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Abstract: In 1868, Karl Vierordt discovered one type of errors in time perception—an overestimation of short duration and underestima-

tion of long durations, known as Vierordt’s law. Here we reviewed the original study in its historical context and asked whether Vierordt’s

law is a result of an unnatural experimental randomization protocol. Using iterative Bayesian updating, we simulated the original results

with high accuracy. Importantly, the model also predicted that a slowly changing random-walk sequence produces less central tendency

than a random sequence with the same durations. This was validated by a duration reproduction experiment from two sequences (random

and random walk) with the same sampled distribution. The results showed that trial-wise variation influenced the magnitude of Vierordt’s

law. We concluded that Vierordt’s law is caused by an unnatural yet widely used experimental protocol.
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In 1868, Karl Vierordt, professor of physiology at the

University of Tübingen, published his book, Der Zeitsinn

nach Versuchen [The Sense of Time According to Experi-

ments] (Vierordt, 1868), just a few years after Gustav

Theodor Fechner’s groundbreaking book Elemente der Psy-

chophysik [Elements of Psychophysics] (Fechner, 1860)

and one year after Hermann von Helmholtz’s Handbuch

der physiologischen Optik [Treatise on Physiological

Optics] (von Helmholtz, 1867). Vierordt’s seminal book

was the first quantitative attempt to investigate time percep-

tion with methodologies proposed and invented by

researchers such as Ernst Weber, Gustav Theodor Fechner,

and others.

One of his main findings, and the one that has sur-

vived best over time, is now known as Vierordt’s law.

According to this law, short temporal durations tend to

be overestimated, whereas long durations tend to be

underestimated. Somewhere in between there is an

“indifference point” at which perceived time is veridical.

The mechanisms underlying Vierordt’s law have long

remained obscure. Up until a decade ago, Vierordt’s law

was considered as an unexplained problem that “cur-
rently defies any coherent theoretical treatment”
(Lejeune & Wearden, 2009).

For his main experiments—most of them were done by

Vierordt himself as an only participant—his assistant pro-

duced a time interval with two clicks, and Vierordt repli-

cated this interval by clicking a third time so that the

interval between the second and third clicks was per-

ceived as having the same duration as the interval

between the first and second clicks. The machinery used

for the experiments was sophisticated enough to allow

recording of stimulus and response from durations of less

than 250 ms to several seconds. Fortunately, Vierordt

explained his methods in detail and also published most

of his data summarized as tables. In the following, we

concentrate on his Table A as an example

(Vierordt, 1868, p. 36; see also Table 1). It lists the aver-

age stimulus duration together with the signed error of

reproduction for 22 intervals (from less than 250 ms to
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more than 8 s) and the corresponding number of repeti-

tions (ranging from 25 to 89). Overall, the experiment

included 1,104 trials presented consecutively. The results

clearly demonstrated the main feature of Vierordt’s

law—an overestimation of the short intervals and underes-

timation of the long intervals with the indifference point

around 2.25 s (see Figure 1A).

The method used by Vierordt (1868, p. 22) was the

“method of average error” that Fechner invented

(Fechner, 1860 Vol. 1, p. 120ff, Vol. 2, p. 148ff and

p. 343ff) and which Müller (1904) later referred to as the

“method of reproduction”, now known as the method of

adjustment. The method works as follows: a stimulus

magnitude N (“Normalreiz,” normal stimulus) is presented

and followed by a test stimulus F (“Fehlreiz,” error stimu-

lus), which is adjusted by the participant, so that N and

F are perceived as equal. Then the stimulus N is given

again, followed by the adjustable F, and so on

(Fechner, 1860, p. 190). In Volume 2, Fechner explained

his method of average error in more detail (Fechner, 1860,

p. 343). He applied 10 measurements of exactly the same

condition (and same magnitude) consecutively. If there

were multiple magnitudes, the magnitudes were tested in

either increasing or decreasing order, and each magnitude

was tested in a chunk of 10 measurements. Fechner was

very accurate about his method: for example, concerning

measurements done by a colleague, he argued that not

much could be concluded from too few measurements per

stimulus, which deviated from his method of average error

(Fechner, 1860, p. 209).

A closer inspection of Vierordt’s experiments shows vari-

ous differences to the method proposed by Fechner. First of

all, while Fechner was mainly interested in the just notice-

able differences (JND), Vierordt reported extensively on

the “constant errors,” which Fechner mentioned but treated

more as a side note. Other diverging aspects of Vierordt’s

method, already being criticized by Müller (1904), were the

missing temporal exchange between N and F, and the uni-

directional change of the test duration (necessarily always

starting from small values). At least Vierordt partly knew

that his method deviated from the one Fechner had pro-

posed, but he defended those differences by claiming sev-

eral advantages (e.g., p. 29ff and p. 35 Vierordt, 1868).

However, what is easily overlooked is that according to

Vierordt in the experiments, “the assistant provided … a

time interval of arbitrary magnitude” (Vierordt, 1868,

p. 35). According to Fechner’s and Müller’s descriptions,

the method requires equal or ordered, rather than arbitrary,

magnitudes. Thus, evidently, the method used by Vierordt

was not at all what Fechner had had in mind.

Other researchers in the late 19th century confirmed

Vierordt’s findings (see James, 1890 Chapter XV for a

Table 1
Data from the original Table A, Vierordt (1868, p. 36)

Range (s) Mean duration (s) Reproduction error in % Number of trials (total: 1,104)

Less than 0.25 0.204 14.7 25
0.25–0.50 0.364 9.9 49
0.5–0.75 0.626 12.9 74
0.75–1 0.856 11.1 60
1–1.25 1.129 7.9 47
1.25–1.5 1.365 5.3 54
1.5–1.75 1.614 6.5 44
1.75–2 1.854 3.0 42
2–2.25 2.099 1.7 50
2.25–2.5 2.356 �0.2 44
2.5–2.75 2.602 2.3 41
2.75–3 2.832 �2.1 35
3–3.5 3.230 �2.5 48
3.5–4 3.677 �7.0 30
4–4.5 4.264 �5.2 50
4.5–5 4.721 �5.6 89
5–5.5 5.230 �3.8 51
5.5–6 5.733 �4.2 49
6–6.5 6.194 �4.8 73
6.7–7 6.685 �7.5 44
7–8 7.462 �6.2 62
More than 8 8.860 �8.1 43
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summary), even though Fechner had already criticized their

results, but mostly with respect to Weber’s law

(Fechner, 1884). About 40 years later, Woodrow (1930)

aimed to replicate Vierordt’s results but found no evidence

for consistent over- and under-estimation in reproduced

durations. Inspection of his methods shows that only one

single interval was tested per day (50 repetitions). He

explicitly mentioned: “Entirely different results might be

expected from an experiment in which the various intervals

were all employed on one day, particularly if they were

used in an irregular order” (Woodrow, 1930, p. 476). Thus,

presenting the stimuli one by one and with sufficient tem-

poral separation, as suggested by Fechner, apparently

avoids the systematic errors that are the characteristic of

Vierordt’s law. In other words, Vierordt’s law seems to be a

consequence of the particular experimental protocol.

Over the next 80 years, various other investigations

followed, but without providing a formal theory for

Vierordt’s law. In other fields of psychophysics and

experimental psychology, effects analogous to Vierordt’s

law were discovered for other types of magnitude estima-

tion, such as “the law of central tendency”
(Hollingworth, 1910), the “regression effect” (Stevens &

Greenbaum, 1966), the “range effect” (Teghtsoonian &

Teghtsoonian, 1978), and were also related to sequential or

serial dependence (Cross, 1973; Fischer & Whitney, 2014;

Narain, Mamassian, van Beers, Smeets, & Brenner, 2013).

Interestingly, Hollingworth, who also referred to Vierordt’s

work, had already provided important cornerstones of the

effect, such as the indifference point depending on the

range of stimuli given: “in all estimates of stimuli belong-

ing to a given range or group we tend to form our judg-

ments around the median value of the series”
(Hollingworth, 1910, p. 462). He concluded these remark-

able insights from a series of experiments that he published

in 1909, where he compared magnitude reproduction for

different ranges of stimuli and for single stimuli presented

in isolation (Hollingworth, 1909). Hollingworth’s findings

Figure 1. Reproduction data of Vierordt’s
durations and iterative Bayesian models.
(A) data from Vierordt’s original experiment
(open circles) and the best fitting model sim-
ulation (filled circles). (B) The sequence of
the durations used for the simulation in (A).
(C) Comparison of simulation in (A) (filled
circles) with the simulation (gray-filled cir-
cles) from the same sample durations but in
a sequence conforming to a random walk.
(D) The random-walk sequence of the same
sampled durations shown in (B). (B) and
(D) only differ in the sequential order.
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thus show the importance of the context of other stimuli in

which a particular test stimulus is judged.

Thus, even though the basic ideas employed later in a

formal theory of Vierordt’s law and the central tendency

(for reviews see Petzschner, Glasauer, & Stephan, 2015;

Shi & Burr, 2016; Shi, Church, & Meck, 2013) were laid

out early on (Hollingworth, 1910; Woodrow, 1930), expla-

nations for these and other related phenomena, such as the

range effect, have been scarce. In experimental psychology

and related fields, most studies recognize and accept those

types of systematic errors as a trivial finding. To our

knowledge, the first study offering a quantitative formal

theoretical treatment of the central tendency based on prior

expectations was published at the end of the 20th century

but has been completely overlooked by the scientific com-

munity (Laming, 1999). Interest, however, has been revived

by the Bayesian approach for perception (e.g., Ernst &

Bülthoff, 2004). We independently proposed a theory of

central tendency and range effects for magnitude estimation

based on iterative Bayesian inference combined with the

Weber–Fechner law (Glasauer, Jahn, Stein, &

Brandt, 2009; for reviews see Petzschner &

Glasauer, 2011; Petzschner et al., 2015), which offered a

concise explanation for the central tendency, range and

order effects, and quantitatively showed how prior informa-

tion on stimulus range was updated during the course of

the experiment. In parallel, Jazayeri & Shadlen (2010) also

proposed that the central tendency is an outcome based on

integrating current sensory input with prior information

about the range of the stimuli. Several similar modeling

efforts followed (Acerbi, Wolpert, & Vijayakumar, 2012;

Bausenhart, Dyjas, & Ulrich, 2014; Cicchini, Arrighi,

Cecchetti, Giusti, & Burr, 2012; Dyjas, Bausenhart, &

Ulrich, 2012; Roach, McGraw, Whitaker, & Heron, 2017).

For example, Bausenhart et al. (2014) linked Vierordt’s law

to sequential effects and argued that it is the trial-by-trial

updating process of an internal reference that leads to the

central tendency. But no one took a closer look at the origi-

nal data.

We hypothesized that if (1) Vierordt’s law is a conse-

quence of the experimental randomization, and (2) iterative

Bayesian estimation can explain the central tendency, then

we should be able to predict Vierordt’s original data using

our iterative Bayesian updating model (Petzschner &

Glasauer, 2011) by applying the original experimental pro-

tocol as closely as possible. Randomization is now the

golden method of modern psychological studies, given that

repeatedly presenting the same stimulus or using a strictly

ascending/descending series of stimuli, originally proposed

by Fechner in his “method of average error,” may introduce

other types of errors, such as habituation and expectation

errors. Thus, the question arises whether we have to aban-

don randomized stimulus presentation at all or whether we

have to tolerate the range-dependent systematic errors. The

answer is a direct consequence of the iterative Bayesian

model (Petzschner & Glasauer, 2011), which has an impor-

tant underlying assumption, namely that the magnitude/

intensity of a stimulus out there in the world mostly

remains constant or varies in a small range. For example,

the speed of a car changes in a continuous way, not ran-

domly jumping from one speed to another. The iterative

updating model assumes that the change of the magnitude

follows a Wiener process (random walk) from one trial to

the next. Random walk is a common phenomenon in our

daily environment, such as random motion of particles

suspended in a medium, or a search path of a foraging ani-

mal. Even our eyes drift during fixation like a random walk

(Engbert, Mergenthaler, Sinn, & Pikovsky, 2011). In this

aspect, the model provides an optimal estimator for the

slowly changing stimulus magnitude. Hence, if

the sequence of the stimuli mimics a random walk, the cen-

tral tendency should be greatly reduced as compared to that

of a randomized sequence. On this ground, we simulated

Vierordt’s original study using the iterative updating model

and validated the influence of experimental protocols by

comparing duration reproductions under two experimental

protocols: randomization and random walk.

Method

Iterative Bayesian model
The iterative Bayesian model (Glasauer, 2019; Petzschner &

Glasauer, 2011) assumes that the current sensory input of

the stimulus magnitude, represented by a likelihood func-

tion, is fused with a priori knowledge that is updated trial-

to-trial to yield a posterior distribution, from which a most

likely value is taken (e.g., maximum a posteriori probabil-

ity [MAP]) as the response magnitude. To incorporate the

observed Weber scaling (i.e., the standard deviation of

the magnitude estimation is proportional to the absolute

magnitude), we assume that the fusion and sequential

updating take place at the internal log-scaled representa-

tion. After the logarithmic transformation, both likelihood
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and probability distributions are Gaussian (see similar

approach in Ren, Allenmark, Müller, & Shi, 2020, 2021).

In the reproduction stage, the posterior distribution is then

transformed back into linear space to yield a response.

Sequential updating is implemented via a discrete Kalman

filter so that the present updating depends only on the cur-

rent sensory input and the previous trial. It is assumed that

the stimulus changes by a random amount from trial to

trial, which is equivalent to a random walk.

The model equations (Petzschner & Glasauer, 2011) are

briefly summarized here:

1. For a given trial with a stimulus magnitude of dm, the

internal representation in log-scale xm can be expressed

as xm = ln(dm/d0)+ nm, where d0 is an arbitrary constant

and the noise in measurement nm �N 0,σ2m
� �

.

2. Because sensory input is noisy, magnitude estimates can

be improved by integrating the prior probability of

encountering a particular magnitude N xprior,σ2prior

� �
.

According to Bayesian inference (Laming, 1999), the

optimal internal estimate x̂r can be expressed in a linear

combination of the prior and sensory measurement:

x̂r ¼wprior � xpriorþwm � xm

where the weights are inverse proportional to their variance

wprior ¼ 1=σ2prior
1=σ2mþ1=σ2prior

,wm ¼ 1�wprior.

3. After the trial, we assume observers update their prior

distribution, which can be captured by the Kalman filter

process: the mean of the prior at trial i is: xprior,

i = (1� ki) � xprior,i� 1+ ki � xm with the Kalman gain

ki ¼ σ2prior,i�1þσ2sys
σ2prior,i�1þσ2sysþσ2m

and variance σ2prior,i ¼ ki �σ2m , where

σ2sys is the variance of the system noise.

4. For the reproduction, the internal estimate x̂r is trans-

formed back to the linear scale (a lognormal distribu-

tion): dr ¼ ex̂rþ Δ x �d0 , whereΔx is a free parameter

depending on which value observers select from the

posterior. Δx = 0 indicates the median of the posterior,

while Δ x¼ σ2r=2 represents the mean of the posterior.

For simplicity, we set d0 = 1 and Δx = 0. Varying these

parameters did not impact the overall estimation.

Thus, the free parameter of the model is the ratio

σ2sys=σ
2
m , which can be alternatively approximated from the

slope of the least-squares regression between stimulus and

reproduction. Let dprior be exprior , it then follows with

(4) and (2) that dr ¼ ex̂r ¼ d
wprior

prior �dwm
m . And applying the first

order linearization, we get dr ¼ d
wprior

prior �dwm
m ≈wprior �dpriorþ

wm �dm. If the weights and dprior are constant, then from the

linear regression dr = a+ b � dm it follows that the slope is

b = wm and the regression index 1� b = wprior.

From the steady state of (3), we get wm ¼ 2k
1þk with

k being the steady state Kalman gain and after some calcu-

lations
σ2sys
σ2m

¼ w2
m

2 1�wmð Þ 2�wmð Þ. The steady state for the Kalman

gain (and thus for the weights) is usually reached after very

few trials (Petzschner & Glasauer, 2011). Note, however,

that the correspondence between the regression index 1-b

and the prior weight wprior only holds if dprior can be reg-

arded as a constant. This is the case only for the random-

ized condition and a sufficient number of trials, in which

case we can replace dprior by its temporal average, which,

for stimuli dm drawn randomly from a uniform distribution

will yield dprior = E{ln(dm)}. For the random walk condi-

tion, dprior can no longer be regarded as constant. Thus, the

regression index obtained in the random walk condition

does not correspond to the prior weight.

All model simulations were programmed and performed

in MATLAB (MathWorks Inc., Natick, MA, USA).

Simulation of Vierordt’s data
Table 1 shows Vierordt’s original study (Table A,

Vierordt, 1868, p. 36). Since Vierordt binned all test dura-

tions into 22 intervals and only reported the number of tri-

als, the range and mean of each bin and their

corresponding mean reproduction errors, but not the exact

durations and their sequence, we chose to iteratively find a

stimulus sequence that had the same histogram as the one

described by Vierordt. To do so, we randomly drew the

same number of durations for each bin given by Vierordt

from a uniform distribution and repeated this process until

the mean difference of the sampled durations and the origi-

nal report was smaller than 1 ms. This resulted in a

sequence S of Σni = 1,104 durations, which in its summary

statistics accurately resembles Vierordt’s stimuli. These

stimuli can now be used as input for the model. However,

since it is an iterative model, the exact sequence of the

stimuli matters, a detail not mentioned in Vierordt’s book.

We therefore generated 10,000 random permutations of our

1,104 stimuli. The resulting stimulus sequences were used
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to fit the model (one free parameter, the system-to-

measurement noise ratio σ2sys=σ
2
m of the Kalman filter, see

above) to Vierordt’s data. For the fitting, we minimized

the least-squares distance between the average result per

bin obtained from the model simulation and the average

result per bin reported by Vierordt. Thus, for each ran-

domized stimulus sequence, we obtained one parameter

reflecting the best fitting model. We then selected the

stimulus sequence Smin that resulted in the model simu-

lation with the smallest least squares error with respect

to the reported results for depiction in Figure 1A,B.

Note that the only difference between S and Smin is the

order of stimuli.

The same sequence S was then reshuffled to yield a new

sequence that mimics a random walk. To do so, another

iterative procedure was used. First, a random-walk

sequence R of 1,104 values was created by integrating nor-

mally distributed random numbers. The resulting random

walk R was normalized to the same range as the original

stimulus sequence S in Figure 1B. Both sequences were

then sorted and the mean least-squares distance between

sorted sequences Rsort and Ssort was calculated. A perfect

match would thus mean that S, when properly sorted,

would exactly resemble the true random walk R. This pro-

cedure was repeated 1,000,000 times and the sequence

R for which Ssort best resembled Rsort was selected. The

sorted sequence Ssort was then brought into the appropriate

order by un-sorting it according to the sort order of Rsort.

Note again that Ssort contains exactly the same values as S.

The properly sorted new sequence Srw, which is closely

resembling a random walk, is depicted in Figure 1D and

used for model simulation in Figure 1C (same model

parameter as in Figure 1A).

Validation experiment
In order to validate the influence of experimental protocols

(e.g., random vs. random walk) on the central tendency

effect, we conducted a duration reproduction task. In the

experiment, participants received two sessions that had

the same probe durations, but differed in their sequences.

One sequence was in random order, while the other

sequence had a random-walk structure. The random session

has the same randomization protocol as Vieordt’s original

study, though in a short range of durations, while the

random-walk condition aimed to validate the iterative

updating model.

Participants

Fourteen volunteers (seven female, average age 27.4 years)

participated in the experiment. All participants had normal

or corrected-to-normal vision. They were naive to the pur-

pose of the experiment and were monetarily compensated

for their participation (9 Euro/h). The experiment was

approved by the ethics committee of the Department of

Psychology at Ludwig-Maximilian University Munich.

Informed consent was obtained prior to the experiment.

Apparatus and stimuli

The experiment was conducted in a sound-isolated, dimly

lit cabin (5 cd/m2). The visual stimulus was a yellow disk

(subtended 4.7�, 21.7 cd/m2), presented on a 21-in. LACIE

CRT monitor, with a refresh rate of 100 Hz. The viewing

distance was about 62 cm by asking participants to sit at a

predefined fixed position. The experimental program was

developed using MATLAB (MathWorks Inc.) and

Psychtoolbox (http://psychtoolbox.org).

Design and procedure

We adopted a duration production-reproduction task, which

has been commonly used in previous studies (e.g., Lewis &

Miall, 2009; Ren et al., 2021; Shi, Ganzenmüller, &

Müller, 2013). Each trial started with the presentation of a

center fixation cross for 500 ms, which was then replaced

by a white dot. The white dot prompted participants to

press the down arrow key to initiate the production phase.

Immediately after the key press, a yellow disk was pres-

ented in the center of the screen for a given sampled dura-

tion (ranging from 400 ms to 1900 ms). Participants were

instructed to hold the response key as long as the stimulus

was on and release the key when the stimulus was off. This

was to maintain the participant’s attention to the presented

duration. The blank screen remained for 500 ms after the

key release, which was followed by a second white dot at

the center of the screen, prompting the reproduction phase.

Participants were asked to press and hold the response key

as long as the perceived duration that was shown in the

production phase. A feedback display was presented for

500 ms at the end of each trial, showing participants’ rela-
tive reproduced error (i.e., ratio of the reproduced error to

the given duration) by highlighting one of five horizontally

arranged circles. The five circles from left to right mapped

to the relative error ranges: less than –30%, from �30% to

�5%, from �5% to 5%, from 5% to 30%, and more than
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30%, respectively. The middle three circles were shown in

green, and the right and left circles were shown in red, indi-

cating that a large reproduction error was made.

Each experiment consisted of two sessions, with one ses-

sion using the random-walk sequence and the other session

using the randomized sequence. A random-walk sequence

of 400 durations was first generated for each participant

using a Wiener process in the range of 400 to 1900 ms.

The randomized session used the same durations but in a

randomized order. The order of the two sessions was

counterbalanced among participants.

Data analysis

Stimulus durations were categorized into stimulus intervals

of 100 ms. The average percent error of reproduced dura-

tion in each interval for both conditions were calulated (see

Results, Figure 3A). As a measure of the central tendency,

we used the slope of the linear regression line fitted to the

reproduced duration over the stimulus duration. A unity

slope would thus indicate independently of constant over-

or underestimation that no central tendency is present. As

outlined above, the slope of the regression line can be

directly interpreted in terms of the Bayesian model for the

randomized order.

Results and discussion

Model simulation
Figure 1A depicts Vierordt’s original data together with the

best fit from the simulation, and Figure 1B shows the best

simulated sequence. Evidently, the model provides an

excellent fit to Vierordt’s data. However, how much does

the reproduction error depend on experimental protocols?

Assuming the same intervals are provided in ascending or

descending order (assuming the same model with identical

parameters), the model predicts that the absolute percentage

error would be below 0.2% for all intervals (as compared

to below 15% in Vierordt’s original data). The differential

outputs of the simulation corroborate our suspicion that

Vierordt’s law is a consequence of the random presentation

of stimuli within the same experimental context. The itera-

tive Bayesian updating model thus can explain both

Hollingworth’s conclusions about the central tendency and

Woodrow’s failure replication of Vierordt’s findings.

Figure 1C illustrates this difference between a random-

walk sequence (Figure 1D) and a randomized sequence

(note that stimuli in 1B and 1D are the same except for the

temporal order of presentation). As we predicted, the cen-

tral tendency was almost suppressed with the random-walk

sequence.

Experimental validation
Figure 2 depicts one representative participant for two

experimental protocols. By visual inspection, the randomi-

zation protocol yielded a strong central tendency effect (lin-

ear slope: 0.507), while the random-walk sequence

produced little systematic bias (slope: 0.949). We also

applied the dynamic-updating Bayesian model to the repro-

duction data from the “randomized” condition for each par-

ticipant separately and used the fitted model parameter to

predict the results from the “random walk” (the red lines in

Figure 2). The iterative Bayesian updating model provided

good predictions for both conditions.

Figure 2. Representative data from one
subject together with model simulations.
(A) experimental data from the randomized
condition (blue dots) together with linear
regression line (slope 0.507) and model sim-
ulation (best fit, red dots) with regression
line (slope 0.563). Note that the offset
between regression lines could be avoided
by fitting the location parameter of the
model. (B) Experimental data from the ran-
dom walk condition (blue dots) together with
linear regression line (slope 0.949) and
model prediction (using the fitted parameter
from (A), red dots) with regression line
(slope 0.987).
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The mean percentages of reproduction errors are shown

in Figure 3A, which clearly indicates the central tendency

(i.e., Vierordt’s law). While Vierordt’s law is still visible for

the random walk sequence, the average errors are drasti-

cally lower than those in the randomized sequence, despite

both conditions containing the same set of stimuli, but

presented in a different order. We fitted a linear regression

for each condition in each individual dataset, using the

fitted slope as the regression index. A repeated-measures

analysis of variance of the regression indices revealed a sig-

nificant effect of randomization [F(1, 13) = 46.48,

p < .0001, η2p ¼ 0:781 ] with the average index close to

0 (mean� SD: 0.092� 0.138) for the random walk, but

much higher regression index (0.447� 0.167) for the ran-

domized sequence.

The predicted results from the dynamic-updating Bayesian

model are shown in Figure 3B. A comparison of actual and

predicted data shows that the average central tendency in the

random-walk condition is higher than predicted from the

model simulation (predicted average regression index

0.011 � 0.011). Closer inspection shows that the learning rate

for the prior in the random-walk condition is, at least for some

participants, slower than expected from the model fitted to the

randomized condition. However, overall, there is a good corre-

spondence between data and prediction: the central tendency

does not vanish but becomes significantly smaller.

General discussion

Here, we traced Vierordt’s law back to his original study

and its experimental protocol, which deviates from

Fechner’s proposal. Reviewing debates on Vierordt’s law

over one and a half centuries, we hypothesized that the

major factor for Vierordt’s law is the experimental protocol.

We then applied an iterative updating Bayesian model to

simulate the original results and conducted an experiment

to compare two experimental protocols: randomization and

random walk. Both simulation and behavioral data con-

firmed our hypothesis—the experimental protocol (here,

sequence) matters.

While other factors still play a role—especially the range

of stimuli presented—systematic errors can thus be mini-

mized by an appropriate stimulus design even without

abandoning randomization completely, but instead resorting

to random walks. Notably, our experiment also extends

Hollingworth’s claims (Hollingworth, 1909, 1910): it is not

just the range of magnitudes presented that determines the

central tendency, but even more so their sequence. More-

over, our findings refute models that assume a static prior

distribution depending on the range of stimuli as a reason

for the central tendency (e.g., Cicchini et al., 2012;

Jazayeri & Shadlen, 2010). According to the static models,

the same results are expected for both sequences, given that

only the range and the sample distribution matter, while the

sequential order plays no role in it. By contrast, the itera-

tive updating model assumes the prior is updated from trial

to trial, thus the central tendency depends on the structure

of the sequence—more marked central tendency for the

random sequence as compared to the random-walk

sequence.

The random-walk sequences follow a Wiener process,

which has commonly been found in our environment, for

example, drift diffusion of physical particles, fixational

Figure 3. Reproduction experiment with
stimuli ranging from 0.4 s to 1.9 s (400 dura-
tions per subject per condition). (A) Average
reproduction error as a function of the dura-
tion from 14 subjects in two experimental
conditions (open circles: randomized; closed
circles: random walk). (B) The simulation of
the iterative Bayesian model for the “ran-
domized” data (open circles, best fit for each
participant separately) and prediction for
“random walk” data (closed circles, using the
individual model parameters from the ran-
domized experiment). Error bars show stan-
dard error of the mean.
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drifts of our eyes (Engbert et al., 2011), and information

accumulation for decision-making (Gold & Shadlen, 2007;

Smith & Ratcliff, 2004). Random walks reflect the nature

of small fluctuations of a dynamic stochastic process—our

world is relatively stable but fluctuates in small changes.

The iterative updating model, indeed, incorporates this

assumption—it generates a short-term expectation of the

next stimulus based on the recent exposed context in

the prior distribution. In this aspect, the reduction of the

central tendency effect is a result of correct expectation

from the internal prediction based on the previous stimuli.

The random fluctuation in the random walk matches the

continuous updating, which also reduces the central ten-

dency bias. In contrast, habituating a prior or, in other

words, learning the complete stimulus distribution, would

increase the central tendency for random-walk stimuli.

It is interesting to note that the central tendency bias

predicted by the iterative model is smaller than what we

observed in the validation study (see Figure 3). Subject-

wise analysis revealed that for some participants, the

updating rate of the prior in the random-walk session is

slower than the model predicted based on the randomized

session. It suggests observers might consider additional fac-

tors, such as the range and the distribution of the stimuli,

other than the sequence itself in updating the priors. Thus,

the observed bias is somewhat between the predictions of

the pure iterative updating model (Glasauer, 2019;

Petzschner & Glasauer, 2011) and the static models

(e.g., Cicchini et al., 2012; Jazayeri & Shadlen, 2010).

In summary, from a re-evaluation of the original dataset

with iterative Bayesian modeling and validation by new

experiments we conclude that Vierordt’s law (and the cen-

tral tendency) is a result of the specific experimental

protocol—randomly presenting stimuli with large trial-to-

trial magnitude fluctuation. This protocol deviates from

what usually happens in everyday life, where either suc-

cessive magnitudes are equal and share the same con-

text, or different magnitudes are associated with

different contexts. The proposed underlying mechanism

of Bayesian dynamic updating indeed improves perfor-

mance over trials for equal or slowly changing magni-

tudes but not for rapid large magnitude fluctuations.

According to our analysis, 150 years of research on

Vierordt’s law have thus focused on an effect that is cau-

sed by an unnatural but since then widely adopted exper-

imental protocol, which was first introduced by Vierordt,

who misinterpreted the method of reproduction invented

by Fechner and described in his groundbreaking

Elemente der Psychophysik (Fechner, 1860).
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