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Objective—To systematically investigate causal relationships between obesity and 

cerebrovascular disease, and the extent to which hypertension and hyperglycemia mediate the 

effect of obesity on cerebrovascular disease.

Methods—We used summary statistics from genome-wide association studies for body mass 

index (BMI), waist-to-hip ratio (WHR) and multiple cerebrovascular disease phenotypes. We 

explored causal associations with two-sample Mendelian randomization (MR) accounting for 

genetic covariation between BMI and WHR; and assessed what proportion of the association 

between obesity and cerebrovascular disease was mediated by systolic blood pressure (SBP) and 

blood glucose levels respectively.

Results—Genetic predisposition to higher BMI did not increase the risk of cerebrovascular 

disease. In contrast, for each 10% increase in WHR there was a 75% increase (95% confidence 

interval (CI)=44%−113%) in risk for large artery ischemic stroke, a 57% (CI=29%−91%) increase 

in risk for small vessel ischemic stroke, a 197% increase (CI=59%−457%) in risk of intracerebral 

hemorrhage, as well as an increase in white matter hyperintensity volume (β=0.11; CI=0.01–0.21). 

These WHR associations persisted after adjusting for genetic determinants of BMI. 

Approximately one tenth of the observed effect of WHR was mediated by SBP for ischemic stroke 

(12%; CI=4%−20%), but no evidence of mediation was found for average blood glucose.

Interpretation—Abdominal adiposity may trigger causal pathological processes, partially 

independent from blood pressure and totally independent from glucose levels, that lead to 

cerebrovascular disease. Potential targets of these pathological processes could represent novel 

therapeutic opportunities for stroke.

Introduction

Deaths related to stroke across all ages have seen an increase of 22% in the last decade1. 

Novel therapeutic targets are needed, and their discovery could be propelled by clarification 

of causal pathways. Observational studies have shown that obese individuals experience 

roughly double the risk for stroke compared to those of normal weight2. Whether this 

association is causal or a proxy for unmeasured lifestyle factors or covarying health 

exposures remains unclear. For instance, prior studies have shown that body mass index 

(BMI) is not associated with stroke risk after adjusting for known vascular risk factors3. 

Observational analyses intending to separate the inherent risk conferred by adiposity from 

the effect of covarying mediators (such as hypertension) may suffer from confounding and 

underestimation of true effects4.

Mendelian randomization (MR) is an instrumental variable analysis approach that has been 

deployed in genetic epidemiology to determine whether associations of co-occurring traits 

reflect a causal relationship or simple correlation5. Two previous analyses applied MR to 

show that central adiposity increases risk of ischemic stroke, among other cardiovascular 

phenotypes6,7. Leveraging the most updated genome-wide association study (GWAS) data 

for body fat distribution and obesity, stroke, and additional cerebrovascular disease traits, we 

aimed to: (i) determine the degree to which different cerebrovascular disease subtypes are 

affected by obesity traits; (ii) clarify which obesity trait (waist-to-hip ratio (WHR) or BMI) 
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best explains any increase risk of stroke; and (iii) assess the role of potential mediators of 

any identified causal effects.

Methods

Traits analyzed and genome-wide association studies

Publicly available GWAS summary meta-analysis statistics were obtained for BMI and 

WHR, and for intracerebral hemorrhage (ICH), white matter hyperintensity (WMH) volume 

and ischemic stroke. Genetic association results for BMI and WHR were derived from the 

largest currently available meta-analysis of European ancestry individuals8. Briefly, we used 

summary-level genotype data of both sexes from the UK Biobank and the GIANT 

consortium, which tested genome-wide associations for WHR and BMI in 694,649 subjects. 

Phenotypes were adjusted for sex, age and recruitment center and underwent center rank 

inverse normalization. Ischemic stroke was analyzed in toto (all-cause ischemic strokes) and 

further as subclassified into large-artery atherosclerotic stroke (LAS), cardioembolic stroke 

(CES), and small-vessel stroke (SVS)9. ICH was subclassified into lobar and non-lobar ICH, 

given the different pathophysiology by location10. Genetic data for ischemic stroke 

(including the etiological subtypes) and for ICH were derived from the MEGASTROKE 

consortium9 and the International Stroke Genetic Consortium (ISGC) GWAS for ICH11, 

respectively. In brief we utilized the results obtained from inverse-variance meta-analysis 

restricted to subjects of European ancestry after adjusting for age, sex and principal 

components reflecting ancestry (40,585 cases; 406,111 controls). To extend the spectrum of 

cerebrovascular disease phenotypes, we also analyzed WMH volume (in mm3), a known 

magnetic resonance imaging (MRI) biomarker of cerebral small vessel disease12. We used 

GWAS summary statistics for MRI volumetric measurements of WMH derived from a UK 

Biobank study, as previously described13.

Systolic blood pressure (SBP) and fasting blood glucose (FG) were identified as possible 

mediators of obesity, based on previous literature demonstrating hypertension and diabetes 

as being affected by obesity while conferring risk for stroke6,14,15. Although abnormal 

cholesterol and triglyceride levels are also associated with obesity, given inconsistent and 

sometimes diverging risk associations between lipid levels and stroke risk, we chose to limit 

mediation analysis to SBP and FG16. We prioritized the continuous traits of FG and 

hemoglobin A1c (HbA1c) over diabetes case/control status, as dichotomous exposure 

variables can introduce bias into MR analyses related to violation of the monotonicity 

assumption, as the variants employed as instruments will not predict the exposure phenotype 

in all individuals17. Compared to HbA1c, FG is less affected by erythrocyte lifespan in non-

diabetic participants18 and is informed by a more powered GWAS. FG was therefore 

selected for the primary analysis while HbA1c was included for confirmation. SBP genetic 

association data were derived from the UK Biobank. Specifics of the analysis have been 

detailed elsewhere19. Briefly, 317,195 individuals of European Ancestry were included to 

generate summary level GWAS data for SBP corrected for the effects of anti-hypertensive 

treatment. European ancestry-specific genome-wide meta-analysis summary statistics for 

association with HbA1c and FG were available through the latest effort of the Meta-

Analyses of Glucose and Insulin-related traits Consortium (MAGIC, 
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www.magicinvestigators.org)20,21. Genotyping and bioinformatic genetic analysis of each of 

these GWAS followed standardized procedures that are harmonized and comparable across 

the studies. Detailed genotype and phenotype assessment procedures are available in the 

studies referred8–9,11,19–21. Additional demographic and phenotypic information on the 

included studies is available in Table 1.

Statistical Analysis

Overall, we used three genetic instruments for our exposures of interest including, BMI, 

WHR and WHR adjusted for BMI (WHRadj), tested against cerebrovascular disease 

outcomes. Association estimates for BMI, WHR and outcomes were extracted from the 

above-mentioned studies, harmonized by risk allele, and used in the MR analyses with the 

association estimates between the instruments and the described outcomes. The included 

instruments were single-nucleotide polymorphisms (SNPs) pruned at r2 <0.01 based on the 

European 1000-Genomes reference panel, that demonstrated association with BMI and 

WHR, individually, at genome-wide significance (p<5×10−8).

WHRadj was derived from BMI and WHR. Since BMI is a correlated covariate of WHR, 

collider bias may be present when using summary statistic data from GWAS of WHR 

adjusted for BMI22. To avoid this problem, we used a multivariable mendelian 

randomization model23, using WHR as a predictor and BMI as a covariate.

Mendelian Randomization Analyses

Complementary MR approaches were applied. We first used the inverse variance–weighted 

(IVW) method24. Heterogeneity across estimates was assessed using I2 and Cochran’s Q 

(p<0.05 and I2>50% were considered statistically significant)25. Then, we used the weighted 

median estimator26, a method that can provide valid estimates if at least 50% of the 

information in the analysis comes from SNPs that are valid instrumental variables,26 and 

MR-Egger regression27, generally considered to be conservative in the presence of 

pleiotropic variants and less likely to generate inflated test statistics leading to false positive 

associations28. As a further sensitivity analysis, we also performed the weighted mode-based 

estimation method, which provides strongest estimates when the most common causal effect 

estimate is a consistent estimate of the true causal effect, even if the majority of instruments 

are invalid29. We applied the Benjamini-Hochberg procedure for controlling the false 

positive rate in multiple comparisons. Finally, when significant MR results between traits 

were found, we used (i) MR-PRESSO30, to explore presence of outliers that could bias the 

results, and (ii) bidirectional MR, to test for any inverse associations using obesity traits as 

outcomes and cerebrovascular disease phenotypes as exposures31. In our bidirectional MR 

we pruned at r2 <0.5 using SNPs associated with cerebrovascular disease at genome-wide 

significance. The higher r2 threshold for bidirectional MR was required given the reduced 

number of significant SNPs associated with cerebrovascular disease. We also adjusted for 

genetic correlation (based on 1000 Genomes Project CEU population) between instruments 

by weighting for the inverse LD correlation matrix.
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Mediation analysis

For the mediation analysis, we performed conventional network MR32. Specifically, we first 

estimated the effect of BMI/WHR on each respective mediator (SBP and FG) using the IVW 

MR approach. Next, we applied regression-based multivariable MR to estimate the effect of 

SBP and FG respectively on risk of stroke and its subtypes, adjusting for the genetic effect 

of the instruments on BMI or WHR respectively27. The indirect effect of the considered 

exposure on stroke risk mediated through SBP or FG was estimated by multiplying results 

from these two MR analyses. We finally divided the mediated effect by the total effect to 

estimate the proportion mediated, as previously done19,32. The above-described method was 

applied to HbA1c as well.

Analysis was performed using R version 3.4.3 (The R Foundation for Statistical Computing) 

together with the R packages gtx and MR-PRESSO30. The list of genetic variants used 

appear in Supplemental Table 1. This study used publicly available deidentified data from 

participating studies that had already obtained relevant authorization from local ethics and/or 

institutional review boards.

Results

BMI and WHR and cerebrovascular traits

Our first MR approach (IVW-MR) suggested that increased BMI is significantly associated 

with increased risk of all cerebrovascular traits. This association appeared to be affected by 

significant heterogeneity as defined by Cochran’s Q between SNPs (Supplemental Table 2). 

Similar findings were observed when testing for associations between WHR and 

cerebrovascular disease. Given concern that pleiotropy may have been contributing to an 

inflation in association statistics and thus potentially undermining the true causality of the 

observed relationships, we turned to additional, more conservative MR approaches: 

Weighted Median MR and Egger regression.

The Weighted Median MR found that each 4.81 kg/m2 increase in BMI was associated with 

a modest 0.12 mm3 increase in WMH volume (β=0.12; 95% Confidence Intervals (CI)= 

0.04–0.20; p=6.00×10−3). However, none of the remaining cerebrovascular disease traits 

were found to be causally affected by BMI using the Weighted Median approach. Egger 

regression testing for a causal relationship between BMI and WMH was not significant 

(β=0.04; CI=−0.06–0.14; p=0.742; Egger intercept p=0.068) (Figure 1A).

In contrast, findings related to WHR largely retained significance using these conservative 

MR approaches. Weighted Median MR analyses showed genetically-determined higher 

WHR to be associated with an increased risk of all-cause ischemic stroke, specifically the 

LAS and SVS subtypes, with a one standard deviation increase in WHR of 0.09 (9% 

increase in WHR absolute, 10% relative to the mean) corresponding to an increase in LAS 

and SVS by 75% and 57%, respectively. Genetically-determined higher WHR also increased 

the risk of non-lobar ICH and WMH; the same 9% increase in WHR increased non-lobar 

ICH risk by 197% and WMH volume by 0.11 mm3. No associations were found for CES or 

lobar ICH (Figure 1B). Reassuringly, the Egger regression approach was concordant with 

the Weighted Median MR results for the causal relationship between WHR and all stroke 
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(Odds Ratio (OR)=1.31; CI=1.10–1.56; p=0.018; Egger intercept p=0.892), LAS (OR=1.63; 

CI=1.04–2.56; p=0.045; Egger intercept p=0.776) and SVS (OR=1.58; CI=1.05–2.39; 

p=0.045; Egger intercept p=0.923). For non-lobar ICH and WMH, Egger regression analysis 

testing the causal effect of WHR returned similar effect size estimates to the Weighted 

Median MR approach but they were not statistically significant (non-lobar ICH: OR=3.10; 

CI=0.67–14.28; p=0.168; Egger intercept p=0.903; WMH: β=0.17; CI= −0.02–0.35; 

p=0.117; Egger intercept p=0.663).

Sensitivity analyses

As a further test of the robustness of our findings across MR methodologies, weighted 

Mode-based MR analysis showed consistent effect sizes and directions to those from the 

primary Weighted Median MR (Supplemental Table 2). MR-PRESSO did not identify any 

outliers and further supported a lack of bias related to pleiotropy between WHR and all-

cause ischemic stroke, LAS and SVS (Supplemental Table 2). When applying bidirectional 

MR, we found no significant associations between the cerebrovascular disease phenotypes 

and WHR (Supplemental Table 3), supporting our modeling assumption that genetic 

determinants of stroke risk are unlikely to causally influence WHR.

WHR adjusted for BMI

Multivariable MR demonstrated that WHR causally influenced cerebrovascular risk even 

after controlling for BMI. An increase in WHR (1 standard deviation, 9% absolute or 10% 

relative increase from the mean) adjusted for BMI was independently associated with all-

cause ischemic stroke (OR=1.25; CI=1.15–1.35; p=1.12×10−6); LAS (OR=1.72; CI=1.38–

2.13; p=1.24×10−6), SVS (OR=1.93; CI=1.59–2.35; p=3.80×10−10); non-lobar ICH 

(OR=2.78; CI=1.34–5.78; p=6.0×10−3) and WMH (β= 0.10; CI=0.08–0.28; p=3.79×10−4), 

but not with CES or lobar ICH, supporting the results of our univariate MR models for 

WHR.

Mediation analysis

The effect of WHR was partially mediated by SBP for all-cause ischemic stroke (proportion 

mediated: 12%; CI=4%−20%; p=5.0×10−3); LAS (proportion mediated: 13%; CI=2%−25%; 

p=0.03); and SVS (proportion mediated: 11%; CI=1%−21%; p=0.04). We did not find a 

significant mediation effect for non-lobar ICH (proportion mediated: 9%; CI=−5%−23%; 

p=0.235) and WMH (proportion mediated: 12%; CI=−7%−31%; p=0.210) (Figure 2). 

Mediation analyses for the effect of FG on WHR-mediated risk did not show significant 

effects for all-cause ischemic stroke (proportion mediated: 0%; CI=−38%−16%; p=0.430); 

LAS (proportion mediated: 3%; CI=−22%−29%; p=0.810); SVS (proportion mediated: 

18%; CI=−12%−48%; p=0.251); non-lobar ICH (proportion mediated: 1%; CI=−20%−22%; 

p=0.909) or WMH (proportion mediated: 0%; CI=0%−100%; p=0.840). Similar results were 

found when testing HbA1c instead of FG.

Although the weighted median MR approach identified a potential causal effect for BMI on 

WMH volumes alone, and at a smaller effect size than what has been observed in association 

with clinical outcomes, in the interest of completeness we also explored mediating factors 

for any effect of genetically-determined BMI (as an exposure) on cerebrovascular disease. 
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SBP significantly mediated a considerable part of the putative association between BMI and 

all-cause ischemic stroke, LAS and SVS (Figure 2). FG and HbA1c did not mediate BMI 

risk on any tested cerebrovascular phenotypes (Supplemental Table 4).

Discussion

Leveraging GWAS summary data, our study confirms a causal relationship between obesity 

and cerebrovascular disease, relates it primarily to abdominal adiposity and specific 

cerebrovascular phenotypes, and clarifies a possible role for mediation through hypertension 

but not hyperglycemia.

Several previous observational studies have investigated the association between obesity and 

risk of ischemic strokes34–36. Both previous MR analyses6,7 suggested that obesity, but not 

BMI, could be causal in this relationship, showing an overall 30% increased risk for 

ischemic stroke for each standard deviation increase in abdominal adiposity6. However, the 

studies failed to confirm the association when more catered for unbalanced horizontal 

pleiotropy. Lastly, both previous studies did not resolve which ischemic stroke subtypes are 

specifically affected by abdominal adiposity. Our analyses, leveraging greater statistical 

power enabled by the latest consortia efforts, are able to confirm these results with MR 

approaches more robust to the presence of pleiotropic instruments28, suggesting that higher 

abdominal adiposity intrinsically increases risk of ischemic stroke. Our study also confirms 

the lack of a robust causal effect for BMI across ischemic stroke and its subtypes. As has 

been previously suggested, BMI ignores important health-determinants such as muscle mass 

and distribution of adiposity, and may therefore be a relatively poor biological tool for 

examination of causal pathways in disease37,38. Our results suggest that WHR specifically 

increases stroke risk, and this effect persists even after adjustment for BMI. Given that 

studies with direct assessments of body adiposity showed that WHR adjusted for BMI is a 

surrogate measure of abdominal adiposity39 our results specifically implicate abdominal 

distribution of fat in a causal process leading to cerebrovascular disease.

Two prior genetic studies have investigated the relationship between obesity and ICH and 

did not identify any significant associations6,7. To our knowledge, no study has investigated 

distinct effects between lobar and non-lobar ICH. In contrast to ischemic stroke, 

epidemiologic studies have reported conflicting results on the association between obesity 

and ICH risk, with one study reporting an increased prevalence of obesity in patients 

hospitalized for ICH40, and another showing that ICH cases have lower BMI41. In another 

multicenter study, BMI increased the risk of non-lobar ICH but only through an indirect 

effect of hypertension42. Our results support WHR but not BMI as a risk factor for non-lobar 

ICH alone, with no contribution to risk of lobar ICH. Although we cannot fully exclude 

horizontal pleiotropy in this situation, all the employed MR approaches, which make distinct 

assumptions on the presence of any pleiotropic variants, returned consistent results. Finally, 

studying the effect of adiposity on white matter lesions, we found that even if genetic 

susceptibility for higher BMI and WHR are statistically associated with more severe WMH, 

the overall effect is negligible and is unlikely to be clinically impactful. Given the common 

small vessel pathology shared between non-lobar ICH, SVS, and WMH12, it may be 

reasonable to hypothesize that abdominal adiposity may prompt pathological mechanisms 
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that also lead to WMH. Deployment of higher power GWAS of WMH in healthy subjects or 

use of WMH GWAS data from subjects affected by cerebrovascular disease may yield 

different results.

Research has suggested several pathological cascades arising from obesity that lead to 

thrombosis and cardiovascular disease. The most intuitive are represented by increased 

blood pressure and diabetes, two recognized causal factors for arteriosclerosis of large and 

small blood vessels12. Compared to mediation analysis based on observational data, MR is 

less susceptible to measurement error19 and therefore offers favorable opportunities for 

understanding any mediation by hypertension and hyperglycemia in obesity. Our mediation 

results suggest that causal mechanisms arising from abdominal fat distribution contribute to 

cerebrovascular disease largely independent of these factors. Along with metabolic 

derangements, obesity is associated with significant and protracted increase in inflammatory 

markers, and as such it has been described as a low-grade chronic inflammatory state43. Low 

grade inflammation and systemic oxidative stress have proven to be damaging for the 

endothelium, shifting it towards a prothrombotic state. Platelet reactivity, enhanced 

coagulation and impaired fibrinolysis are other recognized mechanisms44. Our results 

demonstrating increased risk for SVS and non-lobar ICH on one hand, and for LAS on the 

other suggest that both cerebral microvascular disruption and accelerated atherosclerosis 

leading to stroke may be triggered by obesity.

Our MR benefits from multiple and orthogonal approaches. Although results from different 

approach were comparable in direction and effect size, association results from IVW-MR 

appeared to be inflated and affected by pleiotropy. Therefore, we focused on the more 

conservative and selective approach of Weighted Median and Egger regression, more robust 

to the inclusion of pleiotropic variants. Mode-based results were also consistent but 

produced less precise estimates and wider confidence intervals, perhaps reflecting a poorer 

model-fit for modal assumptions.

Our study has several limitations. Although we have used multiple MR approaches to guard 

against confounding due to pleiotropy, we cannot fully exclude residual bias, which is an 

established limitation of the MR approach45. Similarly, we attempted to limit the misleading 

inferences introduced by trait heterogeneity by applying multivariable MR. Well-powered 

studies with individual level data on the included small vessel phenotypes in addition to 

measured BMI and WHR values will ultimately be required in order to confirm the causal 

effects of complex phenotypes like adiposity. Further, our study is limited to individuals of 

European ancestry and as such our results cannot necessarily be generalized to other 

ancestral populations. This is particularly relevant given the known disparities in obesity and 

stroke risk in traditionally underserved populations such as blacks and Hispanics46. Future 

studies building on our approach in diverse populations are needed to extend our findings. 

We did not include genetic predisposition to lipid blood levels as a mediator of the 

relationship between obesity and cerebrovascular disease, given that lipid effects on 

cerebrovascular outcomes are unsettled and potentially opposing in effects across ischemic 

and hemorrhagic stroke. Although triglyceride and cholesterol levels are related to central 

obesity, associations between cholesterol levels and increased risk of stroke lack the 

consistency of studies on hypertension and diabetes,47 and associations in ICH are even 
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more unclear48. As such, the results of a lipid mediation analysis would be difficult to 

interpret. Lastly, individual level data were not available; this precluded us from extending 

our analysis to sex-specific effects of obesity. However, previous observations showed that 

sexual dimorphism affects SNPs associated with WHR less than the ones associated with 

WHRadj8.

Conclusions

Our study identifies abdominal adiposity as a causal risk factor for cerebrovascular disease, 

demonstrates differential effects across stroke subtypes, and suggests a substantial 

proportion of this effect extends beyond hypertension and diabetes. These results support the 

pursuit of pathological targets induced by central obesity as potential therapeutic candidates 

for stroke49. The importance of this topic is amplified by the ongoing obesity epidemic 

around the world50.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Mendelian randomization associations of genetically determined BMI and WHR with 

cerebrovascular disease. Results derived from weighted median Mendelian Randomization 

analysis (Odds Ratio and 95% Confidence intervals for each 6% increment in BMI and 9% 

increment in WHR, corresponding to one standard deviation in each) are shown.

Legend: BMI: body mass index; WHR: waist hip ratio; WMH: white matter hyperintensity; 

ICH: intracerebral hemorrhage; LAS: large artery stroke; SVS: small vessel stroke; CES: 

cardio embolic stroke.
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Figure 2: 
Mediation analysis: estimates for the SBP mediating the effect of WHR and BMI on 

cerebrovascular disease outcomes. For any cerebrovascular disease, we report the average 

proportion mediated (dot), the 95% confidence intervals of the percentage mediated (grey 

bar) and p value.

Legend: BMI: body mass index; WHR: waist hip ratio; WMH: white matter hyperintensity; 

ICH: intracerebral hemorrhage; LAS: large artery stroke; SVS: small vessel stroke; CES: 

cardio embolic stroke.
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Table 1:

Characteristics of subjects included in the GWAS studies utilized for the analyses.

Trait Consortium Subjects Women (%) mean age (SD) Trait mean value (SD)

Obesity traits BMI
UKBiobank + GIANT

806,834 54 NA 27.41 (4.81)

WHR 697,734 55 NA 0.87 (0.09)

cases

CVD traits IS MEGASTROKE 10,307 41.7 67.4 (12.3)

LAS 3,808 48.9 65.9 (10.4)

CES 3,697 46.4 68.1 (9.4)

SVS 2,206 45.5 65.6 (12.4)

ICH ISGC 1,545 45.1 67.0 (10)

WMH UK-Biobank 10,597 52.7 54.9 (7.5) 4,607 (6,021) mm3

Mediation analysis traits FG MAGIC 133,010 46.3 50.1 (18.4) 5.33 (0.44) mmol/l

HbA1c MAGIC 123,665 51.37 53.8 (10.3) 5.38 (0.22) %

SBP UKBiobank 317,195 53.71 56.9 (8.0) 136.39 (18.68)

Legend: CVD: Cerebrovascular disease; BMI: Body Mass Index; WHR: Waist Hip Ratio; IS: Ischemic Stroke; LAS: Large Artery Stroke; CES: 
Cardioembolic Stroke; SVS: Small-Vessel Stroke; ICH: Intracerebral Hemorrhage, WMH: White Matter Hyperintensity; FG: fasting glucose; 
HbA1c: hemoglobin A1c; ISGC: International Stroke Genetics Consortium; MAGIC: Meta-Analyses of Glucose and Insulin-related traits 
Consortium; GIANT: Genetic Investigation of ANthropometric Traits
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