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Abstract Theoretical accounts distinguish between motivational (‘wanting’) and hedonic (‘liking’) 
dimensions of rewards. Previous animal and human research linked wanting and liking to anatomi-
cally and neurochemically distinct brain mechanisms, but it remains unknown how the different brain 
regions and neurotransmitter systems interact in processing distinct reward dimensions. Here, we 
assessed how pharmacological manipulations of opioid and dopamine receptor activation modu-
late the neural processing of wanting and liking in humans in a randomized, placebo- controlled, 
double- blind clinical trial. Reducing opioid receptor activation with naltrexone selectively reduced 
wanting of rewards, which on a neural level was reflected by stronger coupling between dorsolateral 
prefrontal cortex and the striatum under naltrexone compared with placebo. In contrast, reducing 
dopaminergic neurotransmission with amisulpride revealed no robust effects on behavior or neural 
activity. Our findings thus provide insights into how opioid receptors mediate neural connectivity 
related to specifically motivational, not hedonic, aspects of rewards.

Editor's evaluation
The authors measured the effects of the opioid receptor antagonist naltrexone (50mg), and the 
dopamine D2/3 antagonist amisulpiride (400mg), on self- reported reward wanting vs. liking and 
functional connectivity between the prefrontal cortex and striatum (using functional magnetic 
resonance imaging) in healthy human participants, using a between- subjects design. Naltrexone 
led to lower wanting, but not liking, and these changes were associated with greater frontostriatal 
connectivity. Amisulpiride also tended to increase connectivity on wanting trials but did not affect 
either wanting or liking scores. The results raise the possibility that both opioid and dopamine trans-
mission influence reward wanting, with the former more closely related to conscious processes. This 
manuscript will be of broad interest to neuroscientists interested in the brain mechanisms underlying 
reward processing, both at the circuit and molecular levels.

Introduction
Rewards are central for goal- directed behavior as they induce approach behavior toward valued 
outcomes (Schultz, 2015). Theoretical models distinguish between behavioral dimensions of rewards, 
such as the motivational drive to obtain rewards (‘wanting’) versus the hedonic pleasure associated 
with reward consumption (‘liking’), whereby ‘wanting’ and ‘liking’ refer to preconscious, rather than 
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conscious, mental states (Berridge, 1996; Berridge and Kringelbach, 2015; Berridge et al., 2009). 
Dysfunctions in wanting and liking of rewards belong to the core symptoms to addiction, which can 
be conceptualized as a wanting- dominated state with deficits in switching to liked non- drug rewards 
(Berridge and Robinson, 2016; Berridge et al., 2009). It is thus important to obtain a better under-
standing of the human brain mechanisms underlying wanting and liking. Previous animal research 
suggested that wanting and liking relate to dissociable neurochemical mechanisms (Berridge and 
Kringelbach, 2015; Berridge and Valenstein, 1991): Dopaminergic activity is thought to modulate 
the wanting component of rewards, but not liking (Berridge and Valenstein, 1991). In contrast, the 
opioidergic system has later been associated with both wanting and liking (Berridge and Kringel-
bach, 2015). Human studies support the hypothesized link between dopaminergic activation and cue- 
triggered wanting (Hebart and Gläscher, 2015; Soutschek et al., 2020b; Weber et al., 2016) as well 
as the motivation to work for rewards (Cawley et al., 2013; Chong et al., 2015; Korb et al., 2020; 
Skvortsova et al., 2017; Soutschek et al., 2020a; Venugopalan et al., 2011; Westbrook et al., 
2020; Zénon et al., 2016). Noteworthy, two of these studies suggest that dopamine changes only 
experimental measures of wanting (motivation to work for rewards), but not self- reported wanting 
ratings (Korb et al., 2020; Venugopalan et al., 2011).

Consistent with animal findings, pharmacological manipulations of the opioid system affected both 
wanting and liking aspects of rewards in humans (Buchel et  al., 2018; Chelnokova et  al., 2014; 
Eikemo et al., 2016). Less is known, however, about the neuroanatomical basis of human wanting and 
liking. Both dopaminergic and opioidergic neurons project to reward circuits in the striatum as well 
as to the prefrontal cortex (Delay- Goyet et al., 1987; Lidow et al., 1991), and recent neuroimaging 
findings suggest that these regions indeed play a role in processing of wanting and liking (Weber 
et al., 2018). In particular, the ventral striatum appears to encode the currently behaviorally relevant 
reward dimension and dynamically switch functional connectivity with wanting- and liking- encoding 
prefrontal regions (Weber et  al., 2018; such frontostriatal gating constitutes one possibility how 
dopamine [and by extension opioids] can affect functions involving prefrontal cortex and the striatum; 
Cools, 2011). This is also in line with the view that wanting and liking are preferentially represented 
in partially distinct subregions of the striatum (which are in turn connected to different input and 
output regions; Peciña, 2008). Thus, processing of wanting and liking appears to be dissociable on 
both a neurochemical and an anatomical basis. However, it remains unknown how pharmacological 
and connectivity- related brain mechanisms interact. We investigated whether frontostriatal connec-
tivity related to motivational and hedonic judgements is modulated by dissociable neurotransmitter 
systems.

To test this hypothesis, the current study investigated the impact of pharmacologically manip-
ulating dopaminergic and opioidergic systems on the neural processing of wanting and liking 
information. This study was part of a larger project investigating also the roles of opioidergic and 
dopaminergic activity for reward impulsivity (Weber et al., 2016). Here, we administered a task that 
allows distinguishing between wanting and liking dimensions of valued goods and assessed how phar-
macologically reducing dopaminergic (using the dopamine antagonist amisulpride) or opioidergic 
neurotransmission (with the opioid antagonist naltrexone) changes frontostriatal connectivity related 
to parametric wanting and liking judgements. We hypothesized that, on a behavioral level, reducing 
opioid receptor activation will reduce both wanting and liking (Buchel et  al., 2018; Chelnokova 
et  al., 2014; Eikemo et  al., 2016), whereas reduced dopaminergic neurotransmission will selec-
tively affect wanting (Cawley et al., 2013; Korb et al., 2020; Venugopalan et al., 2011). We further 
hypothesized that on a neural level the behavioral effects of the pharmacological manipulations are 
mirrored by changes in frontostriatal connectivity related to wanting and liking information (Weber 
et al., 2018). In particular, we expected that frontostriatal connectivity during wanting judgements is 
modulated by opioidergic and dopaminergic activation (as these neurotransmitters have been related 
to the processing of wanting), whereas frontostriatal connectivity during liking judgements should be 
reduced after reduction of opioidergic neurotransmission.

https://doi.org/10.7554/eLife.71077
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Results
Opioid antagonism reduces wanting ratings
We analyzed the data of healthy young volunteers who rated how much they wanted or liked 
everyday items in the MRI scanner. We collected wanting and liking ratings for all items in the MRI 
scanner twice, once before (pre- test session) and once after (post- test session) participants played a 
game on the computer where they won or lost 50% of the items (in order to have equal numbers of 
won and lost items for the statistical analysis). This allowed us to assess whether participants behav-
iorally distinguished between wanting and liking ratings, because based on our previous findings 
we expected that winning and losing items has dissociable effects on wanting and liking (Weber 
et al., 2018). Participants actually received the won items at the end of the experiment (i.e., after 
the post- test session). We therefore selected everyday items (e.g., batteries or candles – for the full 
list of items, see Weber et al., 2018) that should be both wanted and liked by the majority of our 
participants from the Zurich student population. To test the impact of pharmacologically manipu-
lating dopaminergic and opioidergic receptor activation on wanting and liking, participants received 
either naltrexone (N = 37), amisulpride (N = 40), or placebo (N = 39) prior to performing the task in 
the scanner.

First, we performed a sanity check whether participants distinguished between wanting and liking 
ratings by assessing the impact of winning versus losing items on wanting and liking ratings in the 
post- test session. As recommended for pre- test/post- test designs (Dugard and Todman, 1995), we 
regressed ratings in the post- test session on item- specific pre- test ratings. Moreover, we included 
predictors for Judgement (wanting versus liking), Item type (lost versus won), and the interaction 
terms. Contrary to our previous study (Weber et al., 2018), we observed no significant Judgement× 
Item type interaction, β = 0.50, t(111) = 1.61, p = 0.11, which does not replicate our previous result that 
winning versus losing items has dissociable effects on wanting versus liking of the items (Figure 1B 
and Table 1). However, separate analyses for wanting and liking ratings revealed no significant differ-
ence in wanting ratings between won and lost items, β = 0.29, t(115) = 0.64, p = 0.52, whereas liking 
was more strongly reduced for lost than for won items, β = 01.84, t(115) = 3.16, p = 0.002, with the 
latter effect replicating our result of decreased liking of lost versus won items (Weber et al., 2018).

Next, we assessed the impact of reducing dopamine and opioid receptor activity on wanting and 
liking judgements. We analyzed ratings (pre- and post- test) with predictors for Amisulpride (versus 
placebo), Naltrexone (versus placebo), Judgement, Session (pre- test versus post- test), and the inter-
action terms. This analysis provided evidence that reducing opioid neurotransmission differentially 
affected wanting and liking ratings, Naltrexone × Judgement, β = 7.02, t(125) = 2.36, p = 0.02, while 
we observed no significant effects for amisulpride, β = 3.79, t(126) = 1.30, p = 0.20 (Figure 1C and 
Table 2). Judgement type- specific analyses suggested that wanting ratings were significantly reduced 
under naltrexone (mean = 4.5, standard deviation [sd] = 1.0) relative to placebo (mean = 4.9, sd = 
1.0), β = –13.85, t(115) = 2.12, p = 0.04, Cohen’s d = 0.47, whereas amisulpride (mean = 4.9, sd = 1.0) 
showed no significant effects on wanting ratings relative to placebo, β = –1.39, t(116) = 0.22, p = 0.83, 
Cohen’s d = 0.05. Neither naltrexone (mean = 5.2, sd = 0.9) nor amisulpride (mean = 5.4, sd = 0.8) 
showed significant effects on liking relative to placebo (mean = 5.2, sd = 0.8), for both t < 1.17, p > 
0.24, Cohen’s d < 0.27. Taken together, our findings provide evidence for involvement of opioidergic 
neurotransmission in wanting judgements.

Amisulpride can show both pre- synaptic and post- synaptic effects depending on the adminis-
tered dose. To control for the possibility that the effective dose of amisulpride might vary between 
participants due to differences in body weight, we added the predictor body weight (as well as its 
interactions with all other factors) to the above reported regression model. While the Naltrexone 
× Judgement interaction remained significant, β = 7.99, t(124) = 2.69, p = 0.008, there were still 
no significant amisulpride effects, all t < 1.46, all p > 0.14. There was thus no evidence for dose- 
dependent effects of amisulpride on wanting or liking ratings.

To assess the robustness of these findings, we conducted also a non- hierarchical analysis of phar-
macological effects on wanting and liking ratings using the mean wanting and liking ratings across all 
items, determined separately for each participant and session (pre- test versus post- test). The analysis 
of wanting ratings replicated the significant main effect of naltrexone versus placebo, t(128) = 2.16, 
p = 0.03, while amisulpride showed no significant effect on mean wanting ratings, t(128) = 0.23, p = 
0.82. Mean liking ratings were neither affected by naltrexone, t(126) = 0.03, p = 0.98, nor amisulpride, 

https://doi.org/10.7554/eLife.71077
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t(126) = 1.22, p = 0.23. Thus, also the non- hierarchical analysis of aggregated mean data provided no 
evidence for significant amisulpride effects.

Opioid antagonism reduces wanting-related frontostriatal connectivity
Next, we investigated the neural mechanisms underlying the impact of opioid antagonism on wanting. 
Following the procedures from our previous study (Weber et  al., 2018), we first determined the 

Figure 1. Task procedure and behavioral results. (A) Participants rated in the MRI scanner how much they wanted 
or liked objects before (pre- test) or after (post- test) they won or lost these items in a game between the scanning 
sessions. (B) On each trial, a cue indicated whether a wanting or liking rating was required, followed by the 
presentation of the current object (here: a pick- up sticks game). Participants had to rate how much they wanted 
or liked the presented object within 3.5 s, then the next trial started after a variable inter- trial interval (mean = 3 s). 
(C) Liking ratings were significantly reduced for objects that were lost relative to won in the gamble, while wanting 
ratings did not significantly differ between lost versus won items. (D) The opioid antagonist naltrexone significantly 
reduced wanting ratings relative to placebo, while liking ratings were unaffected by naltrexone or the dopamine 
antagonist amisulpride. For illustration purposes, participant- specific mean wanting/liking ratings are plotted on 
a scale from 0 to 10, while the statistical analyses are conducted on the participant- and item- specific wanting and 
liking ratings. Error bars indicate standard error of the mean, black dots represent individual data points. *p < 0.05, 
***p < 0.001.

https://doi.org/10.7554/eLife.71077
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neural correlates of wanting and liking by computing GLM- 1 in which onset regressors for wanting 
and liking judgements were modulated by non- orthogonalized parametric modulators for wanting 
and liking ratings. Wanting ratings (independently of the required judgement type) correlated with 
activation in ventromedial prefrontal cortex (VMPFC; z = 7.32, whole- brain FWE- corrected, p < 0.001, 
peak = [0 44–7]), dorsolateral prefrontal cortex (DLPFC; z = 6.63, whole- brain FWE- corrected, p < 
0.001, peak = [–21 38 44]), and posterior cingulate cortex (PCC; z = 5.29, whole- brain FWE- corrected, 
p = 0.002, peak = [–3 –37 38]) (Figure 2A and Table 3). Liking ratings correlated with BOLD signal 
changes in more posterior parts of PCC (z = 4.37, whole- brain FWE- corrected, p = 0.02, peak = [–9 
–64 38]) (Figure 2B and Table 4). Moreover, we also replicated our previous finding that liking ratings 
correlate with activity in orbitofrontal cortex (OFC) when applying small- volume correction (SVC; 
anatomical mask for the OFC based on the wfupickatlas; z = 3.20, small- volume FWE- corrected, p = 
0.046, peak = [–21 50–4]). Together, these data replicate our previous findings that wanting and liking 
are correlated with activation in VMPFC and OFC, respectively. However, we observed no significant 
effects of naltrexone or amisulpride (relative to placebo) on these neural representations of wanting 

Table 1. Results of mixed general linear model 1 (MGLM- 1) on wanting and liking ratings in the 
post- test as function of Judgement (wanting versus liking), Item type (lost versus won), and Pre- test 
ratings.
Standard errors of the mean (SE) are in brackets.

Beta (SE) t- Value df p- Value

Intercept 0.21 (0.66) 0.32 119 0.75

Judgement –2.27 (0.64) 3.54 125 <0.001

Item type 0.07 (1.10) 0.07 98 0.95

Pre- test 79.87 (0.50) 158.30 124 <0.001

Judgement × Item type 2.01 (1.24) 1.62 109 0.11

Judgement × Pre- test 2.41 (0.61) 3.93 289 <0.001

Item type × Pre- test –1.62 (0.71) 2.26 133 0.03

Judgement × Item type × Pre- test 0.91 (0.90) 1.01 288 0.31

Table 2. Results for mixed general linear model 2 (MGLM- 2) assessing drug effects on wanting 
and liking ratings as function of Drug (amisulpride versus placebo and naltrexone versus placebo), 
Judgement (wanting versus liking), and Session (pre- test versus post- test).
Standard errors of the mean (SE) are in brackets.

Beta (SE) t- Value df
p- 
Value

Intercept 3.62 (5.50) 0.66 98 0.51

Amisulpride 2.37 (5.09) 0.47 114 0.64

Naltrexone –6.80 (5.19) 1.31 114 0.19

Judgement 4.38 (2.08) 2.11 125 0.04

Session –3.30 (1.98) 1.67 1612 0.10

Amisulpride × Judgement 3.79 (2.92) 1.30 126 0.20

Naltrexone × Judgement 7.02 (2.98) 2.36 125 0.02

Amisulpride × Session 0.02 (2.79) 0.00 1629 0.99

Naltrexone × Session 2.70 (2.84) 0.95 1618 0.34

Judgement × Session –1.09 (1.97) 0.55 1845 0.58

Amisulpride × Judgement × Session –1.50 (2.78) 0.54 1856 0.59

Naltrexone × Judgement × Session –2.95 (2.83) 1.04 1853 0.30

https://doi.org/10.7554/eLife.71077
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or liking in these regions (or at the whole- brain 
level), even at lenient statistical thresholds (p < 
0.001 uncorrected, cluster size >20 voxels).

GLM- 1 revealed no significant wanting- or 
liking- related striatal activation, which may appear 
surprising given the canonical role of the stri-
atum for reward processing (Bartra et al., 2013). 
However, this might be due to the fact that the 
parametric modulators for wanting and liking only 
explained unique variance (regressors were not 
orthogonalized), while striatal activation might 
be shared by wanting and liking. To test this, we 
computed two further GLMs, one (GLM- 3) where 
we orthogonalized liking with respect to wanting 
(such that the regressor for wanting explained the 
variance shared by wanting and liking) and one 
where we orthogonalized wanting with respect 
to liking (GLM- 4). In GLM- 3, we observed bilat-
eral wanting- related activation in the striatum (z = 
7.09, whole- brain FWE- corrected, p < 0.001, peak 
= [–9 11 –1]), PCC (z = 12.22, whole- brain FWE- 
corrected, p < 0.001, peak = [0 –28 25]), VMPFC 
(z = 11.13, whole- brain FWE- corrected, p < 
0.001, peak = [0 47 –7]), posterior parietal cortex 
(z = 8.42, whole- brain FWE- corrected, p < 0.001, 
peak = [–45 –67 35]), and DLPFC (z = 5.59, whole- 
brain FWE- corrected, p < 0.001, peak = [24 32 
47]). Likewise, in GLM- 4 liking ratings (including 
the variance shared with wanting) correlated with 
activation in striatum (z = 6.19, whole- brain FWE- 
corrected, p < 0.001, peak = [–9 14 –1]), PCC (z 
= 10.95, whole- brain FWE- corrected, p < 0.001, 
peak = [0 –31 35]), DLPFC (z = 7.77, whole- brain 
FWE- corrected, p < 0.001, peak = [–18 32 50]), 
VMPFC (z = 7.69, whole- brain FWE- corrected, p 
< 0.001, peak = [–3 50 –4]), and posterior parietal 
cortex (z = 6.13, whole- brain FWE- corrected, p < 
0.001, peak = [–45 –67 35]). Thus, both wanting 
and liking correlated with activation in regions 
belonging to the neural reward system. However, 

also in the GLMs with orthogonalized parametric modulators, we observed no effects of naltrexone 
or amisulpride (relative to placebo) on activations related to wanting (GLM- 3) or liking (GLM- 4) ratings 
even at lenient statistical thresholds (p < 0.001 uncorrected, cluster size >20 voxels).

Previous research showed that wanting- related prefrontal activation is functionally coupled with 
the ventral striatum depending on the behavioral relevance of wanting judgements (Weber et al., 
2018). Consistent with our previous finding, striatal activation was significantly correlated with wanting 
ratings when those were behaviorally relevant (wanting ratings on wanting trials in GLM- 2), z = 4.46, 
p = 0.003, peak = [–6 11 –1], small- volume FWE- corrected with anatomical mask for the striatum 
(Figure 2C). We note that wanting- related striatal activation did not survive FWE correction at the 
whole- brain peak level (p = 0.14, although it did survive whole- brain FWE correction at the cluster 
level, p < 0.001), such that this effect appears to be somewhat weaker than in our previous study 
(Weber et al., 2018).

We next assessed whether wanting- related prefrontal regions are functionally connected with 
the striatum by conducting a psychophysiological interaction (PPI) analysis with the striatum as seed 
region. To test whether the pharmacological manipulations changed the functional connectivity of the 

Figure 2. Neural correlates of (A) wanting and (B) 
liking independently of behavioral relevance. Wanting 
correlated with activation in dorsolateral prefrontal 
cortex (DLPFC), ventromedial prefrontal cortex 
(VMPFC), and posterior cingulate cortex (PCC) (whole- 
brain FWE- corrected). Liking correlated with activation 
in dorsal PCC (whole- brain FWE- corrected) and 
orbitofrontal cortex (small- volume FWE- corrected). (C) 
Wanting ratings significantly correlated with activation 
in the striatum during wanting judgements (small- 
volume FWE- corrected). Images are thresholded at p < 
0.001 uncorrected.

https://doi.org/10.7554/eLife.71077
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striatum with specifically wanting- related brain regions, we applied SVC within a mask of significant 
wanting- correlated voxels in DLPFC and VMPFC in GLM- 1 (thresholded with FWE at peak level, k = 
478). On wanting trials, we observed enhanced functional coupling between striatum and DLPFC as a 
function of increasing wanting ratings (wanting ratings on wanting trials: z = 3.87, small- volume FWE- 
corrected, p = 0.02, peak = [–21 41 41]), as to be expected given that both the DLPFC and the stri-
atum showed significant wanting- related activity. Moreover, DLPFC- striatum connectivity on wanting 
trials was stronger for wanting than for liking ratings (wanting > liking ratings on wanting trials: z = 
3.64, small- volume FWE- corrected, p = 0.04, peak = [–21 41 41]) (Figure 3A). The wanting- dependent 
DLPFC- striatum coupling is consistent with previous findings that connectivity between the stratum 
and prefrontal correlates of wanting depends on whether wanting judgements are behaviorally rele-
vant (Weber et al., 2018).

Next, we tested how our pharmacological manipulation changed functional connectivity between 
the striatum and wanting- related cortical regions. Compared with placebo, naltrexone increased 
DLPFC- striatum coupling for wanting relative to liking ratings on wanting trials (naltrexone > placebo 
for wanting > liking ratings on wanting trials: z = 3.81, small- volume FWE- corrected, p = 0.02, peak 
= [–18 35 38]) (Figure 3B). Moreover, the impact of naltrexone on DLPFC- striatum connectivity was 
significantly stronger on wanting than on liking trials, ((wanting > liking ratings)wanting trials > (wanting 
> liking ratings)liking trials- related connectivity in the naltrexone relative to the placebo group: z = 3.55, 
small- volume FWE- corrected, p = 0.05, peak = [–18 35 38]). Thus, the effects of naltrexone on fronto-
striatal connectivity were specific for wanting judgements. We observed no further regions showing 
significantly reduced wanting- related connectivity under naltrexone relative to placebo, and we also 
observed no significant differences between amisulpride and placebo as well as naltrexone and amisul-
pride. Thus, reducing opioid neurotransmission strengthened the functional connection between the 
striatum and prefrontal cortex when wanting judgements were behaviorally relevant.

Table 3. Anatomical locations and MNI coordinates of the peak activations correlating with wanting 
ratings in general linear model 1 (GLM- 1).
We report activations surviving whole- brain FWE correction at peak level (p < 0.05). Hem = 
Hemisphere (L = left, R = right); BA = Brodmann area.

MNI coordinates

Region Hem BA X Y Z k Z

VMPFC R/L 10 0 44 –7 439 7.32

DLPFC L 8 –21 38 44 39 6.63

L 8 –33 23 44 4 5.11

PCC L 23 -3 –37 38 39 5.29

R/L 23 0 –13 35 1 4.79

Anterior cingulate cortex R 32 6 35 11 3 5.27

Frontopolar cortex L 10 –12 65 20 1 4.82

Table 4. Anatomical locations and MNI coordinates of the peak activations correlating with liking 
ratings in general linear model 1 (GLM- 1).
We report activations surviving whole- brain FWE correction at peak level (p < 0.05). Hem = 
Hemisphere (L = left, R = right); BA = Brodmann area.

MNI coordinates

Region Hem BA X Y Z k Z

Dorsal PCC L 31 –9 –64 38 1 4.87

https://doi.org/10.7554/eLife.71077
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The observed drug effects on the neural level raise the question whether the impact of naltrexone 
on behavioral wanting ratings can statistically be explained by its influence on DLPFC- striatum connec-
tivity. For this purpose, we extracted parameter estimates from the significant DLPFC cluster for the 
(wanting > liking ratings)wanting trials- contrast and tested whether the impact of naltrexone on wanting 
ratings is mediated by the naltrexone effects on DLPFC- striatum connectivity (using quasi- Bayesian 
confidence intervals as implemented in the mediation package for R; Tingley et al., 2014). However, 
the test of the significance of the indirect path (which is the decisive criterion for the presence of a 
mediation effect; Zhao et al., 2010) showed no significant effect, ACME = –0.18, p = 0.06. Thus, the 
data do not provide sufficient evidence that naltrexone effects on behavior can be explained with 
modulation of frontostriatal connectivity. We also note that the main effect of naltrexone on wanting 
ratings remained significant when controlling for DLPFC- striatum connectivity, β = –8.48, t(76) = 2.54, 
p = 0.01, while DLPFC- striatum connectivity was stronger for more highly wanted items in the placebo 
group, β = 586, t(73) = 2.30, p = 0.02. We must therefore be careful with interpreting the naltrexone 
effects on brain connectivity as the potential cause for the behavioral drug effects.

For completeness, despite having observed no significant drug effects on liking in the behavioral 
analysis, we also performed whole- brain analyses assessing which brain regions show enhanced func-
tional connectivity as function of liking ratings. On liking trials, connectivity with the striatum was 
stronger for liking than for wanting ratings in OFC, (z = 3.16, small- volume FWE- corrected, p = 0.05, 
peak = [–33 50–7]), replicating our previous findings. However, no brain regions showed significant 
effects of naltrexone or amisulpride (relative to placebo) on liking- related connectivity with the stri-
atum even at low, exploratory statistical thresholds (p < 0.001, cluster size >20 voxels).

Figure 3. Effects of Judgement type and drug on parametric striatal connectivity. (A) On wanting trials (collapsed across drug groups), dorsolateral 
prefrontal cortex (DLPFC)- striatum connectivity was enhanced for wanting relative to liking aspects of rewards (image thresholded at p < 0.001 
uncorrected). (B) Wanting- related DLPFC- striatum coupling was significantly stronger under naltrexone compared with placebo (image thresholded 
at p < 0.001 uncorrected). (C, D) Extracted parameter estimates for DLPFC (as defined by the significant cluster in general linear model 1 [GLM- 1]), 
separately for wanting and liking judgements. (C) If wanting judgements were behaviorally relevant, naltrexone increased wanting relative to liking- 
related DLPFC- striatum connectivity. (D) No significant drug effects on DLPFC- striatum connectivity were observed on liking trials. Error bars indicate 
standard error of the mean, black dots represent individual data points. *p < 0.05.
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To assess the robustness of the naltrexone effects on wanting- related DLPFC- striatum connectivity, 
we extracted parameter estimates from the significant wanting- related DLPFC cluster in GLM- 1 and 
regressed the parameter estimates on predictors for Drug, Judgement, Relevance, and the interac-
tion terms (using the lmer function in R). The significant Naltrexone× Judgement × Relevance inter-
action, β = 6.0e- 03, t(452) = 2.46, p = 0.01, replicated the finding that naltrexone had dissociable 
effects on wanting and liking as a function of the behavioral relevance of these reward components. 
We also observed a significant Amisulpride × Relevance interaction, β = 4.1e- 03, t(452) = 2.42, p = 
0.02. Separate analyses for wanting and liking judgements revealed that in wanting trials DLPFC- 
striatum connectivity was enhanced for wanting compared with liking ratings under both naltrexone, 
Naltrexone× Relevance interaction, β = 5.6e- 03, t(226) = 3.19, p = 0.002, and amisulpride, Amisul-
pride × Relevance interaction, β = 4.1e- 03, t(226) = 2.35, p = 0.02 (Figure 3C). In contrast, liking 
judgements showed no significant effects of naltrexone or amisulpride relative to placebo, all t < 1.34, 
all p > 0.18 (Figure 3D). This result supports our findings based on SVC according to which naltrexone 
increases wanting- related relative to liking- related DLPFC- striatum connectivity on wanting trials, and 
hints at a similar function for amisulpride (though this was not evident in the SVC- based analysis).

Discussion
In animal models, the wanting and liking dimensions of rewards are processed by partly distinct brain 
regions and neurotransmitter systems, but in humans it remained unclear so far how opioidergic and 
dopaminergic systems orchestrate the processing of wanting and liking. The current findings provide 
evidence for dissociable roles of opioidergic neurotransmission in processing the two dimensions of 
rewards on both a behavioral and a neural level. Behaviorally, lowering opioidergic activation with 
naltrexone selectively reduced wanting, not liking, ratings for non- consumable goods. On a neural 
level, this reduction in wanting was reflected by changes in DLPFC- striatum connectivity: When 
wanting judgements were required, DLPFC- striatum connectivity was significantly stronger for the 
behaviorally relevant wanting ratings than for the irrelevant liking dimension of rewards.

Importantly, wanting- related functional coupling between DLPFC and striatum was significantly 
stronger under naltrexone than under placebo. This is consistent with recent findings relating opioid 
receptor inhibition with increased connectivity between the prefrontal control system and reward 
circuits (Elton et al., 2019; Lim et al., 2019) and suggesting prefrontal kappa opioid receptors to 
mediate the impact of naltrexone on drug craving in alcohol use disorder (de Laat et  al., 2019). 
Through corticostriatal loops, the striatum receives input from several cortical regions and can priori-
tize processing of behaviorally relevant information (Frank, 2011). DLPFC provides inhibitory input to 
the striatum and was shown to reduce wanting- related activation in the striatum (Dong et al., 2020; 
Koob and Volkow, 2010), consistent with the importance of frontostriatal loops for self- control (van 
den Bos et al., 2014). According to this view, the observed positive relationship between wanting 
ratings and DLPFC- striatum connectivity might indicate that DLPFC exerts top- down control over 
striatal representations of wanting predominantly for highly wanted items, whereas there may be less 
need for inhibitory top- down control for less desired goods (van den Bos et al., 2014). By strength-
ening DLPFC- striatum connectivity, naltrexone enhances top- down processes predominantly for highly 
wanted items, which would explain why lower wanting under naltrexone is associated with stronger 
DLPFC- striatum connectivity even though in the placebo group functional DLPFC- striatum coupling 
is increased for highly wanted items. In any case, because we observed no significant brain- behavior 
mediation effect (p = 0.06), the stronger DLPFC- striatum connectivity under naltrexone should not 
be interpreted as the cause for the changes in behavioral ratings under naltrexone. It is further worth 
noting that in the current study we observed significant effects predominantly in the left hemisphere. 
In the literature on frontostriatal connectivity during reward processing, both left- and right- lateralized 
effects were reported (van den Bos et al., 2014; van den Bos et al., 2015; Yuan et al., 2017). We 
therefore do not make any claims regarding whether this result pattern represents just a power issue 
or a truly lateralized effect.

Contrary to our hypotheses, we did not observe effects of naltrexone on liking or amisulpride 
effects on wanting. Interestingly, however, a recent study observed no influences of opioid and dopa-
mine antagonists on self- report wanting and liking ratings but only on experimental measures of these 
reward dimensions (Korb et al., 2020). In fact, previous studies reporting effects of dopaminergic 
manipulations on wanting operationalized wanting with experimental measures rather than self- report 
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(Soutschek et al., 2020a; Soutschek et al., 2020b; Weber et al., 2016), while studies using self- 
report ratings observed no or only weak effects of pharmacological manipulations (Case et al., 2016; 
Ellingsen et al., 2014; Løseth et al., 2019). In line with our previous study (Weber et al., 2018), we 
had decided to use self- report ratings to avoid the issue that implicit measures of liking such as face 
muscle activity are more open to alternative interpretations (Pool et al., 2016), but we acknowledge 
that implicit measures might be more sensitive to pharmacological interventions. Moreover, given 
that in our study participants had to provide liking ratings without being able to actually consume 
or handle the items, our measurements might have been less sensitive than those of other studies 
assessing the liking of consumed rewards (Buchel et al., 2018; Chelnokova et al., 2014; Eikemo 
et al., 2016). It is also worth noting that it has recently been suggested that amisulpride shows, if 
any, only weak effects on BOLD signal changes in the reward system (Grimm et al., 2020). We note 
though that in the same sample of participants amisulpride showed significant effects on tasks for 
cue reactivity and delay discounting (Weber et al., 2016), which were administered 2.5 hr after drug 
intake (while the rating task started 1 hr after drug intake). Due to this difference in timing, it is thus 
not possible to decide whether the different amisulpride effects on these tasks can be explained by 
different sensitivities of these tasks to dopaminergic manipulations or by the time course of amisul-
pride effects. In any case, one should thus be careful with interpreting these unexpected null findings 
as being inconsistent with previous pharmacological results manipulating dopaminergic activity with 
different compounds than amisulpride.

Interestingly, the ROI analysis provided some evidence for amisulpride effects on wanting at the 
neural level, as amisulpride increased wanting- related DLPFC- striatum connectivity, similar to the find-
ings for naltrexone. However, the impact of amisulpride on wanting- related frontrostriatal connectivity 
(gating) needs to be interpreted with caution, given the lack of significant amisulpride effects on 
behavior.

Our findings have important implications for clinical research, given that dysfunctions in wanting 
and liking are prevalent in several psychiatric disorders. Substance use disorders, for example, are 
characterized by increased wanting of drugs as reflected in craving symptoms (Berridge, 2012; 
Edwards, 2016), and craving has been linked to impairments in prefrontal top- down control over the 
striatum (Feil et al., 2010). Naltrexone is approved in several countries for the treatment of alcohol 
use disorder (Krystal et al., 2001; Srisurapanont and Jarusuraisin, 2005) and opioid dependence 
(Johansson et al., 2006) and was shown to reduce relapse risk and craving specifically in alcohol use 
disorder. Consistent with the view that naltrexone reduces the salience of drug cues by strengthening 
prefrontal activation (Courtney et al., 2016), we speculate that the beneficial effects of naltrexone 
on alcohol use and craving might be explained by increased top- down control of DLPFC over striatal 
wanting signals as a consequence of opioid receptor inhibition (but see Nestor et al., 2017). Our 
results may thus improve the understanding of neural mechanisms underlying pharmacological treat-
ments of dysfunctional wanting in substance use disorders.

Several limitations are worth mentioning. First, we did not assess wanting and linking prior to drug 
administration, such that we cannot control for potential baseline differences in wanting and liking 
between drug groups. Thus, it remains possible that the non- significant effects of amisulpride on 
wanting and of naltrexone on liking are caused by such pre- existing baseline differences, or that the 
sample size was not sufficient to detect these effects in a between- subject design. We also note that 
the doses for amisulpride and naltrexone might not have been pharmacologically equivalent. In fact, 
while 50 mg naltrexone produces 95% μ-opioid receptor occupancy (Weerts et al., 2008), 400 mg 
amisulpride leads to a lower dopamine receptor occupancy of 85% (Lako et al., 2013), which might 
be a further reason for why naltrexone showed stronger effects on behavior and brain activation than 
amisulpride. Lastly, while high doses of amisulpride (≥400  mg) reduce postsynaptic dopaminergic 
signaling, lower doses of amisulpride increase dopaminergic activity via presynaptic mechanisms 
(Schoemaker et al., 1997), but higher doses may also increase signaling at D1 receptors and thereby 
counteract the inhibitory effects on D2 neurotransmission. As the effective dose of amisulpride might 
differ between participants (Sescousse et al., 2016), one might argue that presynaptic and postsyn-
aptic effects of dopamine might have canceled out across participants, leading to the observed null 
effect of amisulpride on behavior on the group level. However, contrary to this view, we observed no 
significant amisulpride effects even when controlling for body weight as proxy for effective dose, and 
we note that in previous studies we had observed effects of 400 mg amisulpirde on behavior (Burke 
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et al., 2018; Soutschek et al., 2017) and multivariate neural data (Kahnt et al., 2015). It seems thus 
unlikely that the null effects of amisulpride on the rating task can be explained solely by the chosen 
dosage.

Taken together, our findings deepen our understanding of the neurochemical mechanisms medi-
ating the impact of wanting of rewards on behavior. Opioid receptors are involved in the modulation 
of the strength of inhibitory prefrontal input to the striatum encoding the behavioral relevance of 
the wanting dimension of rewards. These insights into the interactions between neuroanatomical 
and neurochemical brain mechanisms implementing wanting- driven approach behavior advance our 
understanding of the mechanisms underlying pharmacological treatments of substance use disorders.

Materials and methods
Participants
A total of 121 healthy volunteers (58 females; Mage = 21.8 years, range = 18–30), recruited via email 
from the internal pool of the Laboratory for Social and Neural Systems Research (which includes 
mainly students from the University of Zurich and ETH Zurich), participated in the study. According 
to power analysis assuming the effect size (Cohen’s d = 0.65) from a previous study in our lab on the 
impact of amisulpride on value representations in the neural reward system (Kahnt et al., 2015), 38 
participants per group allow detecting a significant effect (alpha = 5%) with a power of 80%. The 
goal of the power analysis was to optimize the sample size for finding drug effects on neural reward 
signals. However, given the differences between the current study design and the study by Kahnt 
et al., 2015, we note that the power might not have been optimal for all statistical tests in the current 
investigation (e.g., drug effects on explicit ratings or functional connectivity). Three participants were 
excluded from the analysis due to response omissions in more than 30% of all trials in the rating task 
(see below), two further participants were excluded because of excessive head movement (>5 mm in 
one of the six head motion parameters) in the scanner. Thus, the final sample comprised 116 partic-
ipants (placebo: N = 39; naltrexone: N = 37; amisulpride: N = 40). Drug groups were matched with 
regard to age (p = 0.40), sex (p = 0.34), years of education (p = 0.45), and BMI (p = 0.29). Participants 
were screened prior to participation for exclusion criteria including history of brain disease or injury, 
surgery to the head or heart, and neurological or psychiatric diseases (including alcohol use disorder, 
depression, schizophrenia, bipolar disorders, claustrophobia, or Parkinson symptoms) via paper- pencil 
questionnaires. Further exclusion criteria were a severe medical disease such as diabetes, cancer, 
insufficiency of liver or kidneys, acute hepatitis, high or low blood pressure, any cardiovascular inci-
dences, epilepsy, pregnancy or breastfeeding, past use of opiates or other drugs that may interact 
with amisulpride or naltrexone (such as stimulants). A qualitative drug urine screening test (M- 10/5- DT, 
Diagnostik Nord, Schwerin, Germany) was performed to rule out illicit drug use prior the test session 
(amphetamines, barbiturates, buprenorphine, benzodiazepines, cannabis, cocaine, MDMA, metha-
done, and morphine/opiates). All participants provided written informed consent. For their partici-
pation, they received 40 Swiss francs per hour. The study was approved by the Ethics Committee of 
the Canton of Zurich and was part of a larger project where we investigated also pharmacological 
effects on Pavlovian- to- instrumental transfer and delay discounting (published in Weber et al., 2016). 
These tasks were administered after the rating task reported in the current manuscript (3 hr after drug 
intake). The larger project (though not the rating task) was preregistered on https://www. clinicaltrials. 
gov/ (NCT02557984).

Procedure
Participants received a pill containing either placebo (N = 40), 400 mg amisulpride (N = 41) or 50 mg 
naltrexone (N = 40) in a randomized and double- blind manner 3 hr before performance of the exper-
imental tasks. Amisulpride is a selective dopamine D2/D3 receptor antagonist, whereas naltrexone is 
an unspecific opioid receptor antagonist that acts primarily on the μ- and κ-opioid receptors, with 
lesser and more variable effects on δ-opioid receptors (Rosenzweig et  al., 2002; Weerts et  al., 
2008). We asked participants to fast for 6 hr before arrival at the lab. One hour after drug intake, 
participants started the wanting/liking rating task (see below) in the MRI scanner, which took approx-
imately 90 min. The (first) peak in plasma concentration for amisulpride is after 60 min (Rosenzweig 
et  al., 2002), whereas for naltrexone the peak is after 120 min (Verebey et  al., 1976), such that 
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participants performed the rating task around peaks in average plasma concentration. After task 
completion, participants answered post- experimental questionnaires, which probed whether they 
thought they had received a drug or placebo, and measured their mood (one rating was not recorded 
in the placebo group). We determined amisulpride and naltrexone blood plasma levels immediately 
before and after the behavioral tasks with high- performance liquid chromatography–mass spectrom-
etry in order to control for the pharmacokinetics of the drugs.

Task design
Participants performed a task in which they had to rate how much they wanted or liked 40 non- 
consumable everyday items (Weber et al., 2018). Before performing the rating task in the scanner, we 
familiarized participants with the items by physically presenting all items to them. The rating task was 
implemented in Matlab (The MathWorks, Natick, MA) and the Cogent 2000 toolbox. We asked partic-
ipants to rate each item according to how much they wanted to have it, as well as how much they liked 
the item at that moment. In each trial, participants first saw a cue indicating the type of rating (wanting 
or liking) (1 s), followed by an image of the item (3 s), and finally the rating screen (3.5 s). Ratings were 
provided on a continuous scale using a trackball. Trials were separated by a variable intertrial interval 
(mean 3 s). Each item was rated twice for wanting and twice for liking, resulting in 160 trials split into 
four runs before the game (pre- test) and four runs after the game (post- test). Between the pre- test 
and post- test experimental sessions, participants played a game inside the scanner in which they 
could win the items. The game consisted of a perceptual task in which participants had to indicate 
whether the item was presented to the left or the right of the midpoint of the screen. Participants won 
items that they classified correctly. The difficulty of the game was calibrated such that participants won 
and lost 50% of the items.

MRI data acquisition and preprocessing
Whole- brain scanning was performed with a Philips Achieva 3T whole- body MRI scanner equipped 
with an eight- channel head coil (Philips, Amsterdam, The Netherlands). For each of the eight scan-
ning runs, 227 T2*-weighted whole- brain EPI images were acquired in ascending order. Each volume 
consisted of 33 transverse axial slices, using field of view 192 mm × 192 mm × 108 mm, slice thickness 
2.6 mm, 0.7 mm gap, in- plane resolution 2 mm × 2 mm, matrix 96 × 96, repetition time (TR) 2000 ms, 
echo time (TE) 25 ms, flip angle 80°. Additionally, a T1- weighted turbo field echo structural image was 
acquired for each participant with the same angulation as applied to the functional scans (181 slices, 
field of view 256 mm × 256 mm × 181 mm, slice thickness 1 mm, no gap, in- plane resolution 1 mm × 
1 mm, matrix 256 × 256, TR 8.4 ms, TE 3.89 ms, flip angle 8°).

Preprocessing was performed with SPM 12 (https://www. fil. ion. ucl. ac. uk/ spm/). The functional 
images of each participant were motion corrected, unwarped, slice- timing corrected (temporally 
corrected to the middle image), and co- registered to the anatomical image. Following segmentation, 
we spatially normalized the data into standard MNI space. Finally, data were smoothed with a 6 mm 
FWHM Gaussian kernel and high- pass filtered (filter cutoff = 128 s).

Behavioral data analysis
Behavioral data in the rating task were analyzed with mixed general linear models (MGLMs) using 
the lme4 package in R. The alpha threshold was set to 5% (two- tailed). Degrees of freedom and 
p- values were computed using the Satterthwaite approximation with the lmerTest package. To repli-
cate our previous findings that winning versus losing items has dissociable effects on wanting and 
liking ratings, we regressed item- specific ratings in the post- test session on fixed- effect predictors for 
Judgement (wanting versus liking), Item type (lost versus won), z- transformed item- specific ratings in 
the pre- test, and all interaction terms (MGLM- 1). All these predictors were also modeled as random 
slopes in addition to participant- specific random intercepts. We also performed separate analyses 
for wanting and liking ratings (MGLM- 2) where post- test item- specific ratings were predicted by Item 
type and Pre- test ratings.

To assess drug effects on wanting and liking ratings, we regressed session- and item- specific 
ratings on fixed- effect predictors for Drug (amisulpride versus placebo and naltrexone versus 
placebo), Judgement, Session (pre- test versus post- test), and the interaction effects (MGLM- 3). All 
fixed effects varying on the individual level (i.e., Judgement, Session, and Judgement × Session) were 
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also modeled as random effects in addition to participant- specific intercepts. Again, we performed 
separate analyses for wanting and liking (MGLM- 4), which were identical to MGLM- 3 but left out all 
predictors for Judgement.

MRI data analysis
To investigate drug effects on neural activation related to wanting and liking ratings, we computed 
two GLMs, following previous procedures (Weber et al., 2018). GLM- 1 included an onset regressor 
for the presentation of the current item and the rating bar (duration = 7  s). This onset regressor 
was modulated by three mean- centered parametric modulators, that is, mean session- specific and 
item- specific wanting and liking ratings as well as decision times (to control for choice difficulty). The 
mean item- specific correlation between wanting and liking ratings was r = 0.71. We did not orthogo-
nalize the parametric modulators, such that the results for the regressors reflect the unique variance 
explained by wanting or liking ratings. A separate regressor modeled all items for which no session- 
and item- specific value could be computed due to response omissions. GLM- 2 was identical to GLM- 1 
with the only difference that it included separate onset regressors for wanting and liking trials. In 
GLM- 2, the onset regressors for wanting and liking trials were modulated by parametric modulators 
for both wanting and liking ratings, which allowed assessing judgement- specific (e.g., wanting ratings 
on wanting trials) and judgement- unspecific (e.g., liking ratings on wanting trials) neural correlates of 
wanting and linking (Weber et al., 2018). Finally, we computed two further models, one where the 
liking regressor in GLM- 1 was orthogonalized with respect to wanting (such that the regressor for 
wanting contained the variance shared by wanting and liking; GLM- 3) and one where wanting was 
orthogonalized with respect to liking (GLM- 4). In all models, the regressors were convolved with the 
canonical hemodynamic response function in SPM. We also added six movement (three translation 
and three rotation) parameters as covariates of no interest.

For statistical analysis, we first computed the following participant- specific contrasts: For GLM- 1, 
we computed parametric contrasts for wanting ratings and liking ratings (independently of judgement 
type) in GLM- 1. For the second- level analysis, we entered the contrast images from all participants in 
a between- participant, random effects analysis to obtain statistical parametric maps. First, we investi-
gated the neural correlates of wanting and liking independently of administered drug and conducted 
whole- brain second- level analyses using one- sample t-tests. To assess drug effects, we employed 
second- level independent t- tests for naltrexone versus placebo as well as amisulpride versus placebo. 
For these analyses, we report results that survive whole- brain family- wise error corrections at the peak 
level. In the figures, we set the individual voxel threshold to p < 0.001 with a minimal cluster extent of 
k ≥ 20 voxels. Results are reported using the MNI coordinate system.

PPI analysis
To examine how our pharmacological manipulations modulated the frontostriatal connectivity of 
wanting and liking, we conducted a whole- brain PPI analysis with the striatum as seed region. We 
defined the seed region by building a sphere (diameter = 6 mm) around the coordinates of wanting- 
related striatum activation in GLM- 2 (MNI coordinates: x = –6, y = 11, z = –1). To create the regres-
sors for the PPI analysis, we first extracted the average time course from the seed region for each 
individual participant (physiological regressor). We then multiplied the physiological regressor with 
psychological regressors for (i) wanting ratings on wanting trials, (ii) liking ratings on wanting trials, (iii) 
liking ratings on liking trials, and (iv) wanting ratings on liking trials. Next, we computed a GLM (PPI- 1) 
that included the interaction terms, the physiological regressor, and the psychological regressors. We 
also added separate onset regressors for wanting and liking trials as well as movement parameters 
as regressors of no interest. For the statistical analysis, we computed contrasts for wanting ratings on 
wanting trials, wanting > liking ratings on wanting trials, liking ratings on liking trials, and finally liking > 
wanting ratings on liking trials. We submitted these contrasts to a second- level analysis to yield statis-
tical parametric maps with a one- sample t- test. Because GLM- 1 revealed wanting ratings to correlate 
with activation in DLPFC and VMPFC, we tested whether the striatum seed region shows functional 
connectivity with DLPFC and VMPFC. For this purpose, we applied SVC with a mask that included the 
significant wanting- correlated voxels in bilateral VMPFC and DLPFC from GLM- 1 (thresholded with 
FWE correction at the voxel level). Additionally, we also performed exploratory whole- brain analyses.
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