PROCEEDINGS

TWELFTH INTERNATIONAL CONFERENCE
ON VERY LARGE DATA BASES

EDITORS
Program Committee Cochairpersons
Wesley CZ u
Georges Gardarin
416 132 953 900 12 Setsuo Ohsuga
DURVODMNRIOD oo e
Yahiko Kambayashi

KYOTO, JAPAN AUGUST 25-28, 1986



CONTENTS

Session 1A: Knowledge Database |

1. Knowledge-Based Integrity Constraint Validation ........................... X. Qian and G. Wiederhold
2. Checking Consistency of Database Constraints: A Logical Basis.................. F. Bry and R. Manthey
3. Adaptive Predicate Managers in Database Systems .. ... U S. Bottcher, M. Jarke and J. W. Schmidt

Session 2A: Knowledge Database 11

1. LDL: A Logic-Based Data-Language .............. ... ... . i, S. Tsur and C. Zaniolo
2. Optimizing the Rule-Data Interfaceina KMS ...................... C. Kellogg, A. O’Hare and L. Travis
3. Retrieval-By-Unification Operation on a Relational Knowledge Base

: e e iieeeiiiiiiiiiiieeeieceies Y Morita, H. Yokota, K. Nishida and H. Itoh

Session 3A: Historical Database Applications

1. Historical Multi-Media Databases ..........................coiiiiiiinn... M. Adiba and N. B. Quang

2. Using History Information to Process Delayed Database Updates
..................................................... S. K. Sarin, C. W. Kaufman and J. E. Somers

3. Temporal Data Management ...................ccoiiiiiiiiiiiiiniinnn. A. Shoshani and K. Kawagoe

Session 1B: Complex Objects

1. Object and File Management in the EXODUS Extensible Database System
....................................... M. J. Carey, D. ]. DeWitt, J. E. Richardson and E. ]. Shekita

2. Implementation Techniques of Complex Objects ............ P. Valduriez, S. Khoshafian and G. Copeland

3. Managing TextasData ..................... i, G. Pavlovic-Lazetic and E. Wong

Session 2B: Query Processing I

1. Estimating Block Accesses When Attributes Are Correlated

.............................................. B. T. Vander Zanden, H. M. Taylor and Dina Bitton
2. Optimization of Nonrecursive Queries ....................... R. Krishnamurthy, H. Boral and C. Zaniolo
3. T'ranslating Aggregate Queries into Iterative Programs .................... J. C. Freytag and N. Goodman

Session 3B: Query Processing 11

1. R* Optimizer Validation and Performance Evaluation for Distributed Queries

............................................................... L. F. Mackert and G. M. Lohman
2. Simple Random Sampling from Relational Databases ........................... F. Olken and D. Rotem
3. Completeness Information and Its Application to Query Processing ........................... A. Motro

_Xi_

13
21

33
42

52

63

71
79

91
101
111

119
128
138

149
160
170



Session 4A: Relational Operation Optimization

1. The Idea of De-Clustering and Its Applications ............... M. T. Fang, R. C. T. Lee and C. C. Chang
2. A Superjoin Algorithm for Deductive Databases ............ J. A. Thom, K. Ramamohanarao and L. Naish
3. A Study of Sort Algorithms for Multiprocessor Database Machines ........................... J. Menon

Session 5A: Database Machines

1. An Overview of the System Software of a Parallel Relational Database Machine GRACE
....................................................... S. Fushimi, M. Kitsuregawa and H. Tanaka

2. A Reliable Parallel Backend Using Multiattribute Clustering and Select-Join Operator
......................................... J. P. Cheiney, P. Faudemay, R. Michel and J. M. Thévenin

3. GAMMA - A High Performance Dataflow Database Machine ................ D. ]. DeWitt, R. H. Gerber,
G. Graefe, M. L. Heytens, K. B. Kumar and M. Muralikrishna

Session 6A: Concurrency and Distributed Systems

1. Concurrent Operations in Extendible Hashing .......................... ... M. Hsu and W.-P. Yang
2. The Management of Dynamically Distributed Database Windows ............................. Q. Chen
3. On Affinity Based Routing in Multi-System Data Sharing

................................................

P.S. Yu, D. W. Cornell, D. M. Dias and B. R. lyer

Session 7A: Extended Data Models

1. ECRINS/86: An Extended Entity-Relationship Data Base Management System and Its Semantic
Query Language ............ .o M. Junet, G. Falquet and M. Leonard

2.  An Extended Relational Database System and It’s Application to Management of Logic Diagrams
.................................................................. Y. Udagawa and T. Mizoguchi

3. Designing a Generalized NF2 Model with an SQL-Type Language Interface . ... P. Pistor and F. Andersen

Session 4B: Physical Database Structures and Performance

1. An Observation on Database Buffering Performance Metrics ..................... .. ... R. B. Hagmann

2. A Study of Index Structures for Main Memory Database Management Systems
................................................................... T. J. Lehman and M. J. Carey

3. Transposition Algorithms on Very Large Compressed Databases .............. H. K. T. Wong and J. Z. Li

D. S. Parker, Jr.

Session 6B: Generalized Data Model and Version

1. A General Model for Version Management in Databases ......... P. Klahold, G. Schlageter and W. Wilkes
2. Toward a General Spatial Data Model for an Object-Oriented DBMS ... .. F. Manola and J. A. Orenstein
3. A Unifying Framework for Version Control in a CAD Environment ............. H.-T. Chou and W. Kim

—Xii—

181
189
197

209

220
228

241
248

249

259

267
278

289

294
304

315

319
328
336



Session 7B: Case Studies

1. Framework for the Security Component of an Ada DBMS

................................. D. Spooner, A. M. Keller, G. Wiederhold, ]. Salasin and D. Heystek
2. Preliminary Design of ADMSd-: A Workstation-Mainframe Integrated Architecture for Database
Management Systems ..ottt e N. Roussopoulos and H. Kang
3.  The REMIT System for Paraphrasing Relational Query Expressions into Natural Language
............................................................ B. G. T. Lowden and A. N. De Roeck
Session 8A: Knowledge Database 111
1. Relation Data Model with Cause-Effect Association ............................... Q. Yao and Y. Rong
2. On Analogical Query Processing in Logic Database .....................ccoeiiiiiiinen, T. Yokomori
3. Multiple Query Processing in Deductive Databases Using Query Graphs
................................................................ U. S. Chakravarthy and J. Minker

Session 9A: Recursive Query Processing

1. Translation and Optimization of Logic Queries: The Algebraic Approach

.............................................................. S. Ceri, G. Gottlob and L. Lavazza
2. On the Computation of the Transitive Closure of Relational Operators .................. Y. E. loannidis
3. A Parallel Processing Strategy for Evaluating Recursive Queries .............. L. Raschid and S. Y. W. Su

Special Session I: Advanced Database Project (Invited)

1. Towards DBMS’s for Supporting New Applications . ... S. Abiteboul, M. Scholl, G. Gardarin and E. Simon
2. Database Research at MCC ... .. ... . i i E. Lowenthal
3. Research and Development on Knowledge Base Systems at ICOT ........................... ... H. ltoh

Session 8B: Issues in Database Design

1. On the Properties of Extended Inclusion Dependencies ........................ H. Arisawa and T. Miura

2. Updating Derived Relations: Detecting Irrelevant and Autonomously Computable Updates
....................................................... J. A. Blakeley, N. Coburn and P. A. Larson

3. Choosing a View Update Translator by Dialog at View Definition Time .................... A. M. Keller

Panel Session 1I: Anyone for a VLDB in the Year 2000?

....................................................................................... S. M. Deen
Special Session II: Japanese VLDB (Invited)
1. Computer and Communication System Development among Financial Institutions in Japan
.................................................................................. T. Kurokawa
2. A Very Large Database System to Serve National Welfare ........ M. Mori, K. Suzuki, H. Abe and K. Itoh
3. New Seat Reservation System for Japanese National Railways—Distributed Processing Network and
High Efficiency Databases— ...... ... ... it E. Seki

AUENOT INdeX oo e e

347
355
365

375
376

384

395
403
412

423
436
437

449

457
467

477

481
496

502



Checking Consistency of Database Constraints: a Logical Basis

Francois BRY. Rainer MANTHEY

ECRC, Arabellastr. 17, 8000 Muenchen 81, West Germany

Abstract -

This paper addresses the problem of consistency of a set of
integrity constraints itself, independent. from any state. It is
pointed out that database constraints have not only to be
consistent, but in - addition. to be finitely satisfiable. This
stronger property reflects that the constraints have to admit a
finite set of (stored as well as derivable) facts. As opposed to
consistency. being wundecidable, f{inite satisfiability is semi-
decidable. For efficiency purposes we investigate methods that
check both finite satisfiability as well as unsatisfiability. Two
different methods are proposed which extend two alternative
approaches to refutation.

1. Introduction

In a database context, a Jot of work has been done on in-
tegrity enforcement, i.e.. on checking the validity of a database
state with respect to a given set of integrity constraints. The
question whether the constraint set itself is consistent has till
now received quite few attention, although the problem is fun-
damental ( }12] constitutes a notable exception). Usually con-
straints are either tacitly assumed to be consistent, or the use
of a theorem prover is suggested in order to detect inconsis-
tencies. If constraints are restricted to come from classes like
functional. multi-valued or implicational dependencies, consis-
tency is already implied by the syntactical properties of the
respective classes. However, as pointed out by many authors,
more general kinds of constraints have to be admitted, and
thercfore the problem has to be addressed on a more general
basis. As the formalisms of relational databases and predicate
logic are so closely related, we will consider constraints as ar-
Litrary closed and function-free first order formulas.

Consistency is a necessary wecllformedness condition for con-
straint sets (as opposed to. e.g.. non-redundancy which is a
desirable, but not an indispensable requirement). An inconsis-
tent set of constraints does not admit any valid database
state. In terms of logic. database states can be considered as
interpretations of the constraints. Valid states correspond to
interpretations in which every constraint is true, i.e., Lo models
of the constraint set. Inconsistent sets of formulas do not have
any model - they are unsatisfiable. (The model-theoretic
property  satisfiability' is equivalent (o the proof-theoretic
property ‘consistency’ according to Goedel's Completeness
Theorem).

As database states correspond to models of the constraints.
it is not sufficient to guarantee the existence of any model in
general. but finite models have Lo exist in particular. In con-

ventional databases, constraints have to admit finite models as
every state consists of a finite number of facts. In definite
deductive databases (as defined in [9]) the set of deduction
rules always has a finite minimal model. which is intended to
be a model of the constraint set as well. Satisfiability does not
necessarily imply finite salssfiability, i.e., the existence of a finite
model. There are satisfiable sets of formulas - called ’axioms
of infinity" - that have only infinite models. Consider, e.g., a
set of integrity constraints for a managerial database contain-
ing (among others) the following constraints:

. E.verybody works for somebody.
e Nobody works for himself.
o If x works for y and y works for z. then x works for r.

Expressed as first-order formulas. these three constraints cor-
respond to a well-known axiom of infinity. Although each of
them appears to be reasonable as such. an infinite number of
individuals s required in any model of the set as a whole.
This defect could be avoided by providing the first constraint
with a proviso like, e.g., "evervbody except the top-manager..”.
Much more complex axioms of infinity may be hidden inside a
large and intricate set of constraints which cannot be so easily
identified as in the example above. Therefore, in addition to
preventing constraints from being unsatisfiable, axioms of in-
finity have to be avoided as well. Constraints have to be
finitely satisfiable. as already briefly mentioned in |8].

Figure 1 illustrates how the three properties mentioned are
related.

satiafiable

unsatisfiable

I

finitely
satisfiable

axiom of infinity

1 ]
A

unacceptable as constraints

Fig. 1

Because of the undecidability of satisfiability, no algorithm
can be constructed that stops for every possible set of for-
mulas and reports whether this set is finitely satisfiable, un-
satisfiable or an axiom of infinity. Finite satisfiability, as well
as unsatisfiability. is undecidable |17], but both are at least
semi-decidable: algorithms can be constructed that are
guaranteed to report the respective property after finite (but
indefinite) time if applied to a set that actually has this
property, but possibly run forever else. Every refutation
method is in fact a semi-decision procedure for unsatisfiability.
Procedures of this kind have been in use as theorem provers

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of
the Very Large Data Base Endowment. To copr otherwise, or to republish, requires a fee and/or special permission from the Endowment.

e

Proceedings of the Twelfth International Con

rence on Very Large Data Bases

._]3.__

Kyoto, August, 1986



for more than two decades and have nowadavs reached a con-
sidcrable standard of efficiency.

The semi-decidability of both. finite satisfiability as well as
unsatisfiability, implies that a procedure can be built that ter-
minates for both. finitely satisfiable as well as unsatisfiable in-
put. Such a procedure would be an adequate tool for deciding
whether a given set of formulas is acceptable as constraints
(within the limits imposed by undecidability. of course). The
simplest way of obtaining a simultaneous semi-decision proce-
dure would be to run two independent procedures for each of
the two semi-decidable properties in parallel. However. any at-
tempt to improve the unsatisfactory efficiency of the basic
semi-decision method for finite satisfiability (to test for increas-
ing n whether a model of cardinality n exists) inevitably leads
1o techniques that are also required for refutation. Therefore it
seems reasonable Lo rely on existing refutation methods and to
extend them in order to make them sound and complete for
finite satisfiability as well. '

There are certain classes of formulas where satisfiability and
finite satisfiability coincide, called finitely controllable. For sets
of formulas coming from such a class, satisfiability is decidable.
However. the known finitely controllable classes |7] appear to
be too restricted for admitting only constraints that belong to
such a class.

In this paper we describe two basic approaches to extend-
ing refutation methods into procedures that semi-decide finite
satisfiability as well: the one is based on the resolution prin-
ciple, while the other makes use of a subcase analysis based
on splitting of clauses. Both approaches require a common fea-
ture (function evaluation) to be added to the underlying
refutation principle in' order to reach completeness for finite
satisfiability. Section 2 describes and motivates this feature
after having briefly introduced both approaches. Resolution re-
quires another additional feature if completeness shall be
guaranteed. This further extension is described in section 3
together with a suggestion for an improvement of the extended
method. In section 4, improvements of the splitting-based ap-
proach are proposed that are necessary in order to make it
competitive as compared to the resolution-based method.

The method defined in [12] for checking consistency of con-
straints is based on the first-order tableaux method (in its
original non-clausal form as described in |16]). As opposed to
the methods proposed here, Kung's approach is not complete
for finite satisfiability.

The paper has been written in such a way that only an in-
tuitive understanding of resolution and other theorem proving
techniques is required. Formulas are expressed in clausal form,
all functions occurring being Skolem functions. Transformation
to clausal form is known to preserve satisfiability. This holds
for finite satisfiability, too, for similar reasons. The
tutorials |4; and 113] provide an introduction to refutation
methods in general and to resolution in particular. The term
'resolution’ is used throughout this paper according to
Robinson’s original terminology, i.e.. including factorization.

2. Refutation Methods and Finite
Satisfiability

A refutation method can be seen as a procedure that suc-
cessively generates new sets of clauses starting from the set to
refute. The generation stops as soon as certain halting con-
ditions - based on syntactical properties of the sets - are ful-
filled. For any unsatisfiable input, a refutation-complete proce-
dure is guaranteed to stop, while for satisfiable input it may

either stop or run forever. Refutation procedures differ mainlh
in the way in which the generation of new sets is organized
and in the halting conditions employed. Two main classes of
procedures can be distinguished with respect to these criteria.

The one class contains procedures that are based on the
resolution principle. For a given input set S they generate a

=S - . . R .
sequence S-..o s Sl > o > Si > SH_1 > ... where si+l

is constructed from Si by addition of factors and/or resolvents
of clauses in Si (possibly combined with a subsequent deletion

of tautologies or subsumed clauses). As resolution is an in-
ference rule, we have:

(") ¥ 20 (S, satisfiable <=> S, | satisfiable)
Whenever one of the Si contains the empty clause a, this set

is unsatisfiable. because O is the clausal representation of false-
hood. Therefore S is unsatisfiable, too, because of (*) and the
generation of new sets stops. If, on the other band, S is satis-
fiable, in general it will never stop as none of the Si contains

O . In certain cases. however, a saturated set will be reached,
i.e., a set that already contains all factors and resolvents (or
at Jeast variants of them) that are constructable from its
members. In this case generation also stops (reporting
satisfiability).

The second class of procedures contains most of the
methods that have been proposed and implemented before the
resolution principle was developed (e.g., clausal versions of the
tableaux method - like the procedure of Gilmore |10} - or the
method of Davis and Putnam |6]). In these procedures the
generation of new sets follows a tree structure, as shown by
figure 2.

o &= 0
-t
P

.
v
.

Fig. 2
The tree TS of figure 2 is expanded (either depth- or
breadth-first) reflecting a case analysis. The edges of Ts are

constructed in such a way that the following holds:
(**) VS, € Tg (S; satisfiable <=> S, has at least
one direct descendant that is satisfiable)

As soon as along a branch a set has been reached that con-
tains two contradictory units, this branch is "closed” (i.e., not
further expanded) because the respective set is obviously un-
satisfiable. If all branches of the tree can be closed in this
way, the unsatisfiability of S has been shown because of (**).
There may be infinite branches - which can never be closed -
as well as finite non-closed branches that cannot be further
extended by the construction rules of the method. In the lat-
ter case, satisfiability of S is reported. ’

Figure 3 (see next page) shows the refutation of a four-
clause set by means of unit resolution (sequential organitation)
as well as a clausal version of the tableaux method (tree
organization) that uses instantiation of clauses in S and split-
ting of ground clauses as construction rules. Matrix notation
for sets of clauses has been used in the examples each line
representing a clause.
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For detecting unsatisfiability, the sequential approach is su- - which is a semi-decidable property in contrast to satis-

périor to the tree approach because closing all branches of a
tree is more expensive than generating one set that containsg.
This is one of the reasons why splitting-based methods have
been discarded for theorem-proving purposes after resolution
was introaduced. Syvmmetrically. satisfiability is reported by
such a splitting-based method as soon as one non-closed branch
has been found (unless an infinite branch is entered) while
resolution, e.g., has to wait until all possible factors and resol-
vents have been added (which possibly requires infinite time as
well).

A further advantage of many splitting-based methods is
that the length of clauses never increases (instances of clauses
are added or clauses are replaced by shorter ones). This is not
the case for resolulion since in general a resolvent is longer

than each of its parents.

All refutation-complete methods are mnecessarily sound for
ratisfiability: thev never report satisfiability when applied to
an unsatisfiable set. Undecidability of satisfiability, however,
prevents them from being complete for this property. How do
refutation procedures behave with respect to finite satlisfiability

fiability?

Whenever unrestricted resolution stops because a saturated
set (not containing O ) has been reached, the respective input
set is finitely satisfiable |31, Although this result appears to be
rather natural. we were not able to find it in the literature.
Splitting-based tmethods are also sound for finite satisfiability.

The tableaux method. e.g., stops whenever a set has been con-

structed that contains a g-model.] This g-model directly
represents a finite model of S, i.e., S has been shown to be
finitely satisfiable in a constructive way.

Thus, both approaches are sound for finite satisfiability,
but none of them is complete for this property as shown by
figure 4 (see next page).

Ta g-model |13] is a set U of ground units such that each
ground instance of a clause in S is subsumed by a unit in U.
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Both methods run forever although S has a very small
finite rnodc-l"': its only individual is the constant 0, FO
evaluates 1o 0 and both, even(0) and odd(0). are true. In both
cases a purely syntactic mechanism causes an unrestricted
growth in nesting of functional terms. In case a) wunification
leads to an infinite sequence of units

even(0) -> odd(FO0) -> even(FZO) -> odd(F30) > .

while in case b) instantiation produces a similar sequence
along each non-closed branch, e.g.,

even(0) -> odd(F0) -> even(FO0) -> odd(on) >

along the rightmost one. None of the two methods offers a
tool for identifying FO with 0 and thus detecting that after
such a function evaluation each of the infinite sequences would
“collaps™ into the finite sequence even(0) -> odd(0).

2 .
“Due to the fact that S does not completely axiomatize
even-odd for the integers.

Indeed, adding an evaluation facility for ground functional
terms to each of the approaches enables them to detect finite
satisfiability in all those cases where infinite growth in func-.
tion nesting prevents the original methods from stopping. Such
a feature for the identification of ground terms is indispensable
for finite model detection. This is related to the well-known
fact that finiteness is not first-order expressable.

In order to evaluate a ground functional term, a case
analysis is required as there may be several possible ground
terms with which the functional term could be identified.
Therefore resolution loses its sequential organization when ex-
tended by function evaluation and is turned into a tree-
structure method. too. When added to resolution, evaluation
of ground functional terms has, of course, to be combined with
instantiation, because sets without any ground terms have to
be handled as well. Many splitting-based methods already
provide instantiation.

We have shown in |1} that the tableaux method with func-
tion evaluation is complete for finite satisfiabilityv. For similar
reasons. the same is true for the Davis-Putnam method.
Resolution. however, is not complete for finite satisfiability



cven afier
tion. As

extending it by instantiation
shown in the infinite growth in
length may prevent resolution from stopping even for

sets without any function symbols.

and function evalua-
following section,

clause

Figure 5 gives another example presenting the extended
tableaux method. This example is intended to show that, in
order to evaluate functions, the ground level has to be
reached. because in ‘certain cases the decision whether a finite
mnodel exists or not requires an explicit identification of two
ground terms such that a cerlain predicate is true for the one
but false for the other. o

3. The Resolution-Based Approacll

In the previous section, we have claimed that extending
resolution with function evaluation and instantiation is still not

even(x)
=even(x)

even(Fx)

=even(Fx)

W

even(A) cven(FA)

neven(A) -=jeven(FA)

function evaluation

sufficient for achievine complcteness for finite satisfiability.
Thiere is a second <ource of infinite growth apart from growth
in function nesting 1) . The example of figure 6 (sce next
page) shows the problem. The clauses in the initial set ex-
press that the spouse of a woman is a man, and the spouse of
a man is a woman. Resolution does never stop when applied
to the initial set because the number of distinct variables (and
thus the length of clauses) increases continuously. However,
this set has f{inite models (e.g.. one man which is not married).

Obviously, function evaluation does not help as no functions
occur.

As a solution to this problem we propose another feature
that we call compactification. Let v(S) denote the maximal num-
ber of variables in any clause in the set'S. For n < v(S), the
n-compactification of S (denoted by compn(S)) is obtained by
replacing each clause C with m > n variables by a set of

clauses with exactly n variables. This set is constructed by
identifying (m-n+1) of the variables in C in all possible ways.

instantiation (with au arbitrary constant A)
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contain a g-model over {A,FA}
=> finitely satisfiable
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e
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for n = 5,7,9....

Fig. €

As an example, we give the 2-compactification of the third
clause:
man(x]) -couple(xl,xl) —‘couple(x].x,,) —-woman(xz)

man(x]) ﬂcouple(x],x,,) ﬁcouple(xz.x,) ~woman(x))
man(xl) ﬂcouple(xl.x,,) —couple(x.,.x.‘,) ﬂwoman(xz)

Compactification is applied as soon as resolution produces a
clause that has more variables than any of the already exist-
ing clauses. After having constructed the respective n-
compactification, resolution (and instantiation/function evalua-
tion. if necessary) is applied to the compactified set. Whenever
a clause with more than n variables is derived anew from the
n-compactification, it is immediately n-compactified, too. If a
saturated set is reached, the initial set has been shown finitely
satisfiable (with a model of cardinality n). If resolution derives
the empty clause for all possible subsequent function evalua-
tions (if any). then such a model does not exist, and we have
to backtrack and go on with the uncompactified set. In this
case, compactification is invoked again after the next increase-
ment in variable number has occurred and along another "side
branch™ the existence of a finite model is checked. The overall
organization of this approach is illustrated by figure 7.

The application of function evaluation within a sequence of
resolution steps is organized in a similar way. Here the in-
creasement of functional heigh! serves as an indicator for invoca-
tion of function evaluation. The functional height of a term is
the level of nesting of functions in that term. e.g.. the func-
tional height of F(Fxy, y) is 2. The maximal functional height
of a term in S is denoted by f(S). Whenever resolution leads
to an increasement of f(S), function evaluation is invoked on a
“side branch™ while resolution will go on without evalualing
the new functional term on the "main branch” in case back-
tracking is required, as shown by figure 8.

If both kinds of increasements occur for a given S, invoca-
tions of both additional features - compactification as well as
function evaluation - have to be merged. of course. A
saturated sel on a "side branch” indicales finite satisfiability,
while closed "side branches™ plus a closed "main branch™ in-
dicate unsatisfiability of S. For axioms of infinity the "main
branch™ never closes while all “side branches™ are closed.

The extended resolution method outlined here may be com-
bined with any strategy provided that refutation-completeness
is preserved. In his paper mentioned. Joyner proposes a
strategy that would save a lot of instantiations and function
evaluation steps although it requires a transformation of the
initial set: all resolvents and factors containing nested func-
tional terms may be discarded if the initial set is the clausal
representation of formulas in Skolem normal form ]5}. i.e., in
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prenex normal form with prefix V.B‘. For any first-order
formula F there exists a formula SNF(F) in Skolemn normal
form such that F is finitely satisfiable if and only if SNF(F) is
finitely satisfiable. The construction of this normalized formula
is illustrated by an example:



F: vxayvz jplyx)=>q(y.z))
SNF(F): vxvyvezw ((lply.x)=>q(y.r))va(x,y))s-a(x,w))

The new predicate s is not allowed to occur in F. It was
known before that this transformation preserves unsatisfiability.
In {2] we have shown that this is also the case for finite satis-
fiability.

Although operating with formulas in Skolem normal form
allows to discard clauses with nested functions, function
evaluation and instantiation do not become superfluous. There
are still cases in which the evaluation of unnested functional
terms is required in order Lo guarantee the soundness of the
extended method.

4. Improvements of the Splitting-Based
Approach

In Section 2, splitting-based refutation methods were shown
to be complete for finite satisfiability if combined with func-
tion evaluation. We had chosen the tableaux method as a rep-
resentative of this class of methods because of the simplicity of
its splitting rule. However, this method is by far too inefficient
for practical applications if compared, e.g., with resolution-
based methods. Two reasons are responsible for this in-
efficiency:

e the only construction rule of the tableauxl method -
clause splitting - is too primitive

e a vast amount of instantiations is required because clause
splitting is only applicable to ground clauses

A more efficient set of rules for testing unsatisfiability of a
set of ground clauses is available in the Davis-Putnam proce-
dure. The rules of this method take into account several
clauses in S instead of looking only at a single, isolated clause
in each step. This leads to trees which are in general con-
siderably smaller than the trees constructable with the rules of
the tableaux method. Four construction rules are provided by
the Davis-Putnam procedure:

1. deletion of tautological and subsumed clauses
2. ground unit resolution

3. introduction of new units: if a pure ground literal L oc-
curs in S (i.e., a literal the complement of which does not oc-
cur in S), then the unit {L} can be added to S (allowing a
subsequent elimipation of all clauses that contain L as they
are subsumed by the new unit)

4. complement splitting: if L is a non-pure ground literal in
S. then two subcases can be introduced. In the one case the

unit {L}, in the other case {L'} is added (L denotes the
complement of L). (In each of the cases the new unit sub-
sumes at least one clause and can be resolved against at Jeast
one literal.)

Nevertheless. the Davis-Putnam method suffers from the
same drawback as the tableaux method, namely to require in-
stantiations as all its rules operate only on ground clauses.
The number of instances of a clause depends exponentially on
the number of ground terms that are used for instantiation.
Resolution refutation procedures do not need any explicit in-
stantiation at all. This fact makes them superior to both.
Davis-Putnam as well as tableaux method for refutation pur-
poses. But, as pointed out in the previous section, instantia-
tion has to be added to resolution, in order to vield complete-
ness for finite satisfiability. However, these inevitable instantia-
tion steps are performed as late as possible and only in those

cases where absolutely necessary for making function evaluation
possible. 1t would be desirable to reduce the number of instan-
tiations required by the Davis-Putnam procedure in a com-
parative way.

A necessary prerequisite for such a reduction is that the
construction rules of the method are somehow generalized to
the non-ground level (in the same way as general resolution
has bLeen originally introduced as a generalization of the
propositional "cut™ rule). The first three Davis-Putnam rules
can be easily generalized. Elimination of tautologies and sub-
sumed clauses is a standard feature of many reduction
strategies for resolution procedures. Unit resolution is a spe-
cial case of general resolution (known to be refutation-complete
for the important class of Horn clauses). The notion of a pure
literal is also easily extendable to non-ground literals if in-
stances and variants of the complementary literal are taken
into account.

Problems arise if the complement splitting rule shall be ex-
tended. The introduction of alternative L-L® cases is justified

by the fact that (LVL') is a tautology for ground literals. On
the general Jevel. any variable x in a literal L has to be
regarded as implicitly universally quantified. The disjunction

(vx[L] v Vx|LS]). however, is not a tautology. Therefore a
direct generalization of complement splitting to the general
level is not possible without losing completeness. In |4, p.
184] generalized splitting rules are investigated that overcome
this problem by keeping track of all variable substitutions per
formed along the alternative branches and checking their com-
patibility at the end. It is not clear how such methods can be
adapted for finite satisfiability checking.
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even(0)
unit resolution
“leven({x) odd(Fx)
“lodd(x) even(Fx)
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[0 ---> FO] function evaluation
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even(0)
odd(0)
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The solution we propose is based on the idea to view each
of the alternative case introduced by complement splitting as a
kind of "test of an assumption”. Does any finite model of S
exist in which the (additional) unit {L} - respectively {L} -
is true? If one of the assumptions leads to a success, the other
assumption needs not be tested any more. If both assumptions
lecad to a closed branch. then it has only been shown that
these assumptions are not compatible with S, but not that S
is unsatisfiable because of the above reasons. A third branch



has therclore to be provided by cach complement splitting siep
on which. in case of “failure of both assuinptions™. the two

literals L and LS are removed from the list of "unit
candidates™ and other non-pure literals are tested. If all of
them lead to closed branches. then instantiation has to be in-
voked on the remaining branch. However, this is the only case
in which instantiation is required at all by the generalized ver-
sion of the Davis-Putnam method described here. If S is un-
satisfiable. then none of the "unit candidates™ will be success-
ful. and instantiation is inevitable. For many satisfiable sets,
however. a few applications of the generalized complement
splitting lead to a non-closed finite branch already.

Figure 9 {see previous page) shows how the set used in
figure 4 is checked for finite satisfiability using the generalized
Davis-Putnam procedure with function evaluation.

5. Conclusion

In this paper we have introduced finite satisfiability as a
necessary wellformedness condition for database constraint sets.
1t reflects the requirement that constraints have to admit
finite sets of facts (in a conventional as well as in a deductive
context). Finite satisfiability is a stronger property than consis-
tency thus automatically implying the latter.

In order to obtain a method for finite satisfiability checking
we have chosen to extend existing refutation procedures. Two
different approaches to finite satisfiability checking have been
investigated that are based on two different approaches to
refutation. Both require the same extension, namely the ad-
dition of an evaluation facility for ground functional terms in
order to control growth in function nesting. This addition
prevents production of infinitely many clauses by identifying
certain ground terms. The approach based on the resolution
principle has to be further extended with a feature for the
Jimitation of growth in clause length. called compactification.
Of course. the addition of these features to refutation
procedures will decrease their efficiency for unsatisfiable input.
However. this price has to be paid if completeness for finite
satisfiability shall be reached. The virtues of both approaches
cannot be simply combined, as the undecidability of satis-
fiability prevents any refutation-complete procedure from
removing both kinds of growth at the same time. Each of the
two methods obtained by the extensions mentioned is sound
and complete for finite satisfiability as well as for unsatis-
fiability.

The two methods are justified and described in detail in |2]
and [14]. respectively. At the moment, we don't see any other
reasonable solution to the problem of constructing a simul-
taneous semi-decision procedure for finite satisfiability and un-
satisfiability. Although we have no results about the differences
in efficiency between the two methods, we™ believe that a
splitting-based approach will be preferable. Resolution produces
too manyv clauses especially if applied to compactified sets of
clauses. Moreover, the big advantage of resolution-based refuta-
tion procedures - namely to do without any instantiation - is
lost, as function evaluation has necessarily to be performed on
the ground level. A first prototype implementation of the
splitting-based method written in Prolog is meanwhile avail-
able. :

Additional points that may influence the work on a more
elaborate version are:

1. For many data models (especially those providing
generalization hierarchies) a many-sorted logic is more ap-
propriate. Introduction of many-sortedness is known to improve
the efficiency of the methods discussed in this paper.

2 The question of suitable strategics has not been addressed
in this paper at all. A thorough investigation of this topic is
inevitable. For resolution a lot of strategies have already been
introduced in the context of refutation. It has to be inves.
tigated whether they can be adapted for the extended method
as well. Strategies for the generalized Davis-Putnam procedure
should especially provide criteria for making good choices of
"unit candidates™ when applying complement splitting.

3. Very often we can expect that a considerable part of the
constraint set under consideration consists of dependencies that
are known to be finitely satisfiable because of their syntactical
structure. Strategies should be developed that take advantage
of this knowledge. Similar techniques can be useful in a con-
text where constraint sets are modified.
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