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No mass extinction for land plants at the
Permian–Triassic transition
Hendrik Nowak 1, Elke Schneebeli-Hermann 2 & Evelyn Kustatscher1,3

The most severe mass extinction among animals took place in the latest Permian (ca. 252

million years ago). Due to scarce and impoverished fossil floras from the earliest Triassic, the

common perception has been that land plants likewise suffered a mass extinction, but doubts

remained. Here we use global occurrence data of both plant macro- and microfossils to

analyse plant biodiversity development across the Permian–Triassic boundary. We show that

the plant fossil record is strongly biased and that evidence for a mass extinction among plants

in the latest Permian is not robust. The taxonomic diversities of gymnosperm macrofossils

and of the pollen produced by this group are particularly incongruent. Our results indicate

that gymnosperm macrofossils are considerably undersampled for the Early Triassic, which

creates the impression of increased gymnosperm extinction in the latest Permian.
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The end-Permian mass extinction was the most severe
extinction event in the Phanerozoic, with an estimated loss
of ca. 80–96% of species and ca. 50% of families of marine

invertebrates1,2. On land, tetrapods3 and insects4 were likewise
diminished and also for plants a loss of diversity (or taxonomic
richness) has been suggested to occur between the Changhsingian
(latest Permian) and the Induan (earliest Triassic), with a mag-
nitude that is comparable to the losses in marine invertebrates5–7.
However, it has been questioned whether the terrestrial and
marine events are coeval8–11. The fossil floras from the Early
Triassic are marked by impoverishment and on the northern
hemisphere often by the dominance of lycopsids (club mosses),
especially Pleuromeia12–14. Correspondingly, spores of lycopsids
and ferns13 often dominate sporomorph (spores and pollen)
assemblages from this time. This is interpreted as a period of
survival, which is followed by the recovery of conifers starting in
the Olenekian (late Early Triassic) at the Smithian-Spathian
boundary13,15,16. In the southern hemisphere (Gondwana), glos-
sopterids were dominant in the Permian, but they were dimin-
ished at the Permian–Triassic boundary and replaced by the
Dicroidium flora17,18. Lower Triassic successions yielded only a
reduced number of well-preserved macrofossils of land plants and
are also notably void of coal measures19. The dearth of fossils
agrees seemingly with a massive loss of vegetation, but it could
also be accounted for by a severe taphonomic bias.

Local and regional studies have repeatedly delivered results that
raise doubts about the importance of the end-Permian event for
land plants20–25. Data on sporomorphs from the Permian–Triassic
boundary interval are much more abundant than macrofossils,
providing valuable information about the development of terres-
trial floras during this critical time. The potential of these datasets
is still mostly unused, for in most cases, sporomorph diversity has
only been studied on local or regional scales until now.

In order to gain a more coherent picture of land plant history, a
detailed, comparative assessment of the stratigraphic ranges and

diversities of sporomorph and macrofossil taxa from the Lopin-
gian (upper Permian) to the Middle Triassic is presented here.
We show that the extinction of land plants at the
Permian–Triassic boundary was much less severe than previously
thought and that the apparent mass extinction can essentially be
explained by the dearth of data from the Lower Triassic. The
fossil records of sporomorphs and macrofossils show consider-
able differences, primarily concerning gymnosperms, which
might in part be attributed to taphonomic bias.

Results
Macrofossil record. Plant macrofossil species (Supplementary
Data 1) have their highest diversity at the base of the studied stra-
tigraphic interval, in the Wuchiapingian (Fig. 1, Supplementary
Data 2). Their diversity declines towards the Changhsingian, followed
by a loss of more than half of the species across the Permian–Triassic
boundary. Species diversity starts to recover in the Olenekian and
continues towards the Ladinian. This pattern would seem to conform
to previous results based on plant macrofossil genera and families
and common expectations (see refs. 5–7). However, on the genus
level, diversity loss across the Permian–Triassic boundary is not
catastrophic and diversity even increases slightly between the
Wuchiapingian and the Changhsingian. In general, the genus
diversity curve is rather flat. Even more important, genus originations
in the Changhsingian exceed extinctions, which means that net
diversity increases during this stage. Extinctions only exceed origi-
nations in the Induan, which is also the stage with the highest
number of extinction events (Fig. 2). Conversely, origination num-
bers are very low, which results in the overall lower total diversity in
the Induan. The normalized diversity curve suggests that the mean
standing diversity declined far less (Fig. 3). The results of shareholder
quorum subsampling indicate a protracted decline between the
Changhsingian and Olenekian, but the confidence bounds are too
large for robust conclusions (Fig. 3). Compared to an earlier diversity
analysis on the level of genera by Rees7, our curve shows similar
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Fig. 1 Diversity indices and distribution of data entries per stage. Results for sporomorphs and plant macrofossil taxa from the Wuchiapingian to the
Ladinian
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trends, but with a mostly (except for the Wuchiapingian) higher
diversity and less pronounced decline at the Permian–Triassic
boundary (Figs. 4, 5a). The differences are explainable by the use of
different sources, updated taxonomy and dating, while the two
datasets clearly have a common underlying structure.

Plant macrofossil family diversity shows trends similar to genus
diversity but with the peculiarity of a distinct decline between the
Anisian and Ladinian, which contrasts with the trends seen in plant
macrofossil species and genera, but agrees with the sporomorph
records (see below). When comparing our family diversity curve
with the recently published one by Cascales-Miñana and Cleal5, the
differences are striking (Figs. 4, 5b), even though the trends in our
species curve would match perfectly with their families (Fig. 5c).
The differences can be explained by a differing approach to
partitioning the lower-level taxa into families (see Methods).

Sporomorph record. The diversity of sporomorph species and
genera (Supplementary Data 1, 2) is generally higher compared to

macrofossil diversity (Fig. 1), which is expected due to the generally
higher preservation potential of sporomorphs, their transportability
by wind and water even from distant habitats to favourable deposi-
tional settings, their sheer abundance and the possibility of a single
plant species to produce multiple spore or pollen taxa. The
Wuchiapingian record presents an exception with the number of
sampled-in-bin species and genera being slightly lower for spor-
omorphs than for macrofossils. Both on species and genus level, the
sporomorph record does not exhibit dramatic changes within the
studied interval. Notably, it shows an increasing diversity from the
Wuchiapingian to the Changhsingian and a decline from the Anisian
to the Ladinian. On the species level, diversity also declines across the
Permian–Triassic boundary and within the Lower Triassic, while
diversity on the genus level remains more or less constant. In the
Changhsingian, Olenkian and Anisian, the numbers of genera that
originate and go extinct are almost balanced (Fig. 2). The Induan has
a surplus of originations and the lowest number of extinctions, but
relative to the short duration of the stage, extinction as well as ori-
gination rates are by far the highest within the studied interval. The
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Wuchiapingian is quantitatively under-represented in the data and
has the lowest estimated sampling coverage (Figs. 1, 3, 5f). The
diversity of this stage is therefore probably underestimated, whereas
the Ladinian is covered by the most comprehensive dataset. Share-
holder quorum subsampling produced inconclusive results due to
very large confidence intervals (Fig. 3).

The biological affinity of specific sporomorph taxa can be
determined if they are found in situ within macrofossils
(sporangia or pollen sacs), but this is comparatively rare. The
botanical affinity of most of the sporomorph taxa in this study is
unknown. However, these sporomorphs can be assigned to three
main categories; pollen, produced by gymnosperms, iso-/micro-
spores, produced by bryophytes, lycophytes, pteridophytes and
sphenophytes, and megaspores, derived from heterosporous
lycophytes and pteridophytes. The diversity curves of spores
and pollen show almost identical trends (Fig. 1). Spore diversity is
generally higher compared to pollen diversity, except for the
Ladinian if megaspores are not counted. Megaspores have a
negligible diversity in the Lopingian and diversify throughout the
Lower and Middle Triassic.

Plant groups. Generic diversities of spores and spore plant (pter-
idophyte, lycophyte, sphenophyte and bryophyte) macrofossils
show the same trends (Figs. 1, 5h), except for the Ladinian. There,
the diversity of macrofossils increases, whereas spore diversity
declines. By contrast, the datasets of pollen and gymnosperms show
completely different diversity trends (Figs. 1, 5i). The gymnosperms
show a more classical diversity curve with a declining trend in the
Lopingian and across the Permian–Triassic boundary, followed by a
recovery phase. However, in this case, the recovery seems to be
mostly complete by the Olenekian. The Induan sticks out as an
interval of considerably but only briefly lowered diversity. A com-
parison of all main plant groups shows that substantial diversity
losses at the Permian–Triassic boundary are only recorded in
pteridophytes, pteridospermatophytes and cycadophytes, while
other plant groups are barely affected, with conifers and ginkgo-
phytes even increasing in diversity (Fig. 6).

Potential biases. There is a strong and significant correlation
between the number of entries per stage and the (sampled-in-bin)
genus and species diversities for macrofossils (both: Spearman’s rs
= 0.83, p= 0.029; Supplementary Data 3), which may indicate an
impact of sampling bias. By contrast, the correlation of the data
distribution (number of data entries per stage) with sporomorph
genus diversity (rs= 0.77, p= 0.051) is less strong and just outside
the common limit for statistical significance. It is negligible for
sporomorph species (rs=−0.314, p= 0.75). This does not imply
that species are less affected by sampling bias but may point to
other biases such as inconsistent taxonomy on the species level.

The low diversity of macrofossil taxa in the Induan may well be
an artefact, as there are several reasons to consider the Induan
under-represented, despite the considerable attention it has
received. In the first place, quantitatively less data is available for
the Induan and Olenkian than for the other stages (Figs. 1, 5e). Both
Induan and Olenkian have a lower estimated sampling coverage
than the Changhsingian (Fig. 3), which increases the relative
probability that surviving taxa have not been discovered. Secondly,
the total species diversity in the Induan is lower than the total
diversity of genera, unless genera without a named species and
inferred presences of long-ranging but unsampled genera are
counted for species diversity (logically, at least one species per genus
must have existed) (Fig. 1). This indicates general quality issues of
the fossil record from this stage. Thirdly, the proportion of
macrofossil genera that are recorded from previous and following
stages but show an intermittent absence in the Induan (“Lazarus
taxa”) is higher than for the other stages (Fig. 1). Fourthly, there is
no decrease in sporomorph genus diversity. Last but not least, the
Induan is chronostratigraphically much shorter than the other ages
(ca. 700 kyr for the Induan Age compared to 2.2 to 5.2Myr for the
Wuchiapingian, Changhsingian, Anisian, and Ladinian ages
according to the latest version [2018/08] of the International
Chronostratigraphic Chart26). Thus, the time window for plant
fossil preservation was limited. If the Induan is indeed critically
under-represented and its low diversity erroneous, this would imply
that diversity is underestimated in the Changhsingian, Induan and
to some extent in the Wuchiapingian and Olenekian due to the
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Signor-Lipps27 and Jaanusson28 effects. Consequently, extinctions
in the late Permian would be overestimated, whereas originations
are underestimated in the Induan and overestimated in the
Olenekian and/or the Anisian. In short, the observed fluctuations
in macrofossil diversity appear to be mostly artifactual.

Discussion
The term “mass extinction” is often used without a precise defi-
nition. However, such events have also been quantitatively
identified as significant excursions from a linear regression of the
extinction rates (per million years)2,5. This method is not
applicable to our data due to the restricted temporal scale. Within
the studied interval, the highest rates of extinction occur in the
Induan in both sporomorphs and plant macrofossils, but an
analysis of broader scale with the same methodology would be
required to determine how these rates compare to the rest of the
land plant fossil record. By contrast, even if the loss of diversity in
land plant macrofossils at the Permian–Triassic boundary as
presented herein is accepted as a true signal, its low magnitude
(19% of Changhsingian macrofossil genera and 17% of

sporomorph genera going extinct; Supplementary Data 3) and
selectivity do not justify calling it a mass extinction. A mass
extinction of land plants in the latest Permian had been postu-
lated based on observations in both single sections and global
diversity curves derived from macrofossils. The comprehensive
dataset presented herein does not support this interpretation. Of
course, our dataset is ultimately not complete either. It is global,
but not all regions and stages are equally well represented, which
is a source for bias when considering the presence of provinci-
alism, the possibility of migration and staggered extirpation.
Another locally significant limitation on completeness is the fact
that the taphonomic window for plant preservation is not equally
close to all the habitats of various plant communities and
transport may (selectively) destroy most plant remains in dif-
ferent sedimentary settings29–33. The climate in the late Permian
and Early Triassic is thought to have been unusually hot, which
would have affected the distribution of both plant habitats and
areas with conditions favourable for fossilization34. Furthermore,
different settings are sampled unequally. There is a bias towards
sampling wetlands over drylands35, with wetlands being parti-
cularly affected by the Permian–Triassic boundary event17,19,36.
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In the current state, there is no convincing evidence for a global
mass extinction among land plants at the end of the Permian.
Considering previous studies, it appears that none of the major
mass extinctions in the animal fossil record was mirrored by a
mass extinction in plants5,6,14,37,38. The fossil record of land
plants is marked by almost uninterrupted periods of diversifica-
tion or relatively stable diversity. However, the compositions of
floras changed repeatedly throughout the history of land plants.
By all accounts, their dominance structures were also drastically
altered during the Permian–Triassic transition both on the short
and long term13,17,37,38. Furthermore, peat-forming habitats dis-
appeared due to the absence of suitable plants or due to envir-
onmental conditions14,19, a high abundance of undispersed spore
tetrads and teratological pollen grains indicates a disturbance of
the reproduction ability of the producing plants, possibly caused
by intense UV-B radiation21,39,40. The organic-walled microfossil
Reduviasporonites, which occurs abundantly near the
Permian–Triassic boundary in many localities41,42, has been
interpreted as a fungus infecting the plants43,44, but also as a
saprophyte decomposing dead plants45 and even as an alga46–48.
While plant communities certainly reacted to the environmental
disturbances that caused the end-Permian mass extinction,
extinction rates were only considerably elevated in the Early
Triassic, and the overall diversity loss limited. Plants may have
survived even in small refugia49, which would be unlikely to
appear in the sampled fossil record. Further reasons why plants
(individually or as a group) seem to be resilient with respect to
the environmental hazards causing animal mass extinction events
are their numerous autecological advantages. These include
resistant and dispersable resting stages (spores and seeds may still
be viable after decades50–53) in their life cycles, regenerative
features and subterraneous structures39,54, whereas most animals
are susceptible to rapidly changing conditions. It should be noted
that angiosperms, which dominate most terrestrial floras today,
depend in their majority on interactions with certain animals for

pollination and seed dispersal. Likewise, many modern herbi-
vorous animals are adapted to a particular diet. Such mutualistic
dependencies may have been in effect between certain insects and
some late Palaeozoic pteridospermatophytes and conifers55–57.
The insects involved died out in the end-Permian mass extinc-
tion, and modern forms of mutualism developed during the
Mesozoic55–57. The loss of their animal partners does not guar-
antee the extinction of a plant species, but generally increases
extinction risk58. In this way, the mass extinction among insects
potentially contributed to the diversity loss in pter-
idospermatophytes at the Permian–Triassic boundary. A mass
extinction among terrestrial animals today might also affect
dependant plants—most importantly the dominant angios-
perms59—and vice-versa. On the other hand, judging by their
records, other major plant groups that rely on abiotic vectors
would have a comfortable chance of survival.

Methods
Data collection and treatment. Occurrence data (Supplementary Data 4, 5) was
taken from literary sources and unpublished collections (Supplementary Note 1,
Supplementary Table 1). The records were corrected for (reasonably recognizable)
spelling errors and synonymies. Stratigraphic information from the original pub-
lications was updated if possible and correlated with the global stages according to
the current international chronostratigraphic chart28.

Taxonomic concepts. Macrofossils that are known to be biologically connected are
treated as the same genus (whole-plant concept). Families are assigned mainly
following ref. 60. Orders without recognized families are treated as a single family.
By comparison, ref. 5 follows the family concept of ref. 61, which is generally more
restrictive and involves several families representing a single genus in our approach.

Data selection. Only records with a sufficiently constrained date were used for
diversity calculations. We excluded occurrences of sporomorph taxa from the
calculations if the authors of the source material considered them as reworked or
possibly reworked. For species-level analyses, records in open nomenclature (“sp.”,
“spp.”, “cf.”, “aff.”, “?”, etc.) are excluded. For genus-level analyses, records of
species that are only tentatively assigned to a genus are excluded. Calculations (see
below) were based on 8327 entries on macrofossils (Supplementary Data 4) and
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34206 entries on spores and pollen assigned to the Wuchiapingian to Ladinian
stages (Supplementary Data 5). Additionally, occurrences that pre- or post-date the
studied interval (222 and 1078 entries respectively on macrofossils, 1075 and 891
entries on spores and pollen) were used to extend taxon ranges, but were not
entered systematically.

Calculations. Calculations were performed using custom code (Supplementary
Data 6) in R (version 3.3.2)62, employing the ‘sqsbyref’ function of John Alroy
(available online: http://bio.mq.edu.au/~jalroy/sqsbyref.R; accessed 12 November
2018). Results are presented in Supplementary Data 1–3.

Four basic types of taxa present in a particular interval are distinguished: Taxa that
are present only in this single interval; taxa with ranges crossing the lower or bottom
boundary of the interval, but not the upper or top boundary (i.e., going extinct); taxa
that first appear in this interval and cross the top boundary (i.e., originating); taxa that
are present before and after the interval (range-through taxa)63. The number of range-
through taxa may either be counted by considering only documented occurrences
(occurrence method64) or by inferring their presence between the first and last
occurrence even in intervals from which they have not been reported so far and thus
appear as Lazarus taxa (range method64 or range-through method65).

Sampled-in-bin diversity is obtained by counting the number of taxa reported
from a specific stage (occurrence method).

Total diversity refers to the number of taxa that are either reported from a
specific stratigraphic unit or inferred to be present from both older and younger
records. This relates to the range-through method and is also referred to as range-
through diversity.

Normalized diversity is used to estimate the mean standing diversity of each
stage irrespective of its duration by counting range-through taxa plus half of the
taxa originating and/or going extinct within the stage66.

Origination, extinction, and turnover (origination+ extinction) are here
calculated excluding taxa appearing in only one stage, i.e. by counting bottom and/
or top boundary crossers. Origination, extinction and turnover rates are calculated
by dividing the raw counts of origination and/or extinction events by the respective
stage duration in Myr according to the latest ICS chart26.

Shareholder quorum subsampling (SQS, also known as ‘coverage-based
rarefaction’) is a method to counter unequal sampling between intervals by randomly
drawing from the pool of occurrences, samples and references until a certain quorum
of frequency coverage is reached67–69. Coverage is estimated through a modified
formula proposed by Good70 based on the ratio of the number of taxa with only a
single occurrence (n1) to the total number of occurrences (N) considered:

u ¼ 1� n1=N ð1Þ

In the version of SQS employed in this study, references are drawn randomly
without replacement and the occurrences of up to five samples of that reference are
added to the selection on which coverage and the subsampled taxon richness are
calculated. The coverage is calculated after each draw, with occurrences of a
particular taxon in multiple samples of a single reference binned as one (option
merge.repeats= TRUE). This prevents the overestimation of coverage regarding
references reporting a small number of taxa repeatedly. The taxon richness is
recorded each time when the coverage reaches or overtakes the chosen quorum of
0.4. The whole process is repeated 500 times and the median value along with the
lower and upper bounds of the 95% confidence interval of all recorded taxon
richness counts at the quorum level or above are returned.

Data distribution is calculated as the number of entries per stage in the raw
data. An entry can relate to a single specimen or multiple specimens, but is here
treated as a single occurrence. In each case, the number of entries corresponds to
the resolution of sampling effort in the source reference.

Correlations are tested for using Spearman’s rank correlation coefficient rs or ρ
(rho), which tests for a monotonous relationship between variables (Supplementary
Data 3). A correlation is considered strong if rs <−0.6 or rs > 0.6, and statistically
significant if the probability of the null hypothesis p < 0.05. Both rs and p are
calculated with the ‘cor.test’ function in R.

In order to better display concurrence of trends, selected pairs of indices (Fig. 3)
were centred by subtracting their respective mean and scaled to their standard
deviation (1σ).

Code availability. Code to reproduce the presented results is provided in Sup-
plementary Data 6.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
References of publications used as data sources are listed in the Supplementary
References (see also Supplementary Note 1). The aggregated database is provided
in Supplementary Data 4 and 5. A reporting summary for this article is available as
a Supplementary Information file.
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