of observations within experiments. The d14
kai2 double mutant showed a much larger increase in LRD compared to the single mutants,

indicating that both signalling pathways contribute additively to modulating LRD, and that

previously reported max2 phenotypes reflect a lack of both signalling pathways. This is further

supported by suppression of the max2 LRD phenotype by mutants in both the targets of KL

signalling (SMAX1/SMXL2) and SL signalling (SMXL678).

KL signalling is a key regulator of root hair development

A major finding of our work is the important role of KL signalling in root hair development.

Root hair density (RHD) and root hair length (RHL) are strongly reduced in kai2 and max2
mutants and increased in smax1 smxl2 mutants, as well as by karrikin treatment of wild type

roots. Our results thus present compelling evidence that KL signalling is a key regulator of

root hair development. KAI2 being a major regulator of root hair development rather than

D14 seems to make sense from an evolutionary point of view. Root hair development and tip

growth in Arabidopsis rely on conserved functions and genes that also operate in the develop-

ment of rhizoids of Marchantia polymorpha gametophytes, which appear to be homologous to

root hairs [49–51]. D14 occurs only in genomes of seed plants while KAI2 is already present in

algae [19, 20, 22]. Thus, it is possible that KAI2-SMAX1 module is part of an ancient and con-

served pathway regulating tip growth of epidermal cells.

Fig 8. The two GR24 stereoisomers regulate root hair development through both D14 and KAI2. (A) Root hair density and (B) root hair

length of the indicated genotypes treated with solvent (acetone), 1 μM μM GR24ent-5DS, 1 μM GR245DS or 1 μM rac-GR24. The outline of the

violin plot represents the probability of the kernel density. Black boxes represent interquartile ranges (IQR), with the red horizontal line

representing the median; whiskers extend to the highest and lowest data point but no more than ±1.5 times the IQR from the box; outliers are

plotted individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey, n = 8–11 (A) F19,3740 = 1.983; p� 0.01 (B)

F19,3740 = 57.83, p� 0.001).

https://doi.org/10.1371/journal.pgen.1008327.g008
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We did not find any impact of d14 and SL biosynthesis mutants on root hair development in

our study. However, we found that D14 signalling can be triggered to promote root hair devel-

opment, if the correct ligand is present and KAI2 is absent. This is very similar to the hypocotyl,

in which D14-mediated SL perception can regulate hypocotyl elongation, but is not actually

required to do so [19, 34]. This suggests that there may be a role for D14 signalling in root hair

development under certain environmental conditions, when SL levels are very high, for example

under phosphate starvation [52]. Previous studies, [53, 54] found a small decrease in RHD of

the SL biosynthesis mutant max4-1, which could be rescued by adding GR245DS [54]. This is

inconsistent with our observations here, but might reflect differences in the growth conditions

used, and indeed these studies used low phosphate media. Thus, further investigation of the role

of D14 signalling in environment-dependent root hair development is warranted.

KL signalling suppresses skewing and waving independently of root cellular

parameters

No single signalling pathway for control of root skewing and straightness has been identified,

but several studies have exposed different pathways impinging on these root behaviors

(reviewed in Roy and Bassham. 2014). The activities of multiple hormones, such as auxin and

Fig 9. Model for KL and SL signalling regulating Arabidopsis root development. SL and KL signalling act through the

proteasomal degradation of SMXLs in Arabidopsis roots. As in the shoot [30] SMAX1 and SMXL2 are targets of KL perception,

while SMXL6,7,8 are targets of SL perception. SMAX1 represses root diameter. SMAX1 and SMXL2 repress root hair development

and promote root skewing and root straightness. SMAX1, SMXL2, and SMXL6,7,8 promote lateral root development and probably

repress cell elongation. Relationships, which are inferred from circumstantial evidence (or for KL signalling from SL signalling) are

shown by a dashed arrow or frame.

https://doi.org/10.1371/journal.pgen.1008327.g009
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ethylene, are among the candidates [55, 56]. Here we demonstrate that KL signalling is a novel

regulator of root skewing and root straightness. The increased skewing and waving phenotypes

of KL perception mutants were found in both the Col-0 and Ler background although Ler

shows an intrinsically higher tendency to skew than Col-0. Our results are broadly consistent

with the recent report of [29], but our interpretation of the cause of the phenotype differs.

Swarbreck et al. [29], speculated that skewing may be caused by increased epidermal cell file

rotation and/or smaller root diameter of kai2 mutants. Under our conditions, we did not

observe epidermal cell file rotation in kai2 and max2, but rather shorter epidermal cells. Since

both kai2 and d14 have a reduced epidermal cell length, but skewing only occurs in kai2, we

conclude that epidermal cell length is not related to skewing. Interestingly, in the experiments

in which epidermal cell length was inspected, PRL was not significantly altered. This implies

that a compensatory increase in epidermal cell division must occur in both the KL and SL per-

ception mutants, which would be consistent with increased cell division in the primary root

meristem. Alternatively, the epidermal cell length may differ among different root zones thus

compensating for the shorter epidermal cell length in the zone 2–3 mm above the root tip. We

also show that the reduced root diameter of KL perception mutants does not cause either

skewing or waving since smax1 alone suppresses the root diameter but not the waving pheno-

type of max2, and smxl2 suppresses the max2 skewing but not the root diameter phenotype.

KL and SL signalling in the root employ the canonical receptor-target pairs

We have previously highlighted some phenotypic characteristics suggesting that KL and SL signal-

ling in the root might not act through the canonical KAI2-SMAX1 and D14-SMXL678 receptor-

target pairs [10]. The main reason for this suggestion was that max2 mutants had stronger LRD

phenotypes than SL biosynthesis mutants [7–9], which suggested that KAI2 regulates lateral root

emergence rather than or in addition to D14, while mutations of the genes encoding the canonical

SL signalling targets SMXL678 were able to completely suppress the max2 LRD phenotype with

smax1 being unable to do so [10, 27]. Similarly, Swarbreck et al. [29] suggested that non-canonical

signalling may occur in skewing responses, since smxl678 mutants can completely suppress the

max2 skewing phenotype, which arises solely through lack of KAI2 signalling.

We have now robustly tested this hypothesis, and find no evidence for non-canonical KL

and SL signalling in roots under our growth conditions. Using smax1 smxl2 double mutants,

we show that every effect of loss of KAI2 activity can be suppressed by loss of SMAX1 and

SMXL2 (or only one of the two), and that similarly, all effects of loss of D14 activity can be sup-

pressed by loss of SMXL678. In the case of LRD, we show that smax1 smxl2 mutants can sup-

press the phenotype of max2, demonstrating that the canonical KL signalling targets are

involved in regulating lateral root emergence and that SMXL2 compensates for the absence of

functional SMAX1 in lateral root development [27]. The suppression of the max2 LRD pheno-

type by smxl678 as well as smax1 smlx2 is consistent with our observation that both D14 and

KAI2 regulate LRD. Thus, the accumulation of both SMAX1/SMXL2 and SMXL678 contrib-

utes to max2 LRD phenotypes and there is no need to invoke non-canonical receptor-target

pairs to explain the effects of KAI2 and D14 on LRD.

We also reject the idea that KL signalling regulates skewing through SMXL678 [29]. We

find that smxl2 mutations are sufficient to suppress skewing in max2, consistent with canonical

KAI2-SMAX1/SMXL2 signalling acting in this response. It is certainly interesting that

smxl678 mutants suppress skewing of max2 under some conditions, which does not reflect any

known effect of D14 signalling. However, we show that this phenotype is highly variable, and

under our growth conditions in Leeds, smxl678 mutants actually increased root skewing addi-

tively with max2. Thus, although SMXL678 can certainly regulate skewing, this appears to be

SMXL1/SMXL2 regulate root development

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008327 August 29, 2019 17 / 27

https://doi.org/10.1371/journal.pgen.1008327


unrelated to the clearly defined and consistent effect of KL signalling on skewing. In fact, it

appears consistent with the observation that rac-GR24 treatment–which stimulates SMXL678

degradation–causes an increase in root skewing in the wild type [29]. The location-dependent

skewing behaviour of smxl678 mutants suggests that the role of SMXL678 in skewing may

strongly depend on environmental conditions, and it will be interesting to identify the mecha-

nisms underlying this phenomenon in the future.

The case is even more clear-cut for RHL, RHD, root straightness and root diameter, for

which only kai2 and max2 mutants show a phenotypic difference to wild type, and which can

only be suppressed by mutating SMAX1 and SMXL2. Interestingly, the smxl2 mutant alone

has longer root hairs than wild-type showing for the first time a phenotype in which SMXL2

plays a more important role than SMAX1, although it is alone not sufficient to suppress the

max2 phenotype. In the case of root diameter, mutation of SMAX1 is sufficient to suppress the

max2 phenotypes (S2 Table). This partial redundancy of SMAX1 and SMXL2 is also seen in

seed germination, hypocotyl growth and leaf shape [27, 35]. This likely arises from different

expression patterns of the two genes: in tissues where only one of the two proteins is expressed,

removing this one is sufficient to suppress the phenotype. Conversely, in the case of skewing,

removing either SMAX1 or SMXL2 alone suffices to suppress the max2 phenotype (S1 Table),

suggesting that skewing is particularly sensitive to SMAX1/SMXL2 levels or stoichiometry or

that SMAX1 or SMXL2 regulate skewing in different tissues.

D14 and KAI2 are not completely ligand stereo-specific

In contrast to the lack of evidence for non-canonical receptor-target interactions, we uncovered

unexpected evidence for non-canonical receptor ligand interactions in the context of root develop-

ment. The two stereoisomers of rac-GR24, GR245DS and GR24ent5DS have been suggested to

specifically activate D14 and KAI2 respectively in the regulation of hypocotyl growth [34]; and

GR24ent5DS showed only a very low efficiency in inhibiting shoot branching in Arabidopsis and

rice [34, 57]. However, our study shows that there is very little specificity of the two receptors for

the two stereoisomers, as both d14 and kai2 mutants respond to both with increased RHL and

even with decreased hypocotyl elongation. This result is strengthened by confirming the purity

of the employed compounds via NMR and CD. It has been shown by differential scanning

fluorimetry (DSF) in vitro that D14 can bind both GR245DS and GR24ent-5DS but KAI2 only bound

GR24ent-5DS [31]. However, the situation in vivo may be different and binding of both ligands to

both α/β hydrolase receptors D14 and KAI2 may be stabilized through receptor protein complexes.

Although binding of the ‘wrong’ stereoisomer to the α/β hydrolase receptor may be less efficient

than binding of the ‘correct’ one, it may suffice to trigger developmental responses, which are very

sensitive to removal of SMXL proteins, or which may require additional interaction partners in the

receptor complex that stabilize the complex in presence of the hypo-specific ligand. Independent

of the mechanism, our results show that GR245DS and GR24ent-5DS cannot safely be used to specifi-

cally trigger D14 and KAI2-mediated signalling, respectively. This also implies that the community

urgently needs an affordable synthetic SL that triggers D14 in a highly specific manner.

Regulation of root development by KAI2 and D14 signalling

Overall our results show that KL signaling and therefore SMAX1 and SMXL2 play an impor-

tant role in controlling root architecture and root hair development (Fig 9). However, some

traits such as LRD and epidermal cell length are regulated by both SMAX1/SMXL2 and

SMXL678. Key challenges for future studies will be to understand how exactly SMXL proteins

regulate root architecture. Ruyter-Spira et al. [8] previously suggested that the impact of SLs

on root development might be best understood as a reflection of their effect on the auxin
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landscape, and we hypothesize that this may also be the case for KAI2 signalling. Most of the

traits we have examined are known to be regulated by auxin, and SL signalling in the shoot is

known to modulate auxin transport by regulating PIN protein abundance [27, 58]. Thus, it is

very possible that the KAI2-SMAX1/SMXL2 and D14-SMXL678 pairs regulate the auxin land-

scape of the root, for example by controlling the abundance of auxin transport proteins. Such a

scenario might underlie the variability in phenotypes observed in the mutants in our study

(for instance, the strong variation in smxl678 skewing phenotype), since environmental

parameters such as light or temperature are known to affect endogenous auxin levels [59, 60].

We do not currently know enough about the upstream inputs into the KL signalling path-

way to understand the aetiology of KAI2-induced root development, but undoubtedly the phe-

notypes described here will provide important clues and tools in this regard. SL production

increases in several plant species upon phosphate starvation [12, 61–63] and the effect of SL

biosynthesis on root architecture was suggested to depend on the sucrose level in the medium

and thus on the carbon-status of the plants [8], but it is yet unknown whether KL signalling is

also influenced by mineral nutrient levels. However, expression of KAI2 does respond to light

conditions, and thus KL signalling could potentially integrate light cues into root development

[64]. Indeed, it is likely that both signalling pathways are influenced by multiple abiotic and

perhaps biotic stimuli, and it will be exciting to learn how SL and KL signalling tune root

development to environmental conditions.

Materials and methods

Plant material

Arabidopsis thaliana genotypes were in Columbia-0 (Col-0) or Landsberg erecta (Ler) parental

backgrounds. The following mutants were used: Ler: max2-8 [18], kai2-1, kai2-2 [18], Col-0:

kai2-2 [28], max3-9 [65], max4-5, d14-1 kai2-2 [66], d14-1 [19], max1-1, max2-1, max2-2 [67],

smax1-2, max2-1 smax1-2 [37], smax1-2 smxl2-1, max2-1 smax1-2 smxl2-1 [35], smxl6-4
smxl7-3 smxl8-1, max2-1 smxl6-4 smxl7-3 smxl8-1 [27].

Plant growth conditions

For analysis of root growth, Arabidopsis thaliana seeds were grown in axenic conditions on

12x12cm square plates containing 60 ml agar-solidified medium. Seed were surface sterilized

either by vapour sterilization, or by washing with 1 ml of 70% (v/v) ethanol and 0.05% (v/v)

Triton X-100 with gentle mixing by inversion for 6 minutes at room temperature, followed by

1 wash with 96% ethanol and 5 washes with sterile distilled water. For primary root length and

lateral root density plants were grown in Cambridge and Leeds on plates containing ATS

medium [68] supplemented with 1% sucrose (w/v) and solidified with 0.8% ATS. For measure-

ments of skewing, waving, cell length, root diameter, root hair density and root hair length,

seedlings were grown in Munich on plates containing 0.5X Murashige & Skoog medium,

pH5.8 (½ MS) (Duchefa, Netherlands), supplemented with 1% sucrose and solidified with

1.5% agar. Plates were stratified at 4˚C for 2–3 days in the dark, and then transferred to a

growth cabinet under controlled conditions at 22˚C, 16-h/8-h light/dark cycle (intensity

~120 μmol m-2 s-1). Unless otherwise indicated, the plates were placed vertically.

Phytohormone treatments

rac-GR24 was purchased from Chiralix (Nijmegen, The Netherlands), GR24ent5DS and

GR245DS from Strigolab (Turin, Italy), and KAR2 from Olchemim (Olomouc, Czech Repub-

lic). For treatment with rac-GR24, GR24ent5DS or GR245DS, 1 mM stock solutions were
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prepared in 100% acetone. KAR2 was dissolved in 70% methanol for the preparation of 1 mM

stock. The volume required to reach the final concentration of these different stock solutions

was added to molten media prior to pouring Petri dishes. In each experiment, an equivalent

volume of solvent was added to Petri dishes for untreated controls.

Primary and lateral root quantification

For quantification of primary root length and lateral root number, seedlings were grown as

described above in Cambridge and Leeds for 10 days post germination (dpg). This allowed for

the emergence of lateral roots sufficient for quantification in wild-type seedlings. A dissecting

microscope was used to count emerged lateral roots in each root system, and images of the

plates were then taken using a flatbed scanner. Primary root length was quantified using

Image J. Separate experiments were primarily used to assess root skewing (see below), but root

skewing angles were also measured from these images generated in these experiments.

Root skewing and straightness assay

The root slanting assay was modified from the method described by [69]. Arabidopsis seed-

lings were grown in Munich under the conditions described above (except for Fig 8G for

which plants were grown in Leeds). Images were taken 5 days post germination (dpg) using an

Epson Perfection V800 Pro Scanner. Images were analysed using the Simple Neurite Tracer

plug-in of Fiji (https://imagej.net/Fiji/Downloads) to determine the following parameters as

illustrated in Fig 4; root length (L), ratio of the straight line between the hypocotyl-root junc-

tion and the root tip (Lc), and vertical axis (Ly). These measurements were taken from at least

60 individual roots per genotype and used to calculate the root skewing angle (α) and root

straightness (Lc/L) as previously described [70, 71].

Determination of root hair density, length and position

Root hair growth was examined in Munich on the same Arabidopsis roots, which were used

for determining root skewing and straightness. Images were taken at 2 mm from the root tip

of a minimum of 8 roots per genotype and treatment with a Leica DM6 B microscope

equipped with a Leica DFC9000 GT camera. The number of root hairs was determined by

counting the root hairs between 2 and 3 mm from the root tip on each root, and root hair

length was measured for 10–18 different root hairs per root using Fiji. The root hair position

was determined following the method described by [72] for 5–15 root hairs per root and a

minimum of 8 roots per genotype.

Root diameter and cell length analysis

Using the same images as for root hair quantification, root diameter, root cell length and num-

ber of cells were analysed in Munich using Fiji. Root diameter was measured at 2.5 mm from

the root tip. The number of cells was defined as the number of epidermal cells that crossed a

1-mm-long straight line drawn between 2 to 3 mm from the root tip. Root cell length was mea-

sured for at least 10 different epidermal cells per individual root in a minimum of 10 roots per

genotype, between 2 to 3 mm from the root tip.

Determination of purity of GR24 stereoisomers

Chemicals. The following compounds were obtained commercially from the sources

given in parentheses: formic acid, chloroform (HPLC grade) (Merck, Darmstadt, Germany);

acetonitrile (MS grade, J. T. Baker, Deventer, Netherlands); (CD3)2CO was obtained from
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Euriso-Top (Gif-Sur-Yvette, France). Water for UHPLC separation was purified by means of a

Milli-Q water advantage A 10 water system (Millipore, Molsheim, France).

General experimental procedures. 1H NMR experiments were performed on an Avance

III 400 MHz spectrometer with a BBI probe (Bruker, Rheinstetten, Germany) at 298 K.

(CD3)2CO was used as solvent and chemical shifts are reported in parts per million, relative to

solvent signal: 1H NMR: 2.05 ppm and 13C NMR: 29.84 ppm. Data processing was performed

by using Topspin software (version 2.1; Bruker) as well as MestReNova software (version 5.2.3;

Mestrelab Research, Santiago de Compostella, Spain). For circular dichroism (CD) spectros-

copy, sample solutions of compounds were analysed by means of a Jasco J-810 spectropolari-

meter (Hachioji, Japan). High-resolution mass spectra were measured on a TripleTOF 6600

mass spectrometer (Sciex, Darmstadt, Germany) equipped with a DuoSpray source (Sciex),

running in ESI positive mode, connected to a Nexera X2 UHPLC (Shimadzu, Duisburg, Ger-

many), consisting of two LC pump systems 30AD, a DGU-20A5 degasser, a SIL-30AC auto-

sampler, a CTO-30A column oven and a CBM-20A controller. Calibration of the mass

spectrometer was performed after every 5 samples using a Calibrant Delivery System (Sciex)

linked to the APCI probe of the DuoSpray source and either positive or negative APCI Cali-

bration solution (Sciex). Rotation values were determined by means of a P3000 polarimeter

(Krüss, Hamburg, Germany). The structures of compound of GR245DS and GR24ent-5DS were

characterized, by means of UHPLC-TOF-MS, 1H NMR, CD spectroscopy and polarimetric

experiments.

GR245DS: LC-TOF-MS: m/z 299.0915 (measured), m/z 299.0919 (calcd. for [C17H14O5+

H+]+); 1H NMR (400 MHz, (CD3)2CO): δ/ppm: 7.56 (d, J = 2.6 Hz, 1H, H-C(6´)), 7.44 (d,

J = 7.4 Hz, 1H, H-C(8)), 7.36–7.21 (m, 3H, H-C(5–7)), 6.55 (t, J = 1.4 Hz, 1H, H-C(2´)), 5.94

(d, J = 7.9 Hz, 1H, H-C(3´)), 4.02–3.93 (m, 1H, H-(3a)), 3.40 (dd, J = 16.9, 9.3 Hz, 1H, H-C

(4α)), 3.08 (dd, J = 16.9, 3.3 Hz, 1H, H-C(4β)), 1.95 (t, J = 1.5 Hz, 3H, H-C(7´)). 13C NMR (100

MHz, (CD3)2CO): δ/ppm: 171.29 (C = O), 171.28 (C = O), 152.73 C(6´), 143.85 C(8a), 143.24

C(3´), 140.55 C(4a), 135.56 C(4´), 130.59 C(5), 128.09 C(7), 127.04 C(8), 126.09 C(6), 113.45 C

(3), 102.24 C(2´), 86.25 C(8b), 39.60 C(3a), 37.85 C(4), 10.60 C(7´). CD(20˚C; ACN; c = 0.01

mM) λmax (Δε) 262 (–1.7), 230 (25.5) nm. [α]D
15 +420˚ (CDCl3, c 0.25 mM) [+436˚, [46]].

GR24ent-5DS: LC-TOF-MS: m/z 299.0920 (measured), m/z 299.0919 (calcd. for [C17H14O5+

H+]+); 1H NMR (400 MHz, (CD3)2CO): δ/ppm: 7.56 (d, J = 2.6 Hz, 1H, H-C(6´)), 7.44 (d,

J = 7.4 Hz, 1H, H-C(8)), 7.36–7.19 (m, 3H, H-C(5–7)), 6.55 (t, J = 1.4 Hz, 1H, H-C(2´)), 5.94

(d, J = 7.9 Hz, 1H, H-C(3´)), 4.07–3.92 (m, 1H, H-(3a)), 3.40 (dd, J = 16.9, 9.3 Hz, 1H, H-C

(4α)), 3.08 (dd, J = 16.9, 3.3 Hz, 1H, H-C(4β)), 1.95 (t, J = 1.5 Hz, 3H, H-C(7´)). 13C NMR (100

MHz, (CD3)2CO): δ/ppm: 171.29 (C = O), 171.28 (C = O), 152.73 C(6´), 143.85 C(8a), 143.24

C(3´), 140.55 C(4a), 135.56 C(4´), 130.59 C(5), 128.09 C(7), 127.04 C(8), 126.09 C(6), 113.45 C

(3), 102.24 C(2´), 86.25 C(8b), 39.60 C(3a), 37.85 C(4), 10.60 C(7´). CD (20˚C; ACN; c = 0.01

mM) λmax (Δε) 262 (1.7), 230 (–26.9) nm. [α]D
15–427˚ (CDCl3, c 0.25 mM) [–446˚, [46]].

Purity of both isomers. 93–95% (1H NMR).

Statistical analysis

Statistical analyses were performed in R-studio, using one-way Analysis of Variance

(ANOVA), followed by Tukey HSD or Dunnett´s post hoc test.

Accession numbers

Sequence data for the genes mentioned in this article can be found in The Arabidopsis Infor-

mation Resource (TAIR; https://www.arabidopsis.org) under the following accession num-

bers: MAX3, AT2G44990; MAX4, AT4G32810; MAX1, AT2G26170; D14, AT3G03990; KAI2,
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AT4G37470; MAX2, AT2G42620; SMAX1, AT5G57710; SMXL2 AT4G30350; SMXL6,

AT1G07200; SMXL7, AT2G29970; SMXL8, AT2G40130.
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S1 Fig. Variation in root growth parameters in strigolactone synthesis and perception

mutants. Mean primary root lengths (PRL) and mean lateral root densities (LRD) for strigo-

lactone synthesis mutants (max1-1, max3-9, max4-5) and perception mutants (d14-1) across 5

different experiments. Values shown are quoted as a percentage, relative to the mean value for

the Col-0 wild-type control in the same experiment (set to 100). Shading of cells represents

percent below or above the mean of the wild type. Strong reductions in PRL are never accom-

panied by strong increase in LRD, and strong increases in LRD are never accompanied by

strong reductions in PRL.

(TIFF)

S2 Fig. KL signaling regulates lateral root density. (A) Lateral root density of the indicated

genotypes. (B) Lateral root density at 6, 8 or 10 days post germination (dpg). The outline of

the violin plot represents the probability of the kernel density. Black boxes represent interquar-

tile ranges (IQR), with the red horizontal line representing the median; whiskers extend to the

highest and lowest data point but no more than ±1.5 times the IQR from the box; outliers are

plotted individually. Percentage numbers indicate the percent significant difference between

the median of each indicated genotype and the median of the wild type at the same time point.

Different letters indicate different statistical groups (A) ANOVA, posthoc Tukey, F2,79 = 5.29,

n = 24–30, p<0.01. Asterisks indicate a significant difference compared to wild type for each

time point. (B) ANOVA, post-hoc Dunnett’s tests comparing to wild-type, at each time-point,

F11,239 = 47.87, n = 14–24; �p� 0.05, ��p� 0.01, ���p� 0.001).

(TIFF)

S3 Fig. KAR perception mutants respond to tilted agar surface. (A, D, E) Root skewing and

(B, F, G) root straightness of the indicated genotypes. In (A, B) plants were grown at a 90˚

angle. (D-E) Plants were grown either at a 90˚ angle (white violins) or a 45˚ angle (grey violins)

as shown in the diagram in (C). The outline of the violin plots represents the probability of the

kernel density. Black boxes represent interquartile ranges (IQR), with the red horizontal line

representing the median; whiskers extend to the highest and lowest data point but no more

than ±1.5 times the IQR from the box; outliers are plotted individually. Different letters indi-

cate different statistical groups (ANOVA, posthoc Tukey, p�0.001, n > 40 (A) F5,333 = 5.057

(B) F4,290 = 7.168 (D) F7,383 = 5.788 (E) F7,472 = 12.54 (F) F7,430 = 25.89 (G) F7,497 = 18.36).

(TIFF)

S4 Fig. KL perception mutants in the Ler background exhibit decreased epidermal cell

lengths and root diameter. (A) Number of root epidermal cells per mm of the indicated geno-

types. (B) Images of representative roots between 2 and 3 mm from the root tip from 5-days-

old seedlings of the indicated genotypes. Scale bars, 0.1 mm. (C) Root cell length and (D) and

root diameter of the indicated genotypes. The outline of the violin plots represent the probabil-

ity of the kernel density. Black boxes represent interquartile ranges (IQR), with the red hori-

zontal line representing the median; whiskers extend to the highest and lowest data point but

no more than ±1.5 times the IQR from the box; outliers are plotted individually. Different let-

ters indicate different statistical groups (ANOVA, posthoc Tukey, p�0.001 (A) F2,43 = 9.58,

n = 13–18 (C) F2,191 = 43.1, n = 10–11 (D) F2,64 = 77.45, n = 21).

(TIFF)
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S5 Fig. Regulation of root skewing by KAI2 can be genetically separated from root diame-

ter. (A, B, C) Root diameter of Col-0 wild type and the indicated genotypes (the mutant alleles

are max2-1, smax1-2, smxl2-1, smxl6-4, smxl7-3 and smxl8-1). The outline of the violin plot

represents the probability of the kernel density. Black boxes represent interquartile ranges

(IQR), with the red horizontal line representing the median; whiskers extend to the highest

and lowest data point but no more than ±1.5 times the IQR from the box; outliers are plotted

individually. Different letters indicate different statistical groups (ANOVA, posthoc Tukey,

p�0.001, (A) F3,38 = 15.04, n = 10–11 (B) F3,38 = 15.04, n = 8–21 (C) F3,47 = 8.221, n = 10–11).

(TIFF)

S6 Fig. Purity evaluation of SL stereoisomers. (A) Chemical structures of GR245DS and

GR24ent-5DS. (B) CD spectra of GR245DS and GR24ent-5DS. (C) 1H-NMR (400 MHz, 298 K,

(CD3)2CO) of GR245DS. (D) 13C-NMR (100 MHz, 298 K, (CD3)2CO) of GR245DS. (E)
1H-NMR (400 MHz, 298 K, (CD3)2CO) of GR24ent-5DS. (F) 13C-NMR (100 MHz, 298 K,

(CD3)2CO) of GR24ent-5DS. For more information see Materials and Methods.

(TIFF)

S7 Fig. GR24 stereoisomers regulate hypocotyl length through D14 and KAI2. Hypocotyl

length of the indicated genotypes treated with solvent (acetone), 1 μM μM GR24ent-5DS, 1 μM

GR245DS or 1 μM rac-GR24. The outline of the violin plot represents the probability of the

kernel density. Black boxes represent interquartile ranges (IQR), with the red horizontal line

representing the median; whiskers extend to the highest and lowest data point but no more

than ±1.5 times the IQR from the box; outliers are plotted individually. Different letters indi-

cate different statistical groups (ANOVA, posthoc Tukey, F2,43 = 9.58, n = 32–42, p�0.001).

(TIFF)

S1 Table. Summary of effects of SMXL mutations on max2 root phenotypes.

(PDF)

S2 Table. Raw data for all figures.

(XLSX)

Acknowledgments

We thank David Nelson (UC Riverside, USA) and Mark Waters (University of Western Aus-

tralia) for providing mutant seeds. The Gutjahr group is grateful to Jürgen Soll (LMU Munich,

Germany) for generously providing space in his Arabidopsis growth chamber.

Author Contributions

Conceptualization: José Antonio Villaécija-Aguilar, Tom Bennett, Caroline Gutjahr.
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