Bildverstehen

Leonie Dreschler-Fischer PN
"Das ’Bootstrap—Problem’ bei der geometrischen Szenenrekonstruktion - eine
Ubersicht"

Gerda Stein L

"Konfliktlosung auf statistischer Basis bei der Bildanalyse mit

Produktionsregeln"

Ingrid Walter 0000 o
"EPEX: Bildfolgendeutung auf Episodenebene"

Michael Mohnhaupt o ..o

"On Modelling Events with an ’Analogical’ Representation"

Natiirlichsprachliche Systeme
und
die Verarbeitung gesprochener Sprache

Christa Hauenschild o o ¢« o v v 0 e e

"KI-Methoden in der Maschinellen Ubersetzung?"

Jochen Dorre, Stephan Momma L. 000 e e e e

"Generierung aus f-Strukturen als strukturgesteuerte Ableitung”

Martin Emele it et e

"FREGE - Ein objektorientierter FRont-End-GEnerator"

Dekail Wu« . i i i e

"Concretion Inferences in Natural Language Understanding"

Hans Haugeneder, Manfred Gehrke ¢ . o o oo

"Modelling Heuristic Parsing Strategies'

Peter Bosch (lag zum Druck nicht vor)

"Deeper Reasons for Shallow Processing"

Massimo Poesio L . L o i e e i e e e e e e e e e e e e e e e e e

"An Organization of Lexical Knowledge for Generation"

16

21

31

41

54

64

74

Vil

R. Gemello, E. Giachin, C. Rullent
"A Knowledge-Based Framework for Effective Probabilistic Control Strategies in

Signal Understanding"

Wissensrepriisentation und KI-Programmierung

Bernhard Nebel, Kai von Luck

"Issues of Integration and Balancing in Hybrid Knowledge Representation Systems"

Klaus Groth . .

"Der Aspekt der Zeitstruktur in zeitlogischen Formalisierungen der KI"

Stefan Wrobel .

"Higher-order Concepts in a Tractable Knowledge Representation”

Helmut Simonis, Mehmet Dincbas

"Using Logic Programming for Fault Diagnosis in Digital Circuits"

Expertensysteme

Michael Beetz . . .

"Specifying Meta-Level Architectures for Rule-Based Systems"

Werner Konrad, Andreas Jaeschke, Helmut Orth, Ono Tjandra . Ce e
"Guiding the Maintenance of a Model-Based Advisory System by Explanation-based

Learning"”

Deduktive Systeme

Hartmut Freitag, Michael Reinfrank

"An Efficient Interpreter for a Rule-Based Non—Monotonic Deduction System”

Frank Puppe .

"Belief Revision in Diagnosis"

. 104

. 114

. 124

. 129

. 139

. 149

160

. 170

. 175

Oskar Dressler

"Erweiterungen des Basic ATMS"

Ulrich Furbach

"0ldy but Goody - Paramodulation Revisited”

Marita Heisel, Wolfgang Reif, Werner Stephan

"Program Verification by Symbolic Execution and Induction"

R. Ulf Schmerl

"Resolution on Formula Trees"

Rainer Manthey, Francois Bry

"A Hyperresolution-based Proof Procedure and its Implementation in PROLOG"

Alexander Herold

"Narrowing Techniques Applied to Idempotent Unification”

Jirgen Miller

"THEOPOGLES - A Theorem Prover Based on First-order Polynomials and a Special

Knuth-Bendix Procedure"

Selbstrepriisentierende Systeme

Pattie Maes

"Computational Reflection"

Eognitives Modellieren

Abde Haan
"Cognitive Modelling and Education"

185

. 195

. 201

. 211

. 231

. 241

. 251

. 266

Spezielle Sektionen
Kognition —~ Wissensstrukturen beim Aufgabenlosen
Christian Freksa ¢« i« t v i b i e e e e e e e s 2T

Barbara Beckert i 4 i 4 e e e e e e e e e e e e e e e ... 278

"Wissen und Konnen: Anmerkungen zur Wissensreprisentation beim Aufgabenlosen"

Gerhard Strube o e e e e e e e e e e e e e e e e e e ., 287

"Reprasentationsformen beim menschlichen Problemlésen”

Klaus Rehkdmper « v + v v 4 v v v v v v e e e e e e e e . . . 296
"Mentale Bilder und Wegbedeutungen'

Generierung in natiirlichsprachlichen Systemen

Wolfgang Hoeppmer ¢ v v v v 4 v v o o v v v i e e e .. . 306
Dietmar ROSnNEr« v .t e 307
"Generation of Content vs. Generation of Form: A Review of Recent Work in the

SEMSYN Project"

Norbert Reithinger315
"Ein erster Blick auf POPEL: Wie wird was gesagt?"

Helmut Horacek & v v v v v v i e e e e e e e e e e e e e e 320
"How to say WHAT - IT or SOMETHING"

Elisabeth Andre, Thomas Rist, Gerd Herzog . 330
"Generierung natiirlichsprachlicher AuBerungen zur simultanen Beschreibung von

zeitverdnderlichen Szenen"

Repriésentationssysteme fiir Grammatik und Lexikon
@Ginther Gorz e e e e e e e e e e e e e s . 339

Dietrich Paulus « « v . v v v v i e e i e e e e e e e L340

"BEndliche Automaten zur Verbflexion und ein spezielles deutsches Verblexikon"

Xl

Ulrich Heid « . &« & i v i i i i et e e e e e e e e e e e 345

"Zur lexikalischen Wissensquelle des Generierungssystems SEMSYN"

Stephan Busemannt 4t 4 4 e 4 4 e e e e e e e . . . 35

"Generierung mit GPSG"

Kiinstliche Intelligenz und Datenbanksysteme —
Systemarchitektur und konzeptuelle Modellierung

Rudi Studer i et e e e e e e e e e el e e e ... 368

Gio Wiederhold, Surajit Chaudhuri, Wagar Hasan, Michael G. Walker,
Marianne Winslett o000 0000 .o 366

"Architectural Concepts for Large Knowledge Bases"

Heinrich Jasper +© & & « 4 « 4 o = « e o o o o s o o o v o+« + . . 386
"Interfacing PROLOG and External Data Management Systems: A Model"

Theo Harder, Nelson Mattos, Bernhard Mitschang 39

"Abbildung von Frames auf neuere Datenmodelle"

A HYPERRESOLUTION-BASED PROOF PROCEDURE
AND ITS IMPLEMENTATION IN PROLOG

Rainer Manthey and Francois Bry
ECRC
Arabellastr. 17
D-8000 Muenchen 81

1. Introduction

Our work on automated deduction has been motivated by database problems. The set of
deduction rules and integrity constraints of a logic database can be considered as axioms of
a first-order theory while the actual sets of facts constitute (finite) models of this theory.
Satisfiability of the underlying axioms is a necessary prerequisite for any logic database.
The procedure described in this paper is the basis of a program called SATCHMO
(SATisfiability CHecking by MOdel generation) that has been implemented at ECRC as
part of a prototype schema design system for logic databases.

Although SATCHMO has initially not been intended as a proof procedure, it turned out
that a considerable amount of examples discussed in the theorem proving literature could
be solved by model generation with remarkable efficiency. We have successfully tested our
approach, e.g., on most of the 75 problems in [PEL86] as well as on a large collection of
problems that we received from Argonne National Laboratory. Besides many encouraging
results - Schubert’s Steamroller has been solved in little more than a second, e.g. - we
know about examples that lead to unacceptable results and that will probably never be
solved by "pure” model generation.

SATCHMO’s approach is based on hyperresolution. This inference rule allows to make
benefit of the range-restrictedness of clauses. Range-restrictedness - introduced in [NIC82] -
is a necessary condition for an efficient evaluation of queries against a database. Every
variable in a range-restricted clause occurs at least once inside a negative literal in that
clause. This property can be naturally expected for problems with a structured domain.

If applied to range-restricted clauses, hyperresolution always produces clauses that are
ground. This allows to simulate exhaustive application of hyperresolution by means of unit
hyperresolution and clause splitting. Unit hyperresolution fits particularly well to
PROLOG. In addition, a depth-first implementation of clause splitting is well supported by
PROLOG backtracking. The resulting PROLOG program for automatic model generation is
stunningly short and simple. As nowadays PROLOG interpreters are offered for a huge
variety of computers, theorem proving technology might become available to a wider
audience if it could be based on standard PROLOG features instead of requiring special
machines and languages.

The paper consists of six sections. After this introduction we give some basic definitions

222

around hyperresolution and introduce notations. In section 3 we elaborate on range-
restricted clauses and show that every set of clauses can be transformed into a range-
restricted set while preserving satisfiability. Model trees are introduced in section 4 and the
correspondence between model tree search and hyperresolution saturation is shown. A
PROLOG implementation of model tree generation is described in section 5 and its ap-
plication to the Steamroller problem is discussed. In section 6 we give an improved proce-
dure that is a decision procedure for a syntactically definable class of problems. Section 7
contains concluding remarks and hints to possible extensions. We don’t give proofs within
this paper.

2. Basic definitions and notation

Throughout the paper, Boolean connectives and/or/not/implies, resp., will be denoted by

o[/ />, resp. Clauses will be represented in implicational form

AjnAp > CpisCo
where "A, to "A are the negative, C; to C, the positive literals in the clause. Com-
pletely positive clauses are written as true ---> C;...;C,, while completely negative clauses
are implicationally represented in the form A,,..,A ~--> false. Thus negation never oc-
curs explicitly. We call the left-hand side of an implication antecedent and the right-hand
side consequent. Clauses with antecedent ’true’ will be called statements, all other clauses

will be called rules.

The hyperresolution inference principle allows to derive a new statement - the
hyperresolvent - from a single rule - the nucleus - and as many other statements - the
satellites - as there are literals in the antecedent of the nucleus. Each of the antecedent
literals has to be unifiable with a literal in one of the satellites. The respective unifiers
must be compatible, i.e., a most-general unifier has to exist that allows to unify antecedent
and satellite literals simultaneously. This mgu is applied to nucleus and satellites before the
hyperresolvent is constructed by disjunctively conjoining the consequent of the nucleus with
those satellite literals that do not occur in the antecedent of the nucleus. If all satellites
consist of a single literal we speak of unit hyperresolution.

For any set P of statements and any set N of rules, hyp(N,P) denotes the set of all hy-
perresolvents that can be derived from a nucleus in N and satellites in P.

Let S denote a finite set of clauses, ST(S") the subset of statements(rules) in S. The
hyperresolution levels of S can be inductively defined as Hyp?(S)=S* and
Hyp(S)=Hyp"!(S) Union hyp(S",Hyp(I1(S)) for i>0. The hyperresolution saturation of S is
the union over all hyperresolution levels and is denoted by Hyp(S).

In [ROB65] hyperresolution has been shown to be sound and complete for refutation, i.e.,
S is unsatisfiable iff Hyp(S) contains ’false’. In case of satisfiability, models of S can be ex-
tracted from Hyp(S) rather straightforwardly. For this purpose the ground instances of
Hyp(S) over the ground terms in S (if any - a single artificial’ constant else) have to be
considered. Every subset M of the Herbrand base of S that covers each of these instances

223

induces a model of S in which exactly the atomms in M are true and every other atom is
false. A set of ground literals is a cover of a set of ground clauses iff each of the clauses
is subsumed by one of the literals. We call a model that is induced by a cover of the in-
stance set of Hyp(S) a h-model of S.

3. Hyperresolution for range-restricted clauses

Many satisfiability problems are dealing with a non-uniform domain of interpretation, i.e.,
variables range over well-distinguished subdomains. This is in particular the case if
problems are inherently many-sorted. Range-restrictedness requires that for every variable
in a clause the subset of the domain over which the variable ranges is explicitly specified
inside the clause. A clause is range-restricted if every variable in the consequent of the
clause occurs in its antecedent as well. Range-restricted statements are necessarily ground.
The class of range-restricted formulas consists mainly of those first-order formulas that can
be equivalently expressed by means of restricted quantification.

For problems dealing with a single unstructured domain, range-restrictedness of clauses
cannot be naturally expected. Examples of this kind can be found mainly among algebraic
or set-theoretic problems. Especially non-ground statements have to be expected in this
case. If a set S contains clauses that are not range-restricted, it nevertheless may be
transformed into a set S that is range-restricted and that is satisfiable iff S is satisfiable.
For this purpose an auxiliary predicate ’dom’ has to be introduced and the following trans-
formations and additions to be performed:

Every statement true ---> C containing variables X, to X is transformed
into a rule dom(X,),..,dom(X) ---> C.

e Every rule A > C such that C contains variables X; to X that don’t oc-
cur in A is transformed into a rule A,dom(X,),....dom(X) ---> C.

o For every ground term t that occurs in S, the unit clause true ---> dom(t) is
added to S. If S is free of ground terms, a single unit true --> dom(a) is
added where ’a’ is an artificial constant.

o For every n-ary predicate p and Skolem term t occurring as the i-th parameter

of a p-atom in the consequent of a clause in S,

a rule p(X,,.. X, X,) ---> dom(X;) is added to S.
The predicate ’dom’ makes explicit the domain of interpretation. The ’dom’ literals added
to non-range-restricted clauses provide an implicit instantiation of the respective variables
over the whole domain. The additional clauses are necessary for guaranteeing that the rela-
tion ’dom’ contains an entry for every ground term that occurs in Hyp(S). Although the
transformation is not preserving equivalence in the strict sense, a kind of weak equivalence
between S and S° exists: if the relation assigned to the new auxiliary predicate 'dom’ is
removed from any model of S*, a model of S is obtained. There is a one-to-one correspon-
dence between models of S and models of $* up to the ‘dom’ relation. Therefore the

224

transformation described preserves satisfiability as well.

Every set of clauses may be transformed into a range-restricted set in this way, but it has
to be mentioned that the transformation may have the same effect as a partial instantia-
tion.

One can easily prove that Hyp(S) conmsists of ground clauses only iff all clauses in S are
range-restricted. Hyperresolution saturation can be implemented very efficiently in this
case. We will show that a combination of unit hyperresolution and clause splitting is suf-
ficient in place of full hyperresolution. In addition, h-models can be determined particularly
easily, as a ground Hyp(S) coincides with its instance set. The method we describe may
therefore be interpreted as an implementation of a systematic search for covers of Hyp(S).

4. Model trees

In this section we investigate how to make benefit of the particularities of hyperresolution
in the range-restricted case. As an introductory example let us consider the following
range-restricted set S;:

true ---> p(a) ; q(b) r(X,Y) , u(Y) —> t(Y)
B(X) > r(X.f(X)) q(X) > t(X)

r(X,Y) > t(Y) ; s(X) p(X) , t{f(X)) ---> false
s(X) ---> u(f(X)) qa(X) , t(X) ---> false

Instead of starting hyperresolution from p(a) ; q(b), one can analyse the case where p(a) is
true independently from the case where q(b) is true. Such a splitting into two independent
subproblems is sound because the clause p(a) ; q(b) is a ground disjunction. In each sub-
case unit hyperresolution is now applicable. Whenever non-unit hyperresolvents are ob-
tained they are immediately split as well, i.e., new sub-subproblems are created. For each
of the subproblems we finally will be able to derive ’'false’ by means of unit hyperresolu-
tion, which indicates that S, is unsatisfiable. Fig. 1 illustrates the different splitting and
unit hyperresolution steps in form of a tree.

{trile}
! |
{p(T)} {qu)}
{r(a;,f(a))} {t(b)}
' l {fallse}
{t(fl(a))} {s(zla.)}
{false} {u(f(a))}
{t(f(2))} - Fig. 1 -

{false}

225

If the rule p(X)t(f(X)) ---> false would be missing in S,, the two leftmost branches in
this tree could be cut one step earlier - indicating the existence of two different h-models.
The respective models - {p(a), r(a,f(a)), s(a), u(f(a)), t(f(a))} and {p(a), r(a,f(a)), t(f(a))} -
can be directly extracted from the tree by collecting all literals along a branch not ending
with ’false’. Because of this property we would like to call such a tree a model tree.
Every tree Tg that satisfies the following conditions is a model tree for S:

1. The nodes of Tg are finite sets consisting of truth values or of ground literals
from the Herbrand base of S.

2. The root of Tg is the set {true}.

3. Let N be any node of Tg and let anc(N) denote the union of N and all its an-
cestor nodes.

a. N is a leaf iff either N contains ’false’, or hyp(S-,anc(N)) is empty.

b. N has a direct descendant N’ iff N’ is a non-empty cover of
hyp(S-,anc(N))
We call leaves containing ’false’ failure nodes and branches ending in a failure node closed.
A leaf that does not contain ’false’ is a model node. A model tree is closed if all its
branches are closed.

Two important properties of model trees can be easily proved:

(*) If any model tree for S contains a model node N, then S is satisfiable
with h-model anc(N).
(**) If any closed model tree for S exists, then S is unsatisfiable.

Thus model tree generation provides the basis for a sound and complete proof procedure
for the class of clause sets with a hyperresolution saturation that is ground. As soon as a
model node has been found, satisfiability has been proved due to (*). In case of unsatis-
fiability, however, the whole model tree has to be generated for being sure that all its
branches are closed (*¥).

There are two cases in which satisfiability can be reported immediately: In case S consists
of rules only, hyperresolution is not applicable and S is trivially satisfiable with empty h-
model. If on the other hand no rule in S has the consequent ’false’ no branch will ever be
closed.

Model trees are related to special analytic tableaux in the sense of [Smu68]. The strategy
by which this kind of tableaux can be constructed is such that a branch is expanded by
splitting a clause C iff all negative literals in C are simultaneously unifiable with positive
literals along the branch. This particular strategy could be expressed in terms of hyper-
resolution as well. Removing all negative literals from such a tableau leads directly to the
corresponding model tree.

226

In general there are many different ways how a model tree may be constructed. Choices
have to be made in which order to try the different possible covers of a partial saturation
hyp(S-,anc(N)). In the next section we will present an implementation of a pure depth-first
strategy for model tree generation. In general. Hyp(S) and therefore any model tree for S
can be infinite. In case Hyp(S) is finite, however, all model trees for S are finite as well
and model tree generation will always terminate. Therefore satisfiability is decidable for
such sets of clauses. In section 6 we will further characterize this decidable class and give
a more efficient procedure for deciding satisfiability of clause sets from this class.

5. A PROLOG-implementation of model tree generation

Unit hyperresolution can be implemented in PROLOG extremely easily and efficiently.
After having defined ’--->’ as a PROLOG binary operator, problem clauses can be directly
asserted as PROLOG facts. Solving the PROLOG goal (A ---> C), A, not C’ implements
the search for a hyperresolvent C that is derivable with all satellites being units in the
current database and C being "new”, i.e., not subsumed by any of these units. (Note that
all non-unit statements will be “derived” this way as well, because ’true’ is a PROLCG
goal that always succeeds). PROLOG’s search through the ’--->’ -relation corresponds to
the search for a nucleus of the next derivation step. Regarding antecedent and consequent
of a clause as PROLOG goals (with Boolean connectives represented like in PROLOG)
permits to implement the search for suitable satellites as well as the subsumption test via
PROLOG goal interpretation. Unit hyperresolution saturation relative to a fixed set of
satellites - as required in the definition of a model tree - can be achieved by means of a
’setof” procedure which is available as a system predicate in most PROLOG interpreters.

The following three predicates determine all covers of a given set of hyperresolvents -
represented as a PROLOG list - successively on backtracking. The elements of the cover
are asserted as facts into the PROLOG database and are automatically retracted on back-

tracking:

cover([|). component(L, (L; _)).

cover([H|T]) :- component(L, (_; D)) :- !, component(L, D).
H, !, cover(T). component(L, L).

cover([H|T]) -
component(L, H),
assume(L), assume(X) :- assert(X).
cover(T). assume(X) :- retract(X), !, fail.

Immediately after a cover has been computed we can already determine whether any of the
descendants of this cover in the model tree under construction will contain ’false’. For this
purpose we have made the choice not to treat completely negative clauses in the same way
as the remaining clauses, but to represent every rule A ---> false as a PROLOG
derivation rule ‘’false :- A’. This allows to cut branches of a model tree that lead to con-
tradictions already one level before ’false’ would be explicitly derived. If the PROLOG goal
false’ succeeds after the computation of any cover. backtracking is initiated and a different

227

choice for reaching a cover is made.

The whole proof procedure can now be programmed in form of two simple mutually recur-
sive predicates:

satisfiable :- satisfiable([]) :- !, not false.
setof(C, ((A ---> C), A, not C), S), satisfiable(S) :-
satisfiable(S). cover(S),
not false,
satisfiable.

If ’satisfiable’ succeeds, the database contains a h-model of the set of clauses in the ’rule’
relation. Failure of ’satisfiable’ indicates that no h-model can be found.

Despite of its simplicity this program appears to be surprisingly efficient if applied to
problems that are naturally range-restricted. Schubert’s Steamroller - introduced in
|[WAL84| - is an excellent example of this kind of problems. Our PROLOG representation
of it corresponds to the ’standard’ unsorted formulation of the problem given in [STI86]:

wolf(X) ---> animal(X) true ---> wolf(w)

fox(X) ---> animal(X) true ---> fox(f)

bird(X) ---> animal(X) true ---> bird(b)

snail(X) ---> animal(X) true ---> snail(s)

caterpillar(X) ---> animal(X) true ---> caterpillar(c)

grain(X) ---> plant(X) true ---> grain(g)
fox(X).wolf(Y) ---> smaller(X,Y) snail(X) ---> plant(i(X))
bird(X),fox(Y)--> smaller(X,Y) snail(X) ---> likes(X,i(X))
snail(X),bird(Y) ---> smaller(X,Y) caterpillar(X) ---> plant(h(X))
caterpillar(X),bird(Y) ---> smaller(X,Y) caterpillar(X) ---> likes(X,h(X))

bird(X),caterpillar(Y) ---> likes(X,Y)
animal(X),animal(Y),smaller(Y,X),plant{W),likes(Y,W),plant(Z) --->
likes(X,Y) ; likes(X,Z).

false :- likes(X,Y), wolf(X), fox(Y). false :- likes(X,Y), wolf(X), grain(Y).

false :- likes(X,Y), bird(X), snail(Y).

false :- animal(X), animal(Y), likes(X,Y), grain(Z), likes(Y,Z).

The best cputime Stickel has reported for the solution of this problem is 6 secs. Meanwhile
[ENG87] has achieved 1 sec. We have applied the above program to the given formulation
of the Steamroller (using a simplified ’setof’ procedure for sets of ground elements) in in-
terpreted C-Prolog (Vers. 1.5) on a VAX 11/785. Using the built-in predicate ’cputime’
we have measured 1.35 secs. The model tree constructed by the program consists of 14
nodes and has 10 closed branches. If the theorem is omitted, we reach a h-model of 25
literals after 0.83 secs.

On the other hand there are cases where the implicit instantiation introduced through the
transformation into range-restricted form makes model tree search impracticable because of
the immense size of the tree. Problems 66 to 69 in [PEL86| - difficult function-problems
suggested by Ch. Morgan - belong to this kind of examples.

228

6. An improved procedure for a syntactically defined class

As mentioned before model tree generation is a decision procedure for satisfiability for
clause sets with a finite hyperresolution saturation. If we would know in advance that a
given set belongs to this class we could use an even simpler (and in general more efficient)
PROLOG implementation of model tree generation:
satisfiable__fin :-
(A ---> C), A, not C, !,
component(L,C),
assume(L),
not false,
satisfiable _fin.
satisfiable__fin.
This predicate does no longer determine sets of hyperresolvents before trying to cover
them. Instead it generates hyperresolvents as they come and covers them immediately. If
the set of all possible hyperresolvents is finite, the program is guaranteed to exhaust this
set and thus to reach ’false’ whenever possible. In case Hyp(S) is infinite, ’satisfiable__ fin’
may work correctly as well, but there are cases where refutation-completeness is lost. The
following clause set S, is an example for this:

true ---> p(a) p(Y) --—-> p(f(Y))

p(X) , q(X) ---> false p(Z) > q(f(Z))
S, has infinitely many hyperresolution levels. The nodes of the model tree for S, are the
sets {p(a)}, {p(f(a)),a(f(2))} and {p(f(f(a))).a(f(f(a)))false}, respectively. Thus model tree
generation with the predicate ’satisfiable’ will terminate as opposed to ’satisfiable_ fin’: this
procedure reaches only the p-atoms in each level but never derives ’false’. Every atom is
asserted immediately after its generation and thus leads to a new application of the same
rule. The search function of ’satisfiable_ fin’ is simple, but inherently "unfair”. Thus its
simplicity can be exploited only for refuting sets with finite hyperresolution saturation.

The infinite generation of hyperresolvents is due to the presence of a special recursive rule
in S,: p(Y) > p(f(Y)) is recursive and in addition leads to the generation of infinitely
many nested terms via hyperresolution. The Steamroller contains a recursive rule as well,
namely
animal(X),animal(Y),smaller(Y X),plant(W) likes(Y,W}),plant(Z) --->
(likes(X,Y);likes(X,2))
However, no new nested terms can be generated through this rule, as no Skolem term is

involved in the recursion.

There is another phenomenon that influences a potential infinite generation of hyperresol-
vents. Consider the following set S;:

true ---> p(a) p(X) , s(Y.Z) ---> r(Z,f(X))
r(X,f(X)) ---> false r(X,Y) > s(Yf(X))

This set contains a cycle of recursion between the two rules on the right column that in-

229

volves Skolem terms as well. Despite this similarity with S,. Hyp(Ss) is finite and both
procedures, ‘satisfiable’ as well as ‘satisfiable fin’ terminate. This happens because the

respective rules do not participate in any hyperresolution step.

A syntactical characterization of clause sets that contain a cycle of recursion leading to in-
finite term-generation when entered during hyperresolution can be given in terms of the
connection graph of the set. Certain cycles in this graph can be distinguished by means of
compatible unifiers, recursive substitutions and a reachability relation between atoms. The
presence of these special cycles characterizes a solvable class of clause sets. This class
properly contains two well-known solvable classes, namely the Bernays-Schoenfinkel class
(clauses without non-constant Skolem terms) and the class of compact clause sets [LEW75]
(sets without recursive rules). The formal definition of this class and a proof of its sol-

vability will be given in a forthcoming paper.

7. Conclusion

In this paper a proof procedure for sets of range-restricted clauses has been proposed which
is based on model generation via hyperresolution. The method exploits that hyperresol-
vents derivable from range-restricted clauses are ground. The procedure can be interpreted
as generating a model tree in a depth-first manner. A PROLOG implementation of the ap-
proach has been described that is simple but allows to solve many problems with con-
siderable efficiency. As a satisfiability preserving transformation into a range-restricted
problem is always possible, the procedure is general purpose.

Two possible extensions are under investigation at the moment. First, one can use
PROLOG derivation rules for representing other Horn clauses than only completely nega-
tive ones. Moreover, a careful use of non-ground PROLOG facts for representation of unit
clauses can help to avoid many of those cases where a combinatorial explosion of generated
facts due to implicit instantiation via ’dom’ would otherwise occur. As long as it is
guaranteed that non-Horn statements are always grounded before splitting, these deviations
from a purely generative approach are acceptable and often very useful. However, it
should be noted that PROLOG-specific problems due to recursion or missing occurs check
may arise, that do not exist for the method described in this paper.

Second, we are going to make the method sound and complete for finite satisfiability as
well. Most theorem provers do not terminate in many cases where a finite model exists.
For applying the procedure in a database context, existence of finite models has to be
detected. The price to be paid for being able to terminate more often in case of satis-
fiability will be a decrease in efficiency for refutation, however. In [BM86] we have inves-
tigated which additional features are required for achieving completeness for both, unsatis-
fiability as well as finite satisfiability. An extension of our method with these additional
features appears to be straightforward.

Apart from the two points mentioned. further increase in efficiency may be obtained by
means of more sophisticated strategies for model tree generation.

230

Acknowledgement:

We would like to thank L. Wos, R. Overbeek and the other members of the Argonne team
for their hospitality and the stimulating discussions during the visit of one of the authors
at Argonne. Furthermore we would like to acknowledge the many useful remarks made by

the anonymous referees.

References:

(BMs|

[ENG87]

[LEW75)

[NICS2]

[PELS6]

[ROB6S)

[SMU6S)

[STIs6)

[WALS84]

F. Bry and R. Manthey, Proving finite satisfiability of first-order
theories, Internal Report KB-27, ECRC, 1986

D. Engelhardt, Model elimination - Grundlagen und Implementation,

Diplomarbeit, Tech. Hochschule Darmstadt, Fachbereich Informatik, 1987

H. Lewis, Cycles of unifiability and decidability by resolution,
Techn. Report, Aiken Comp. Lab., Harvard Univ., 1975

J.M. Nicolas, Logic for improving integrity checking in relational
databases, Acta Informatica 18, 1982, 227-253

F.J. Pelletier, Seventy-five Problems for Testing Automatic Theorem
provers, J. of Autom. Reasoning 2, 1986, 191-216

J.A. Robinson, Automated Deduction with Hyper-Resolution,
Intern. Journ. of Computer Math. 1, 1965, 227-234

R. Smullyan, First-order logic, 1968

M. Stickel, Schubert’s steamroller problem: formulations and solutions
J. of Autom. Reasoning 2, 1986, 89-101

C. Walther, A mechanical solution to Schubert’s steamroller by many-
sorted resolution, Proc. AAAI 1984, Austin(Tex.), 330-334
(rev. version: Artificial Intelligence 26, 1985, 217-224)

