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Abstract

In the era of personalized medicine with more and more patient-specific targeted therapies being used, we need reliable, dynamic,
faster and sensitive biomarkers both to track the causes of disease and to develop and evolve therapies during the course of
treatment. Metabolomics recently has shown substantial evidence to support its emerging role in disease diagnosis and prognosis.
Aside from biomarkers and development of therapies, it is also an important goal to understand the involvement of mitochondrial
DNA (mtDNA) in metabolic regulation, aging and disease development. Somatic mutations of the mitochondrial genome are
also heavily implicated in age-related disease and aging. The general hypothesis is that an alteration in the concentration of
metabolite profiles (possibly conveyed by lifestyle and environmental factors) influences the increase of mutation rate in the
mtDNA and thereby contributes to a range of pathophysiological alterations observed in complex diseases. We performed an
inverted mitochondrial genome-wide association analysis between mitochondrial nucleotide variants (mtSNVs) and concentration
of metabolites. We used 151 metabolites and the whole sequenced mitochondrial genome from 2718 individuals to identify the
genetic variants associated with metabolite profiles. Because of the high coverage, next-generation sequencing-based analysis of
the mitochondrial genome allows for an accurate detection of mitochondrial heteroplasmy and for the identification of variants
associated with the metabolome. The strongest association was found for mt715G > A located in the MT-12SrRNA with the metabolite
ratio of C2/C10:1 (P-value = 6.82∗10−09, β = 0.909). The second most significant mtSNV was found for mt3714A > G located in the MT-
ND1 with the metabolite ratio of phosphatidylcholine (PC) ae C42:5/PC ae C44:5 (P-value = 1.02∗10−08, β = 3.631). A large number
of significant metabolite ratios were observed involving PC aa C36:6 and the variant mt10689G > A, located in the MT-ND4L gene.
These results show an important interconnection between mitochondria and metabolite concentrations. Considering that some of
the significant metabolites found in this study have been previously related to complex diseases, such as neurological disorders
and metabolic conditions, these associations found here might play a crucial role for further investigations of such complex
diseases. Understanding the mechanisms that control human health and disease, in particular, the role of genetic predispositions
and their interaction with environmental factors is a prerequisite for the development of safe and efficient therapies for complex
disorders.
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Introduction
Genome-wide association studies (GWASs) have identi-
fied a number of genetic polymorphisms that convey
an increased risk for developing diseases (1). How-
ever, the results of GWAS have not fully responded
to initial expectations. The biological effect of many
genes found associated with a particular disease can-
not be explained so far. More surprising is the fact
that, even when combining all available GWAS on a
particular disorder, polymorphisms usually associated
explain <5–10% of the risk of disease (1). However,
by only associating genotypes with clinical outcomes,
little can be inferred about the underlying disease-
causing mechanisms. On the other hand, GWAS with
metabolic traits as intermediate phenotypes (GWAS-
metabolomics) have identified genetically determined
variants in metabolic phenotypes that exhibit large effect
sizes (2,3).

Recently, GWAS on the mitochondrial genome (mtG-
WAS) have also provided some new insights into the
mechanisms underlying several complex diseases (4–
6). Genetic variants that associate with changes in the
homeostasis of key lipids, carbohydrates or amino acids
are not only expected to display much larger effect sizes
owing to their direct involvement in metabolite con-
version and modification but may also provide more
details on potentially affected pathways and may be
more directly related to the etiology of the disease (2).

Mitochondrial DNA (mtDNA), which has a length of
∼16.6 kb, codes for 13 subunits of the mitochondrial
respiratory chain complexes, 2 ribosomal (rRNA) genes
and 22 transfer RNA (tRNA) genes that are required for
mitochondrial protein synthesis. Mitochondria consume
oxygen and substrates to generate energy in the form
of adenosine triphosphate (ATP) while producing reac-
tive oxygen species (ROS), also known as free radicals,
in the process. While ROS have important roles in cell
signaling and homeostasis, ROS levels can increase dras-
tically and cause significant damage to the DNA, thereby
altering the membrane permeability and calcium home-
ostasis along with increasing the heteroplasmic mtDNA.
This damage is termed oxidative stress. High levels of
oxidative stress may damage cellular structures which,
in turn, can lead to mitochondrial dysfunction, possibly
even to apoptosis.

Mitochondrial mutations can either be somatic or
inherited through the maternal line (7). Since many
mtDNA copies are present in a cell and as owing to
their high mutation rate [on average, 20 times higher
than for nuclear DNA (nDNA)], new somatic mutations
may arise only in a subfraction of mtDNA molecules,
and consequently, mutant and wild-type mtDNA can
co-exist (8). This effect is called heteroplasmy. mtDNA
heteroplasmy varies among different human tissues
and increases with age, suggesting that the majority
of mtDNA heteroplasmies are acquired rather than
inherited (9). Research suggests that the progressive

accumulation of mutations in the mitochondria over a
person’s lifetime may play a central role in aging and in
many human diseases.

A relationship that has not been investigated to
date is the one between mitochondrial genetic variants
and metabolomics (mtGWAS-metabolomics). The most
prominent role of mitochondria is not only to generate
large quantities of ATP but also to regulate many
metabolic tasks (10,11), such as signaling through
mitochondrial ROS (12), regulation of the membrane
potential (11), apoptosis-programmed cell death (13,14),
regulation of cellular metabolism (14), certain heme
synthesis reactions (15) and steroid synthesis (16).

The general hypothesis is that an alteration in the
concentration of metabolite profiles (possibly conveyed
by lifestyle and environmental factors) influences the
increase of mutation rate in the mtDNA and thereby
contributes to a range of pathophysiological alterations
observed in complex diseases. Based on this hypothesis,
the rationale for the present research is the establish-
ment of mitochondrial and metabolomic signatures as
a panel of candidate biomarkers for the prediction and
early diagnosis of disease as well as monitoring of disease
progression.

In this study, we conducted association analyses
between 151 metabolites and the whole sequenced
mitochondrial genome from 1163 individuals to identify
genetic variants influencing metabolite profiles. Because
of the high coverage, next-generation sequencing (NGS)
allows us a deeper and more accurate analysis of the
mitochondrial genome for identification of disease-
causing variants and heteroplasmy than mitochondrial
nucleotide variants (mtSNV) allele intensities measured
by genotyping arrays.

Results
We conducted a GWAS with metabolite ratios using 151
metabolic traits in a group of 1163 KORA-F4 individuals
with sequenced mitochondria covering 9172 mtSNVs.
Linear regression analysis was also conducted for each
of 151 metabolites, but the results were by all individual
metabolite not significant.

The significant P-values are plotted in Figure 2. The x-
axis represents the mitochondrial genome, showing the
position and relative size of each of the 13 major mito-
chondrial genes. An mtSNV was considered as significant
not only when the P-value was <1.257545∗10−05 after
Meff correction but also when the metabolite ratio P-
gain was >151, i.e. the total number of metabolites. In
total, we observed 404 mtSNVs that display metabolite
ratio associations at a genome-wide significance level.
Table 1 shows the information of the 40 most significant
results.

The most significant mtSNV, mt715G > A located in the
MT-12SrRNA, was associated with the metabolite ratio
acetylcarnitine/decenoylcarnitine (P-value = 6.82∗10−9,
β = 0.909). Following in significance is mt3714A > G located
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Table 1. Estimates of the model parameters for the 40 most significant mtSNVs

MT-Gene Position mtSNV Allele Function MAF Metabolite ratio
short_name

Beta P-value Metabolite class

12SrRNA 715 – G > A – – C2/C10:1 0.909 6.82∗10−09 Acylcarnitine/acylcarnitine

ND1 3714 rs386828920 A > G Synonymous 0.0002 PC ae C42:5/PC ae C44:5 3.631 1.02∗10−08 Glycerophospholipid/glycerophospholipid

ND4L 10 689 rs879102108 G > A Missense 0.00139 PC ae C34:2/PC aa C36:6 0.637 1.92∗10−08 Glycerophospholipid/glycerophospholipid

ND4 11 050 rs1603223077 T > C Synonymous 0.0002 PC aa C34:2/SM:C18:0 2.226 3.62∗10−08 Glycerophospholipid/sphingolipid

ND4L 10 689 rs879102108 G > A Missense 0.00139 PC ae C36:3/PC aa C36:6 0.637 5.12∗10−08 Glycerophospholipid/glycerophospholipid

ATP6 9071 rs1603222032 C > T Missense 0.0007 PC aa C34:3/PC aa C32:2 1.286 6.75∗10−08 Glycerophospholipid/glycerophospholipid

ND4 11 050 rs1603223077 T > C Synonymous 0.0002 PC ae C36:2/SM (OH)

C16:1

2.399 6.87∗10−08 Glycerophospholipid/sphingolipid

ND5 12 994 rs1603223993 G > A Missense – PC ae C40:1/PC ae C38:0 1.255 8.57∗10−08 Glycerophospholipid/glycerophospholipid

CYB 15 428 rs1603225270 G > A Missense – PC aa C36:5/PC aa C32:2 0.434 1.01∗10−07 Glycerophospholipid/glycerophospholipid

ND4L 10 645 – T > C – – SM:C26:0/PC aa C38:5 0.684 1.01∗10−07 Sphingolipid/glycerophospholipid

CO2 7976 rs377368526 G > A Missense – PC ae C36:1/PC aa C36:6 0.839 1.03∗10−07 Glycerophospholipid/glycerophospholipid

CO2 7809 – T > C – – SM (OH) C14:1/SM:C16:1 1.169 1.33∗10−07 Sphingolipid/sphingolipid

ND4L 10 689 rs879102108 G > A Missense 0.00139 PC ae C34:3/PC aa C36:6 0.589 1.44∗10−07 Glycerophospholipid/glycerophospholipid

ATP8 8477 rs1603221517 T > C Missense 0.0007 PC aa C40:6/PC aa C42:2 0.556 1.48∗10−07 Glycerophospholipid/glycerophospholipid

ND5 14 141 – T > C – – SM (OH) C16:1/C6:1 0.895 1.69∗10−07 Sphingolipid/acylcarnitine

ND4L 10 645 – T > C – – SM:C26:0/PC aa C36:5 0.478 1.93∗10−07 Sphingolipid/glycerophospholipid

ND4L 10 689 rs879102108 G > A Missense 0.00139 PC ae C36:1/PC aa C36:6 0.766 2.22∗10−07 Glycerophospholipid/glycerophospholipid

ND4L 10 689 rs879102108 G > A Missense 0.00139 PC ae C36:2/PC aa C36:6 0.637 2.49∗10−07 Glycerophospholipid/glycerophospholipid

CO1 6207 – T > C – – SM (OH) C16:1/C5:1-DC 0.744 3.29∗10−07 Sphingolipid/glycerophospholipid

ND4L 10 689 rs879102108 G > A Missense 0.00139 SM (OH) C14:1/PC aa

C36:6

0.62 4.04∗10−07 Sphingolipids/glycerophospholipid

ND4 11 342 – A > G – – PC ae C40:2/C16:2-OH 0.816 4.22∗10−07 Glycerophospholipid/acylcarnitine

ND4L 10 689 rs879102108 G > A Missense 0.00139 PC ae C38:3/PC aa C36:6 0.688 4.58∗10−07 Glycerophospholipid/glycerophospholipid

ND4L 10 689 rs879102108 G > A Missense 0.00139 PC aa C28:1/PC aa C36:6 0.726 4.82∗10−07 Glycerophospholipid/glycerophospholipid

ATP6 9031 rs1556423594 C > T Synonymous 0.0002 PC ae C42:5/PC ae C44:5 3.21 5.03∗10−07 Glycerophospholipid/glycerophospholipid

ND5 13 356 rs1603224159 T > C Synonymous 0.0006 C9/lysoPC a C17:0 0.853 5.43∗10−07 Acylcarnitine/glycerophospholipid

ND4 11 088 – T > C – – C14:1-OH/C16:2-OH 0.849 6.34∗10−07 Acylcarnitine/acylcarnitine

CO1 7279 rs1603220861 T > C Missense 0.0007 C4/C5:1-DC 0.615 6.36∗10−07 Acylcarnitine/glycerophospholipid

ND4 10 775 rs879015842 G > A Missense 0.0002 PC aa C32:3/SM (OH)

C24:1

1.485 6.51∗10−07 Glycerophospholipid/sphingolipid

tRNA 3241 – A > G – – PC ae C40:1/PC aa C42:2 0.966 7.30∗10−07 Glycerophospholipid/glycerophospholipid

ND4L 10 689 rs879102108 G > A Missense 0,00139 PC ae C34:1/PC aa C36:6 0.694 7.37∗10−07 Glycerophospholipid/glycerophospholipid

ND5 14 141 – T > C – – SM (OH) C16:1/C14:2-OH 0.794 7.60∗10−07 Sphingolipid/acylcarnitine

tRNA 10 031 rs200048690 T > C – 0.00186 C6 (C4:1-DC)/C16 1.221 7.67∗10−07 Acylcarnitine/acylcarnitine

12SrRNA 856 rs1603218502 A > G – 0.0007 SM (OH) C16:1/lysoPC a

C28:1

0.873 7.76∗10−07 Sphingolipid/glycerophospholipid

CO3 9441 – C > T – – PC ae C38:4/PC aa C32:0 0.913 8.07∗10−07 Glycerophospholipid/glycerophospholipid

CO1 7115 – C > T – – PC ae C38:2/PC ae C40:0 1.102 8.10∗10−07 Glycerophospholipid/glycerophospholipid

ND5 12 825 – T > C – – lysoPC a C14:0/PC aa

C38:5

0.762 8.95∗10−07 Glycerophospholipid/glycerophospholipid

CYB 15 373 rs1556424578 A > G Synonymous – PC aa C40:5/PC aa C40:4 2.546 9.36∗10−07 Glycerophospholipid/glycerophospholipid

ND1 3392 – G > A – – PC aa C40:3/SM:C16:0 1.075 9.72∗10−07 Glycerophospholipid/sphingolipids

ND4 11 493 – G > A – – PC aa C30:0/PC ae C38:4 0.754 9.78∗10−07 Glycerophospholipid/glycerophospholipid

ND4L 10 689 rs879102108 G > A Missense 0.00139 PC ae C40:3/PC aa C36:6 0.649 9.92∗10−07 Glycerophospholipid/glycerophospholipid

Legend: Genomic position in base pairs (bp), alleles, rs_number, point mutation, and MAF are based on the NCBI dbSNP GRCh38 human genome assembly (rCRS,
GeneBank ID NC_012920.1). Notes: MAF refers to the frequency with which the second most common allele occurs as homoplasmy in the population used by NCBI
(how many individuals have only the alternative allele). In the current analysis, MAF was not used, and we used the measure heteroplasmy using individual-level
allele frequencies obtained from counts values as proposed by (4). Alleles are given in terms of major > minor allele. Nominal P-values are provided for each Beta.
mtSNV: mitochondrial single nucleotide variant; MT-Gene: mitochondrial gene.

in the MT-ND1, which was associated with the metabolite
ratio phosphatidylcholine (PC) acyl-alkyl C42:5/PC acyl-
alkyl C44:5 (P-value = 1.02∗10−8, β = 3.631).

More details about the estimated model parameters
for each significant mtSNV are given in Supplementary
Material, Table S1.

It can be observed that a large percentage (15%) of
the most significant mtSNVs is located in the MT-ND4L
(Fig. 3). They are mostly associated with metabolites from
the glycerophospholipid class. The variant mt10689G > A,
located in the ND4L gene is of special interest because it
is associated with 16 different metabolite ratios, making
it the most common multi-associated mtSNV in our
dataset. Moreover, in all these 16 ratios, the metabolite
PC diacyl C36:6 (PC aa C36:6) is involved (Fig. 2).

Discussion
This study was carried out with the aim of investi-
gating the relationship between the metabolite ratios
and the genetic variants of the mtDNA. The general
hypothesis is that an alteration in the concentration of
metabolite profiles (possibly conveyed by lifestyle
and environmental factors) influences the increase of
mutation rate in the mtDNA and thereby contributes to
a range of pathophysiological alterations observed in
complex diseases.

Decenoylcarnitine/acetylcarnitine associated
with MT-12SrRNAmt715G > A gene
The strongest association was found for mt715G > A

located in the MT-12SrRNA with the metabolite ratio
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acetylcarnitine (C2)/decenoylcarnitine (C10:1) (P-value =
6.82∗10−9, β = 0.909). This association may play a crucial
role in the regulation of insulin secretion.

C2 is broken down in the blood by plasma esterases
to carnitine which is used by the body to transport
fatty acids into the mitochondria for breakdown and
thus may have a role in normalizing intracellular
lipid metabolism. It is known that C2 levels are low
in patients with type 1 and type 2 diabetes mellitus
(17). Furthermore, therapy with C2 ameliorated arterial
hypertension, insulin resistance, impaired glucose toler-
ance and hypoadiponectinemia in subjects at increased
cardiovascular risk (18). It has also been reported that
oral administration of acetylcarnitine increases insulin
sensitivity and glucose tolerance in individuals with a
low glucose disposal rate (19).

C10:1 is considered to be a fatty ester lipid molecule.
This metabolite was found to be associated not only
with type 2 diabetes but also with prediabetic states (20).
In addition, C10:1 is used in the diagnosis of genetic
disorders, such as fatty acid oxidation disorders (21), in
which insulin plays a crucial role.

In humans, MT-12SrRNA is encoded by the MT-RNR1
gene. The MT-RNR1 gene encodes for a protein respon-
sible for regulating insulin sensitivity and metabolic
homeostasis (22). The protein acts as an inhibitor
of the folate cycle, thereby reducing de novo purine
biosynthesis, which leads to the accumulation of the de
novo purine synthesis intermediate 5-aminoimidazole-
4-carboxamide and the activation of the metabolic
regulator 5′-AMP-activated protein kinase.

Interestingly, the concentration of C2 and C10:1 has
been observed to increase during physical exercise
(23,24). It is well known that insulin levels typically
decrease during exercise.

In this context, our results show that an alteration
of C2/C10:1 levels in serum increases the ratio of
heteroplasmy at mt715G > A which, in turn, can lead to
MT-12SrRNA dysfunction, possibly even to affect insulin
regulation.

Phosphatidylcholine acyl-alkyl C42:5 (PC ae
C42:5)/PC acyl-alkyl C44:5 (PC ae C44:5) is
associated with the MT-ND1mt3714A > G gene
The second most significant mtSNV was found for
mt3714A > G located in the MT-ND1 with the metabolite
ratio PC ae C42:5/PC ae C44:5 (P-value = 1.02∗10−08,
β = 3.631). This association may play a crucial role in
disorders related to damage or disease that affects the
brain.

Both metabolites involved in this ratio are PC, which
are included in the glycerophospholipid class. Glyc-
erophospholipids are the main component of biological
membranes, providing them with stability, fluidity and
permeability. Glycerophospholipids are actively catabo-
lized by brain tissue and are involved in the regulation of
several molecular functions, such as generation of sec-
ond messengers, apoptosis, antioxidant and membrane

fusion and regulation of enzyme activities (25). A marked
deficit in glycerophospholipid concentration may be
responsible for the neurodegeneration observed in
neurological disorders (26). In particular, alteration in PC
metabolism has been observed in Alzheimer, Parkinson
and with an increased risk of dementia (27–29). Several
studies have used dietary intake of PC in clinical trials
treating brain diseases, resulting with an improvement
of the memory, capability of learning and cognitive
performances (28,30,31). Recently, supplementation with
PC has been also associated with a reduced risk of
dementia (29).

The MT-ND1 gene encodes for the NADH–ubiquinone
oxidoreductase chain 1 protein, a subunit of NADH dehy-
drogenase, which is located in the mitochondrial inner
membrane. Genetic mutations of the human MT-ND1
gene have been associated with several inborn genetic
disorders, such as MELAS, Leigh’s syndrome and Leber’s
hereditary optic neuropathy (32,33). All these inborn dis-
orders are related to damage or disease that affects
the brain. Also, a decreased DNA methylation has been
observed in the MT-ND1 gene in cases with early stage of
Alzheimer’s disease (34).

Based on our results, an alteration in PC ae C42:5 and
PC ae C44:5 increases heteroplasmy at mt3714A > G which,
in turn, can lead to MT-ND1 dysfunction. This repre-
sents a pathway that may help to understand molecular
aspects of neurodegeneration diseases.

MT-ND4L—mitochondrially encoded NADH:
ubiquinone oxidoreductase core subunit 4L
It should be noted that the largest number of significant
associations between metabolite ratios and mtSNVs are
located in the MT-ND4L gene (Figs 2 and 3). The variant
mt10689G > A, located in the ND4L gene, which is associ-
ated with 16 metabolite ratios is the most common multi-
associated mtSNV in our dataset. Moreover, in all these
16 ratios, the metabolite PC diacyl C36:6 (PC aa C36:6) is
involved.

Despite the crucial importance of PC for brain func-
tioning, disturbance of PC concentration has also been
found to be associated with various metabolic disorders,
such as atherosclerosis (35), insulin resistance (35,36),
Gaucher disease (37) and obesity in adults (38,39) as well
as in children (40). Particularly, the metabolite PC aa
C36:6 has been associated with different patterns of fat
concentration in the body, such as visceral fat and liver
fat content (41).

PC aa C36:6 was also involved in three metabolite
ratios that were previously shown to be associated with
Fat-Free Mass Index (42).

MT-ND4L is a subunit of NADH dehydrogenase,
which is the component of the electron transport
chain that is responsible for the oxidative phospho-
rylation process. Its dysfunction may cause energy
deficiency in cells, resulting in metabolic disorders
such as obesity and diabetes (43–45). In fact, several
variants of human MT-ND4L have been reported to be
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associated with altered metabolic conditions like BMI
and type 2 diabetes (43,46). Changes in MT-ND4L gene
expression have long-term consequences on energy
metabolism and have been suggested to be a major
predisposition factor for the development of metabolic
syndrome (47).

Based on our results in 16 metabolite ratios where
PC aa C36:6 is involved, alteration of its concentra-
tion changes significantly the heteroplasmy in the
variant mt10689G > A, located in the ND4L gene. Put
together, this association may explain an interesting
pathway to understand the development of metabolic
conditions.

Conclusion
We presented the results of the first association analysis
between genetic positions in the mitochondrial genome
and metabolite profiles using sequencing data of
the mitochondrial genome and an inverted mtGWAS.
Although further analyses are needed to follow up on the
present results, these findings highlight the important
role of the mtDNA and the field of metabolomics
among the factors that contribute to the balance of
the human metabolism and suggest that variants in the
mitochondrial genome may be more important than has
previously been suspected.

Our results support the idea that a strong relation-
ship exists between mtDNA heteroplasmy and metabo-
lite levels. Both are likely to play a crucial role as dis-
criminating cofactors in the etiology of common multi-
factorial diseases. A conceivable hypothesis is that high
levels of oxidative stress might be produced when altered
levels of certain metabolites (possibly owing to environ-
mental factors such as nutrition or life style) alter the
permeability of cell membranes along with increasing
the heteroplasmic mtDNA and weakening the mitochon-
drial defense systems. High levels of oxidative stress
damage cellular structures, including the mitochondria
themselves, which, in turn, can lead to mitochondrial
dysfunction and possibly even to apoptosis.

In the era of personalized medicine with more and
more patient-specific targeted therapies being used, we
need reliable, dynamic, faster and sensitive biomarkers
both to track the causes of disease and to develop and
evolve therapies during the course of treatment. Under-
standing the mechanisms that control human health
and disease, in particular, the role of genetic predispo-
sitions and their interaction with environmental factors,
is a prerequisite for the development of safe and efficient
therapies for complex disorders.

We conclude that recent advances in metabolomics
and NGS technology along with novel strategies to ana-
lyze and understand the metabolic pathways, as well
as to integrate metabolite networks with mitochondrial
genetic data, opens this window of opportunity to iden-
tify new biomarkers related to the human mtDNA, both

to track complex diseases and to develop and evolve the
option of treatment.

Materials and Methods
Study design and population
The Cooperative Health Research in the Region of
Augsburg (KORA) study is a series of independent
population-based epidemiological surveys and follow-up
studies of participants living in the region of Augsburg,
in southern Germany, an area with demographic and
socioeconomic characteristics roughly reflecting those of
an average central European population. All participants
are residents of German nationality who were identified
through the registration office, and written informed
consent was obtained from each participant (48). The
study was approved by the local ethics committee
(Bayerische Landesärztekammer). All participants filled
in a self-administrated questionnaire and underwent
a standardized personal interview and an extensive
medical examination. Detailed phenotypes and personal
information related to life circumstances, history of
disease and medication were recorded in a computer-
assisted personal interview. All procedures were sub-
jected to quality assessment. The study design, sampling
method and data collection have been described in
detail elsewhere (49). The participants of this study
were selected from the KORA-F4 (2006–2008) study,
including a total number of 3021 unrelated individuals.
KORA-F4 is the first follow-up study of the population-
based survey KORA S4 (1999–2001). All procedures
were subjected to quality assessment. No evidence of
population stratification has been found in multiple
published analyses using genetic data of the KORA
cohort.

Metabolite profiles
Metabolomic measurements have been performed for
3061 individuals of KORA F4 population-based sample.
Men and women were collected in a random order and
samples were randomly put on plates to reduce batch
effects. Metabolites were measured in serum using the
AbsoluteIDQ™ p150 Kit (BIOCRATES Life Sciences AG,
Innsbruck, Austria), as described elsewhere (3). The panel
includes 151 metabolites spanning several metabolic
classes: 1 hexose, 35 acylcarnitines, 14 amino acids, 14
sphingomyelins and 87 glycerophospholipids.

Sequencing of the mitochondrial genome
The mitochondrial genome was sequenced for 3021
KORA-F4 individuals using DNA derived from peripheral
blood mononuclear cells. A long-range PCR approach,
which refers to the amplification of DNA fragments of a
size that may not be amplified using conventional PCR
reagents, has been performed using a highly processive
polymerase mixture and novel primer pairs to specif-
ically amplify the mitochondrial genome (50). These
samples were subsequently processed with Illumina

®
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Nextera
®

XT (catalog # FC-131-1096). This NGS library
preparation kit employs an engineered Transposome™
to randomly fragment and tag amplicons and small
genomes with Illumina

®
specific adapters. After library

preparation, samples were sequenced on the Illumina
®

MiSeq™. This method generated whole mitochondrial
genome NGS data, which accurately reflect the Sanger
sequence. The 16 569 positions have been sequenced
with mtSNV covered with 3500-fold on average. Because
of this high coverage, NGS will allow us a much deeper
analysis of the mitochondrial genome and heteroplasmy
for identification of disease-causing variants than array-
based genotyping of mitochondrial SNVs. It has been
observed that NGS data are highly reproducible and very
reliable, and, overall, they has been found to be superior
to the data produced by microarray technology (51).

Quality control
Before analyzing the data, we performed a two-step qual-
ity control. In QC step1, we checked the sequencing data,
while in QC step2, we focused on the quality of the
metabolites (see Fig. 1).

During QC step1, a total number of 258 out of 3021
individuals were excluded. Thirty-seven individuals
were excluded owing to DNA contamination and eight
individuals were excluded because of an overall mean
coverage <1000. In order to avoid confounding with
insulin-dependent diabetes mellitus, 213 individuals who
were diagnosed with type 2 diabetes were not included
in the study. The mitochondrial region covered by the
PCR primers spanning 49 bases, from position 16 401 to
16 449, had to be excluded from the analysis as it does
not contain any reliable information. Position mt3107
was removed owing to its missing value in the reference
base. In addition, the three known phantom mutations
(mt3166, mt3170 and mt16390) were also removed
together with the five positions (mt301, mt302, mt310,
mt316 and mt16182) in blacklisted sites as recommended
by GATK (52). Further 233 positions were excluded
because of mean coverage <1000. As we were primarily
interested in somatic mtDNA variants, 7106 homoplas-
mic positions were also excluded since, for association
analysis, they do not provide any type of information.
The threshold to call a position as homoplasmic for the
reference allele was 0.007(see Supplementary Material
S1). Afterward, we searched for the presence of nuclear-
mitochondrial-DNA fragments (NUMTS) using mtDNA-
server (53). Because NUMTS are copies of mtDNA
sequences inserted in the nDNA over evolutionary time,
these sequences are possible handicaps for data pro-
cessing, as the sequenced samples might contain some
nDNA fragments. If they are falsely counted as mtDNA
fragments, the allele frequencies could be erroneous,
and consequently, incorrect heteroplasmy values would
be determined. We identified a total number of 343
NUMTS. However, in our case, a PCR with primers specific
to the mtDNA has been performed in the beginning
and so it is very unlikely that the sequenced fragments

Figure 1. Schema of the quality control performed in the datasets.

contain nDNA. Therefore, these NUMTS do not need to
be removed from the analysis because they are adding
useful information. After QC step1, a total number of
9172 mtSNVs and 2763 individuals were considered for
QC step2.

During QC step2, metabolites were imputed using
multiple imputation by chained equations with the
method called ‘predictive mean matching’. Missing
values are frequently observed in high-throughput,
mass spectrometry-based metabolomics measurements,
which is the approach used by Biocrates. To this end, we
have used the same approach as in previous analyses
of the Biocrates metabolomics data in KORA (2,36).
Following the criteria by (54) to avoid spurious false-
positive associations owing to small sample sizes, at least
80% of non-missing values are required for a metabolite
to be included, and data points of metabolic traits lying
more than three standard deviations off the mean need
to be excluded. All of the 151 available metabolites
satisfied this criterion.

After quality control, individuals with available
mtDNA data and metabolite values were considered in
the analysis. Association analyses was performed in a
total number of 9172 mtSNVs and 151 metabolites in a
sample of 1163 KORA-F4 individuals.

Statistical methods
GWAS have been developed as a method to identify
genetic loci associated with disease by scanning multiple
markers across the genome. The advance in genotyping
technology has led to significant advances in the genetics
of complex diseases. Recently, NGS has gained popularity
through its capacity to analyze a much greater number
of markers across the genome. One of the peculiarities of
the mtDNA is the heteroplasmy. Owing to heteroplasmy,
mtDNA tends to be heterogeneous in the sense that
different mitochondria can have different genotypes
such that a genotype at an mtDNA locus may not
be restricted to zero, one or two minor alleles. This
issue affects the possibility of estimating genotypes
and makes calling algorithms useless. The finest way
to approach mitochondrial heteroplasmy is to utilize
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Figure 2. Mitochondrial genome-wide P-values for metabolite ratios. Legend: On the y axis, P-values transformed into the negative of the base 10
logarithm, −log10(P-value), are shown. The x-axis represents the mitochondrial genome, displaying the position and relative size of each of the 13 major
mitochondrial genes, 12S and 16S rRNAs, hypervariable region 1 (HVR I), hypervariable region 2 (HVR II) as well as the position of the 22 tRNAs (gray
color).

Figure 3. The distribution of significant metabolites for metabolite classes across mitochondrial genes. Legend: Given a mitochondrial gene, a circle
shows the percentage of metabolites involved in significant ratios with regard to their metabolite class. The 40 most significant mtSNVs are considered.
Because the genes have different lengths, the number of mtSNVs tested in each gene is different. The percentage has been calculated by taking the
number of significant metabolite ratios divided by the total number of mtSNVs tested for each gene.

high-throughput sequencing data, which readily pro-
vides data of the entire mitochondrial genome and
offers the prerequisite for the detection of low-level
mitochondrial genetic heteroplasmy.

In our analysis, we take the heteroplasmy into account
by using the raw sequence reads, i.e. the number of
counts for each variant, instead of calling the variants
into a few categories. The best way to assess the associ-
ation of metabolites with the mtSNV is to apply linear
regression analysis. The mtSNV enters the model as

the response via the log2-transformed ratio, y = log2(B/A),
where A denotes the number of counts of the reference
allele and B the second most frequent allele. In the ratios,
to avoid undefined logarithms in those individuals who
only carry the reference allele for the mtSNV under
study, a term of two additional counts was added in
the denominator and numerator. Considering that the
average number of counts is about 3500, adding two
counts to A and B will not have any impact in the final
results.
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Sex and age at examination are introduced in the
model as covariates. To improve the convergence prop-
erties of model estimates, the total coverage (Cov) of
the mtSNV (i.e. A + B) was added in the model. In addi-
tion, to avoid false positives owing to a batch effect
during mtDNA sequencing, the effect of the index of the
sequencing plate (BatchmtDNA) was included in the model
as well.

It has been suggested several times that the use of
ratios of two metabolite concentrations, which serve
as proxies for enzymatic reaction rates, not merely
reduces the variance and increases the power of GWAS,
thus yielding robust statistical associations, but as well
provides new information about possible metabolic
pathways (2,54,55). Therefore, we considered all possible
metabolite concentration ratios (MR1, . . . MR(N∗(N-1))/2),
where N is the number of single metabolites, with
the linear model for association analysis with all
mtSNVs. This hypothesis-free approach highlights pairs
of metabolites that are more likely to be coupled either
biochemically or physiologically (3).

The regression model for the j-th metabolite ratio and
the i-th mtSNV is

yik = β0 + β1MRjk + β2agek + β3sexk + β4Covik

+β5
(
BatchmtDNA

)
k + eijk

for j = 1, . . . ,m; i = 1, . . . s; k = 1, . . . n,
where k denotes the individual and n is the sample size,
m the number of metabolite ratios (N∗(N − 1))/2) and s the
number of mtSNVs to be tested. The aim of this analysis
is to evaluate how the mitochondrial heteroplasmy is
influenced by the metabolite ratio, representing the phe-
notype of interest, taking into account the age and sex
of a particular person; and therefore, the model adjusts
for individual differences regarding these two variables
in the study population. GWAS has always been referred
to analyses that use genetic variance as predictors in
models. In our analysis, the general hypothesis is that
an alteration in the concentration of metabolite profiles
influences the increase of mutation rate in the mtDNA.
In this situation, it is more appropriate to use the genetic
variants as outcome variables. For that reason, we will
refer to this approach as ‘inverted mtGWAS’.

Correction for multiple testing
P-values are obtained from a Wald test based on the
asymptotic normality of regression coefficient estimates
and are corrected for multiple comparisons, with the
correction factor being equal to the effective number
of independent tests (Meff) (56). We calculated the
Meff measure using the Matrix Spectral Decomposition
(matSpDlite) from Nyholt et al. (57) with the method
of Li and Ji (58). We used the P-gain statistics (2) to
quantify the decrease in P-value for the association
with the ratio compared with the P-values of the two
corresponding concentrations. This limit is considered

a Bonferroni-type conservative cutoff for identifying
whether a ratio between two metabolite concentrations
improves the strength of association compared with
the two corresponding metabolite concentrations alone.
In our case, P-gain should be larger than the number
of tested metabolic traits (P-gain > 151). To estimate
whether deviation from normality of metabolite ratios
may have biased our results, we tested associations for
both untransformed and log-scaled ratios, not detecting
substantial differences. Quantile-quantile plots were
used to examine the P-value distribution, and the
lambda (λ) ranged from 0.93 to 1.26 (see Supplementary
Material, Fig. S1). All statistical analyses were performed
using RStudio version 0.98.1103 that uses R version
3.5.2 (59).

Supplementary Material
Supplementary Material is available at HMGJ online.
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