
M A N A G I N G E D I T O R 

PETER L. HAMMER 

A D V I S O R Y E D I T O R S 

C. BERGE 
P. ERDÖS 

B. G R U N B A U M 
M.A. HARRISON 

A.J- HOFFMAN 
V.L. KLEE 

J H . VAN LINT 
R.C. MULLIN 

G. -C. ROTA 
V. SOS TURAN 

S M . U L A M 

BOARD OF EDITORS 

B. ALSPACH 
A. BARLOTTI 

C. BENZAKEN 
J. -C. BERMOND 

N. BIGGS 
P. CAMION 
L. GARLITZ 

V . C H V A T A L 
J . DOYEN 

R.L. GRAHAM 
A. HAJNAL 

H. HANANI 
F. HARARY 

D.M. JACKSON 
K. JACOBS 

D J . KLEITMAN 
L. LOVÄSZ 

B.C. MILNER 
D.K. R.AY-CHAUDHURI 

I RIVAL 
S. RUDEANU 

G. SABIDUSSI 
H. SACHS 

P. SCHUTZENBERGER 

C. THOMASSEN 
W.T. TUTTE 

D. J.A. WELSH 
R.M. WILSON 

D.R. WOODALL 

V o l u m e 43 

N u m b e r 1 

J a n u a r y 1983 

I • I S S N M 

d i s c r e t e 
m a t h e m a t i c s 
DSMHA4 43(1) 1-130 (1983) 

CONTENTS 

R. BERGHAMMER and G. SCHMIDT, Discrete order ing 

relations 

P. DAS and S.B. RAO, Al ternat ing eulerian trails wi th 

prescribed degrees in two edge-colored complete graphs 

P DUCHET and H. MEYNIEL, Une generalisation du 
theoreme de Richardson Sur l'existence de noyaux dans 

les graphes Orientes 

J.-C. FOURNIER, Hypergraphes de chaines d'aretes d'un 
arbre 

M C . GOLUMBIC. D. ROTEM and J. URRUTIA. 

Comparabi l i ty graphs and intersection graphs 

R.H. JEURISSEN, Disconnected graphs with magic labelings 

J. KOMLÖS and E. SZEMEREDI, Limit distr ibut ion for the 

existence of hamil tonian cycles in a random graph 

C.W.H LAM, Non-skew Symmetrie orthogonal matrices wi th 

constant diagonals 

J. LAURI, Proof of Harary's conjecture on the reconstruetion 
of trees 
MARUSIC and T.D. PARSONS, Hamiltonian paths in 

vertex-syinmetr ic graphs of order 4p 

STEIN, On Chvatal's conjecture related to a hereditary 

System 

B. 

NOTES 

P.M. BLECHER, On a logical Problem 

B. LINDSTRÖM, Undecided Ramsey-numbers for paths 

PRODINGER, Non-repeti t lve sequences and Gray code 

RUSKEY, A simple proof of a formula of Dershowitz and 

Zaks 

K. WONG, On the smallest graphs of girth 10 and valency 

3 

COMMUNICATION 

. REINER, A q-analog of the Campbell 

formula 

- B a k e r - H a u s d o r f f 

NORTH HOLLAND PUBLISHING COMPANY A M S T E R D A M 



Dhscrele Mathematics 43 (1983) 317-320 
Ncirth-Holland Publishing Company 

317 

N O T E 

O N T H E F A C T O R I Z A T I O N O F G R A P H S W I T H E X A C T L Y 
O N E V E R T E X O F INFINITE D E G R E E * 
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U n i v e r s i t e P i e r r e et M a r i e C u r i e , U.E.R. 4 8 , E q u i p e de Recherche C o m b i n a t o i r e , 4 p l a c e Jussieu, 
7 5 0 0 5 P a r i s , F r a n c e 

Received 9 September 1981 

We give a necessary and sufficient condition for the existence of a 1-factor in graphs with 
exactly one V e r t e x of infinite degree. 

1. Introduction 

The following well-known necessary and sufficient condition for the existence of 
a 1-factor in locally finite graphs is due to Tutte [5]: 

Theorem A . A l o c a l l y f i n i t e g r a p h G = ( V , E ) has a \ - f a c t o r if a n d o n l y if 
C ! ( V \ S ) « | S | f o r a l l f i n i t e subset S of V. (See notations below.) 

In the present note, we extend this theorem to graphs with exactly one vertex of 
infinite degree. For bipartite graphs with exactly one vertex of infinite degree, our 
result reduces to a theorem due to Jung and Rado [4]. 

2. Notations and terminology 

Graphs considered in this note are undirected without loops or multiple edges. 
Let G =(V, E ) be a graph. A \ - f a c t o r , or perfect m a t c h i n g , of G is a set of 

pairwise disjoint edges of G containing all vertices. We say that G is f a c t o r i z a b l e 
if it contains at least one 1-factor. 

A finite graph is l - f a c t o r c r i t i c a l if by deleting any vertex one obtains a 
factorizable graph. A 1-factor critical graph has clearly an odd number of vertices. 

We denote by C ^ G ) the number of connected components with odd car-
dinalities of G , and by C c r ( G ) the number of connected components of G which 
are 1-factor critical. 

*This research was supported by a grant of the D.G.R.S.T. (Contract no. 79317). 
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Given a subset S of V, we denote by G [ S ] the subgraph of G induced by S. If 
no confusion results we abbreviate C,(G[S]) and C c r (G[S] ) to C,(S) and C c r ( S ) 
respectively. 

Given a vertex v, we denote by A ( u ) the set of vertices adjacent to v in G. 
A graph is l o c a l l y f i n i t e if A ( u ) is finite for every vertex v. 

3. Statement of the results 

Theorem 3.1. A g r a p h G = ( V , E ) w i t h e x a c t l y o n e v e r t e x v0 of i n f i n i t e d e g r e e i s 
f a c t o r i z a b l e if a n d o n l y if 

(1.1) C , ( V \ S ) s s | S | for a l l f i n i t e subsets S of V, 
(1.2) A( t>o )£U{S£V\{ü 0 } : s f™*> C i ( V \ [ S U { u 0 } ] ) = |S|}. 

Corollary 3.2. A g r a p h G = ( V , E ) w i t h e x a c t l y o n e v e r t e x v0 of i n f i n i t e d e g r e e i s 
f a c t o r i z a b l e if a n d o n l y if 

(2.1) CJV\S)^\S\ for a l l f i n i t e subsets S of V, 
(2.2) A ( « „ ) g U { S c V \ W : S f i n i t e , CJV\[SU{«„}]) = \ S \ } . 

The following lemma proved in [1] is needed to prove Theorem 3.1 and 
Corollary 3.2: 

Lemma 3.3. L e t G = ( V , E ) be a l o c a l l y f i n i t e g r a p h a n d k a n o n - n e g a t i v e i n t e g e r . 
If t h e r e exists a f i n i t e subset S of V such t h a t C,( V \ S) & \ S \ + k, t h e n t h e r e exists a 
f i n i t e subset T of V such t h a t S^T a n d C c r { V \ T ) ^ \ T \ + k . 

From Lemma 3.3 a strengthening of Theorem A [1] follows: 

Theorem B. A l o c a l l y f i n i t e g r a p h G = ( V , E ) is f a c t o r i z a b l e if a n d o n l y if 
CJV\S)^\S\ for a l l f i n i t e subsets S of V. 

In the finite case, Theorem B is a well-known result, however we have been 
unable to find an explicit reference in the literature. The papers [2] and [3] can be 
given as implicit references. 

4. Proof 

Let G = ( V , E ) be a graph with exactly one vertex u 0 of infinite degree. 

(1) If c o n d i t i o n (1.1) h o l d s for G a n d if G i s n o t f a c t o r i z a b l e , t h e n G [ V \ { u 0 } ] i s 
f a c t o r i z a b l e . 
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Since G[V\{u„}] is locally finite, from Theorem A it is enough to prove that 
C , ( V \ [ S U { u „ } ] ) s £ | S | for all finite subset S of V\{u ( ) } . Assume that there is a 
finite subset S of V \ { u 0 } such that 

C , ( V \ [ S U { v 0 } ] ) ^ \ S \ + \ . 

Since (1.1) holds for G we have C , ( V \ [ S U{u0}]) = |S| +1. By Lemma 3 .3 there is 
a finite subset T of V such that S U ( D „ } C T and C C R ( V \ T ) 3=|T|. Since (1.1) holds 
for G we have C C R ( V \ T ) = |T | , and every connected components of G [ V \ T ] 
with odd cardinality is 1-factor critical. 

O n the other hand we prove that every connected component of G [ V \ T] with 
even or infinite cardinality is factorizable. Let C be such a component of 
G [ V \ T ] . Since v0 belongs to T, G [ C ] is locally finite. If G [ C ] is not factorizable, 
from Theorem A there is a finite subset U of C such that C X ( C \ U ) ^ \ U \ + 1 . 
Therefore we have 

C , ( V \ [ T U t7]) = C , ( V \ T ) + C , ( G [ C \ L / ] ) s | S U T | + l , 

contradicting (1.1). 
Since every connected component of G [ V \ T ] with odd cardinality is 1-factor 

critical, the subgraph of G induced by T and the components of G [ V \ T ] with 
odd cardinalities have a 1-factor. This 1-factor can be extended to a 1-factor of G , 
since the connected components of G [ V \ T ] with even or infinite cardinalities are 
factorizable. The contradiction follows from the hypothesis that G is not factoriza­
ble, achieving the proof of (1). 

(2) / / (1.1) holds f o r G a n d if G is n o t f a c t o r i z a b l e , then (1.2) does n o t h o l d f o r G. 

Let y be a vertex of A(u„). Put G ' = G [ V \ { u 0 , y}]. Since G is not factorizable, 
G ' is not factorizable. Since u ( ) is not a vertex of G ' , G ' is locally finite and then 
from Theorem A there is a finite subset S of V\{t>„, y} such that C , ( V \ [ S U 
[ v 0 , y}])s=|S|+1. From (1) the subgraph G[V\{u„}] is factorizable and then (1.1) 
holds for this subgraph. It follows that we have C , ( V \ [ S U { u „ , y}]) = |S| + l , i.e. 
y E U {S S V\{u 0 }: S finite, C,( V \ [ S U{«„}]) = \ S \ } . 

(3) If (1.1) holds f o r G, then 

U { S S V \ { « „ } : S finite, C 1 ( V \ [ S U { u 0 } ] ) = |S|} 

S U ( S c V \ { v 0 } : S finite, C C T (V\ [SU{t ) 0 }] ) = |S|}. 

This results clearly from Lemma 3 .3 with k = 0 . 

( 4 ) / / (1.1) holds f o r G a n d if (2.2) does n o t h o l d f o r G, then G is n o t f a c t o r i z a b l e . 

Assume that G has a 1-factor F. Then there is y e V such that {u 0 , y}eF . Since 
(2.2) does not hold for G , there is a finite subset S of V\{t>0} such that y eS and 
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C C T ( V \ [ S U { u 0 } ] ) = | S | . It follows that the subgraph G [ V \ { u 0 , y}] does not 
satisfy (2.1), and then by Lemma 3.3 this subgraph does not satisfy (1.1). 
Therefore from Theorem A G [ V \ { u 0 , y}] is not factorizable. On the other hand, 
since F is a 1-factor of G containing the edge { v 0 , y}, F \ { u 0 , y} is a 1-factor of 
G [ V \ { u 0 , y}], and the contradiction follows achieving the proof of (3). 

(5) If G is f a c t o r i z a b l e , then (1.1) h o l d s f o r G. 

If G is factorizable and if S is a subset of V, every connected component of 
G [ V \ S ] with odd cardinality is clearly joined to S by every 1-factor of G . 
Therefore (1.1) holds for G . 

The proof of Theorem 3.1 and Corollary 3.2 is now complete. If G is 
factorizable, then by (4) and (5) conditions (1.1) and (2.2) hold. Therefore 
condition (1.2) holds by (3). From Lemma 3.3 with k = 0 it follows that condition 
(2.1) holds. 

From (2), (3) and (4) it follows that conditions (1.1) and (1.2)—or conditions 
(2.1) and (2.2)—are sufficient for the existence of a 1-factor of G . 
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