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Intensional Updates:
Abduction via Deduction

Francois Bry
ECRC, Arabellastrafie 17, D-8000 Munchen 81, West Germany
fbQecrc.de

Abstract

Because they are extra-logical and procedural, the conventional updating facili-
ties of Logic Programming are not convenient for all applications. In particular, it is
desirable to give database and expert system users the possibility to specify updates
without having to define their execution. We propose the concept of ‘intensional
update’ as a formal basis for declarative update languages. Intensional updates
express in first-order logic changes of the consequences of logic programs. They
generalize database ‘view updates’. The modifications of the logic program that
actually realize an intensional update are derived through abductive reasoning. We
show that this form of abduction can be reduced to deduction in a non-disjunctive,
definite theory, thus giving rise to implementations in Logic Programming. First,
we formalize abduction as deduction in a disjunctive theory. Second, we apply
the theorem prover Satchmo [22], which express deduction in disjunctive theories
through definite meta-clauses. This approach gives rise to efficiently taking static
and dynamic integrity constraints into account and to achieving completeness.

1 Introduction

The conventional updating facilities of Logic Programming do not have a semantics
independent from the proof procedure. The effect of Prolog ‘assert’ and ‘retract’
built-in predicates depends on their positions in bodies of clauses and on the order-
ing of clauses in the program. Similarly, the changes resulting from the updating
primitives proposed for bottom-up Logic Programming in [1, 2] depends on the pro-
cessing order of clauses. Though useful in certain contexts — e.g., in programming
languages —, such extra-logical, procedural facilities are not always convenient. In
particular, database, knowledge base, or expert system users often require more
declarative tools in order to specify an update without having to define an execu-
tion mode. In this article, we propose the notion of ‘intensional update’ as a formal
basis for proof-procedure independent, declarative update languages.

Instead of defining updating operations, and explicitly or implicitly specifying
how to perform them, it is possible to describe properties that the facts derivable
from the updated program have to satisfy. Doing so, the update of the logic program
is not specified, as usual, extensionally as changes to perform, but intensionally by
the expected effect. We call ‘intensional update’ the latter notion. Intensional
updates are not restricted to ground atomic formulas but can express more general
properties, for example statements involving quantifiers, or referring to the current
logic program as well as to its updated version. Hence, they extend the database
notion of ‘view update’ — see, e.g., [10, 21, 28] — and the updates considered in
(17, 11, 25, 19].

Consider for example a database of university employees. Assume that the
professors that are qualified for tenure are defined in a ‘view’, i.e., by means of non-
factual clauses. A view update perimits one to express that a given professor should
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become qualified for tenure. In contrast, the more general concept of ‘intensional
update’ gives rise to requiring a modification of the database such that, say, all
professors currently teaching Logic Programming should qualify for tenure in the
new, updated database. So, intensional updates extend view updates by allowing on
the one hand quantified updating intentions, on the other hand intentions referring
to the current program and to its updated version.

We rely on a meta-predicate for expressing intensional updates in logic. More
precisely, we express statements that describe the desired, updated logic program
within a meta-predicate called ‘new’. Thus, they are distinguished from assertions
on the current, non-updated logic program, giving rise to expressing properties
related to both states of a logic program in a same intensional update. In this
formalism, the intensional update considered above could be expressed as:

Va professor(z) A teach(z, Ip) = new(qualified-for-tenure(z))

This formalism also gives rise to declaratively expressing dynamic integrity con-
straints. A classical example is a constraint requiring that the salary (denoted z)
of an employee (denoted y) never decreases:

Vrz,y salary(z, y) A new(salary(z;, y)) = 1 > =

Although they are defined with a meta-predicate, one can show that intensional
updates and dynamic integrity constraints have a first-order logic semantics.

Intensional specifications of updates must be translated into actual changes of
the logic program. In other words, it is necessary to generate, from an intensional
update, ‘extensional updates’ that realize it. With the aim of automatizing this gen-
eration, we investigate the reasoning it involves. Consider for example the following
logic program:

p(z) = q(2) A x(z) r(a)
q(=) — s(z) s(2)

and assume that the updating intention is to make the atom p(a) no longer derivable,
i.e,, in our formalism new(—p(a)). This intention can be achieved by realizing
new(—q(a)), or by realizing new(—r(a)) — disjunctive reasoning. Assuming that it
is realized through new(—q(a)) — hypothesis formation — the second clause yields
the intensional update new(=s(a)), which is realized by removing the fact s(a) from
the program.

Although performing backward chaining like Linear and SLD Resolution do, the
reasoning involved in such a process is not deductive. Instead of drawing conclusions
from given premises, it infers possible causes for the intensional update. It performs
disjunctive reasoning and relies on hypothesis formation. Following Peirce [24], we
call this kind of inference ‘abductive reasoning’.

Abductive reasoning has been primarily applied to diagnostic tasks [26]. Find-
ing possible explanations for malfunctions or diseases indeed consists of making
hypotheses that permit to justify the observed symptoms. Abductive reasoning has
also been applied to natural language understanding [8, 23, 18], to design synthesis
[15], and to formalizing analogical reasoning [27].

In previous studies, links between abductive reasoning and Logic Programming
have been investigated in several directions. It has been proposed to take advantage
of the fact that abduction performs backward chaining for expressing it as a —
significantly — modified Linear or SLD Resolution procedure. This approach was
first described in [27] with Linear Resolution, more recently in {17, 11, 25] with
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SLDNF Resolution for the special task of realizing certain intensional updates.
Abduction has also been considered for extending Logic Programming [12, 13, 9].

We propose to bring abduction and Logic Programming closer together in a way
that differs from these approaches. First, we apply abduction to Logic Programming
for giving formal bases to logical, proof-procedure independent update languages.
Second, we rely on Logic Programming for expressing abduction via deduction. We
apply the Prolog meta-interpreter Satchmo [22] for processing disjunctions and per-
forming hypothetical reasoning. Therefore, we argue that there is no need to extend
Logic Programming with abduction, nor to modify SLD Resolution for achieving
abductive reasoning,.

An intensional update which is realized by certain transformations of the logic
program is often also realized by more substantial changes. We introduce the con-
cept of ‘minimal realization’. In order to be effective, a method for realizing inten-
sional updates has to be complete. Intuitively, this means that each modification
of the logic program that yields a program satisfying a given intensional update
must be represented by one of the extensional updates generated by the method.
We rely on results we established in the framework of the Satchmo project [7] for
establishing the soundness and completeness of our approach.

The article consists of seven sections, the first of which is this introduction. We
give definitions and make working hypotheses in Section 2. In Section 3, we for-
mally introduce the notion of ‘intensional update’. We formalize intensional update
realization as deduction in non-Horn logic in Section 4. In Section 5, we describe
the Satchmo approach to deduction in non-Horn theories. We apply this approach
to realizing intensional updates in Section 6. In Section 7, we outline salient char-
acteristics of our approach and we indicate directions for further research.

2 Definitions and Hypotheses

We consider clauses of the foom I —L; A... AL, whereH isan atom and the L;s
are literals. Abusing the terminology, we call such a clause definite for emphasizing
that H is not a disjunction. A clause is a factifn = 0. If p is the predicate occurring
in H, the clause is said to define p.

We consider logic programs P consisting of finite sets CI(P) of clauses and of
finite sets of integrity constrainls. We do not assume any particular semantics
for logic programs with non-positive rule’s bodies. The formalization of intensional
updates we give is independent from the semantics. It applies in particular to sets of
clauses with a binary semantics — e.g., stratified, locally stratified, or constructively
consistent set of clauses [3] — as well as to clauses with a ternary semantics — e.g.,
well-founded sets of clauses [30].

Given a logic program or theory P, L(P) denotes the language of P, i.e., the set
of predicate, function, variable, and constant symbols occurring in P. H(P) denotes
the Herbrand base of P, i.e., the set of ground atoms that can be constructed with
the symbols in L(P). F(P) denotes the set of well-formed formulas expressed in the
language L£(P) of P. If P is a logic program, then 7(P) denotes the set of ground
literals that are provable from CI(P) according to the considered semantics. If F
is a closed formula, we shall write P = F if 7T(P) v F where I denotes the
provability relationship of classical logic. Italic lower case letters denote variables,
roman lower case letters and words are used for constants, predicates, and function
symbols. Capital letters denote formulas, logic programs, and theories.

In this study, we consider static and dynamic integrity constraints. Static in-
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tegrity constraints are closed formulas in the same language as clauses. They are
used for stating properties that are not expressible by means of clauses, e.g., dis-
junctive information. Classically, they are not used for generating answers to query,
but as specifications of the logic program. A logic program P is said to be consis-
tent if, for all static integrity constraints F of P we have P |= F. Dynamic integrity
constraints are defined in Section 3.

A dependency relationship on the predicates of a logic program is inductively
defined as follows. A predicate p depends on each predicate occurring in the body
of a clause defining p, and on each predicate on which one of these body predicates
depends. A predicate which depends on itself is said to be recursive. A logic
program is recursive if one of its predicates is recursive.

In Section 5, we consider implications A;jA...AA, = C,V...VCy, with non-
atomic, disjunctive conclusions. The predicate of a conclusion literal C; depends
on the predicates of premise literals Ajs. In a set of implications, a predicate
p depending on another predicate q also depends on the predicates on which g
depends. p is recursive in a set of implications S if it depends on itself in S. A set
of implications is recursive if one of its predicate is recursive.

We consider quantified queries, in particular for expressing integrity constraints.
We assume that the quantifications are restricted [5), i.e., roughly quantified expres-
sions have the following forms V& R = F, Vz -R, 32 S A F, or 32 S where F is
a formula and where R and S are atoms or conjunctions of atoms containing z,
more generally, R and S are ranges for z [5]. In order to ensure termination of
constructive proofs of universally quantified expressions, we assume moreover that
the R expressions admit finitely many answers. Restricted quantifications can be
evaluated with the following meta-programs:

forall(X, R => F) - not (R, not F). exists(X, G) = G.

Assuming that ‘false’ is an undefined atom — its evaluation always fails — permits
us to represent formulas of the form Vo —R, where R is a range for z, as forall(X,
R => false).

We constrain the syntax of logic programs on which intensional updates can be
defined by precluding extra-logical, “side-effect” predicates such as V", ‘assert’, or
‘retract’. This hypothesis should not be considered as a restriction, since this study
aims to free Logic Programming from extra-logical aspects.

3 Intensional Updates as Logical Theories

A logic program P and an updated version Ppew of it can be viewed as two distinct
logical theories. According to this “timeless” view, a declarative expression of an
update of P resulting in Ppew is a logical formula, or a finite set of logical formulas
defining Ppew in terms of P. In other words, it is a set of formulas in the language
L(P) U L(P,,,)- In order to express such formulas, it is necessary to distinguish
L(P) from L(Ppew). We propose to rely on a unary meta-predicate for defining
a language for intensional updates. More precisely, we define a set Fpew(P) of
formulas as an extension of F(P) based on a unary meta-predicate ‘new’.

Definition 3.1 Given a logic program P, the set of formulas Frew(P) is recursively
defined as follows:

QFefnew(P) lfFGf(P)
o new(F) € Frew(P) f F € F(P)
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e F € -rnew(P) ifF € fnew(P)

eI 0G € Frew(P) T € Frew(P), G € Frew(P), and 0 is a logical
conneclive

e Qz F € Frew(P) ifF € F(P), z is a variable in L(P) free in F, and Q
denotes ¥V or 3

The ‘new’ meta-predicate can be viewed as “prefixing” assertions related to
the new, updated logic program. Note that no quantifications of meta-variables
are allowed in Fpew(P). This restriction ensures that intensional updates have a
first-order logic semantics.

Definition 3.1 also gives a language for dynamic integrity constraints. Such con-
straints are considered in databases for defining legal updating transactions. They
relate the new, updated database to the previous one. Like intensional updates,
they can be defined as closed formulas in Fpew(P).

Definition 3.2 An integrity constraint of e logic program P is a closed formula in
Foew(P). An integrity constraint is said to be static if it belongs to F(P). Otherwise,
i1 is called a dynamic integrily constraint.

Intuitively, an intensional update is a formula that defines ‘new’ expressions. It
might seem reasonable to restrict intensional updates to sets of implicative formulas

like
Vz professor(z) A teach(z, Ip) = new(qualified-for-tenure(z))

in which the ‘new’ expression appears only in the consequence. However, a natural
expression of some updating intention may require a more general syntax, as shows
the classical example of dynamic integrity constraint:

Vzz;y salary(z, y) A new(salary(zi, y)) = 1 > 2

In fact, the only necessary restriction is that ‘new’ must occur in the formulas
defining the intensional update, i.e., the formulas must belong to the difference set

Faew(P) \ F(P).

Definition 3.3 Let P be a logic program with set of integrity constraints IC. An
intensional update I of P is a logical theory consisting of:

o a set of closed formulas U C Fpew(P) \ F(P) called the definition of I
o T(P) U {new(F) | F € IC N F(P)} U {F | F € IC \ F(P)}

The second point of Definition 3.3 ensures that the static integrity constraints,
i.e., the elements of IC N F(P), and the dynamic integrity constraints, i.e., the
elements of IC \ F(P), are satisfied in the theory defining ‘new’. The intensional
updates of a given program are uniquely characterized by their definitions. There-
fore, we shall sometimes name them after their definitions.

4 Abduction via Deduction

In this section, we formalize the notion of ‘realization’ of an intensional update
in logic. Intuitively, a realization is a set of updating operations, or ‘extensional
update’, that yield a logic program satisfying the updating intention. We consider
updating operations consisting of fact insertions and removals. Fact insertion is a
simple way to extend the intensional definition of a predicate. Consider for example
the following program:
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p(z) — q(z) A —r(z) q(a)
s(z) — q(z) A u(z) u(a)

The intensional update defined by new(p(b)) can be realized by inserting the fact
p(b), or by inserting the fact q(b).

In some cases, the first of these insertions is excluded. In databases for example,
it is often desired to keep certain relations virtual, i.e., defined only by non-factual
clauses. The following definition provides us with a language for expressing dynamic
integrity constraints imposing such a condition.

Definition 4.1 Let P be a logic program. An extensional update E of P is a set
of expressions ‘remove(A)’ or ‘insert(A)’ where A € H(P). An eztensional update
is consistent if it does not contain ‘remove(A)’ and ‘insert(A)’ for a same atom
A. The logic program obtained by updating P according to a consistent extensional
update E is Pg = (P U {A | insert(A) € E}) \ {A | remove(A) € E}

It is possible to give a semantics to inconsistent extensional updates by defining
priorities between insertions and removals. For example, relying on the definition
of Pg given in Definition 4.1, one can interpret E = {remove(A), insert(A)} like
{remove(A)}. Alternatively, one could define Pg as (P \ {A | remove(A) € E}) U
{A | insert(A) € E} and interpret E as {insert(A)}. More sophisticated priorities
are sometimes considered — e.g., in [29, 28]. Priority relationships between inser-
tions and removals compromise the declarativity of the update language. For this
reason, we do not consider inconsistent extensional updates.

Definition 4.1 provides us with a language for expressing dynamic integrity con-
straints precluding certain modifications of the program. For example, the formula
Vz —insert(p(z)) forbids to extend the definition of a unary predicate p with facts.

In the following definition, we define the ‘new’ meta-predicate in terms of the
extensional update ‘insert’ and ‘remove’ meta-predicates. We rely on a ‘clause’
meta-predicate which is assumed to range over the non-factual clauses of the logic
program under consideration. Similarly, we use a ‘fact’ meta-predicate ranging over
the facts of the considered logic program.

Definition 4.2 Let P be a logic program and’1 an intensional update. Np s the
theory consisting of the following formulas, where A denotes an atomic formula in
F(P), and F and G denotes formulas in F(P):

(1) new(A) < [3B clause(A — B) A new(B)]
V [fact(A) A —remove(A)] V insert(A)

(2) new(FVG) new(F) V new(G)
3) new(F AG) new(F) A new(G)
(4) new(Vz F) Vz new(F)
(5) new(3z F) 3z new(F)

(6) new(—A) [VB clause(A — B) = new(—B)]
A [fact(A) = remove(A)] A —insert(A))
new(-F) A new(=G)
new(=F) V new(-G)
32 new(-F)
Vz new(=F)

(7)  new(—~(F Vv G))
(8) new(—~(F A G))
(9) new(—Vz F)
(10) new(-3z F)

st 8302

The following proposition establishes the correctness of Definition 4.2.

Proposition 4.1 Let P be a logic program, E an extensional update of P, and F a
formula in F(P). Pg |= F if and only if (T(P)U E U Np 1) F new(F).
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Corollary 4.1 Let P be a logic program and E an extensional update of P. (T(P)
U E U Np1) is consistent and has exactly one Herbrand model.

Intuitively, an extensional update E realizes an intensional update I if the for-
mulas defining I are true in the updated program Pg. The following definition
formalizes this intuition. We recall that IC N F(P) and IC \ F(P) are respectively
the sets of static and dynamic integrity constraints.

Definition 4.3 Let P be a logic program, let IC be its sel of inlegrily constraints,
and let I be an intensional update of P defined by a set U of formulas. A realization
of I is a consistent extensional updale E such that:

(T(P)UEUNp;) v F  foralFeU
(T(P)UEUNp1) F F  forallF € IC\ F(P)
(T(P)UEUNp;) + new(F) for allF € IC N F(P)

If the intensional update I is defined by a formula new(F), by Proposition 4.1 a
realization of I is an extensional update E such that Pg = F. The more complex
definition given above is needed since general intensional updates may refer to the
logic program prior to the update.

Some realizations can be “subsumed” by others and only “minimal” realizations
are of interest. Consider for example the following logic program P:

p(z) — r(z) A s(z) r(a) s(a) t(a)
q(z) < t(z) A u(z) r(b) s(b) u(a)

The intensional update defined by new(Vz p(z) = q(z)) is realized by the follow-
ing extensional updates E; and E,;. Intuitively, E; “subsumes” E,.

E; = {insert(t(b)), insert(u(b))}
E, = {insert(t(b)), insert(u(b)), insert(t(c)), insert(u(c))}

Definition 4.4 Let P be a logic program and 1 an intensional update of P. An
extensional update E of P is a minimal realization of I if and only if none of the
strict subsels of E realize 1. A procedure for generaling the realizations of intensional
updates is said 1o be complete if it exhaustively generates all minimal realizations.

We conclude this section by citing some properties of minimal realizations.

An intensional update may have no, or several minimal realizations. This follows
directly from the fact that intensional updates are, in general, non-Horn theories.
Some minimal realizations of intensional updates may be infinite, even if the con-
sidered logic program is free of function symbols. Finally, some intensional updates
may have infinitely many minimal realizations.

The following proposition gives a sufficient condition for finiteness properties of
intensional update realizations.

Proposition 4.2 Let P be a logic program and 1 an intensional update of P. If P
and | are not recursive, then I has finitely many minimal realizations and they are

all finite.
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5 Definite Clauses for Disjunctive Reasoning

In this section, we outline the Satchmo theorem prover [22] which implements de-
duction in disjunctive, indefinite theories by means of definite meta-clauses.

We assume that the formulas are in implicative form. For ground formulas,
this form can be derived from the clausal form as follows. A clause =A; V...V
-A, VC; V...V C, with positive literals C;s is represented by the implication
AjAN...AA, = C V... VCp. Completely positive clauses (n = 0) and completely
negative clauses (m = 0) are respectively expressed as true = C; V...V Cp, and
Ay A ANA, > false.

Satchmo computes from a set of implications I the minimal sets of atomic formu-
las that are logically consistent with I. For example, the set {q = false, true = p,
p=>qVrV s} gives rise to derive two such sets of atoms: {p, r} and {p, s}. If
there are no such sets, Satchmo fails: This reports inconsistency. Satchmo performs
disjunctive and hypothetical reasoning.

The disjunctive and hypothetical reasoning is implemented in Prolog by the
following program. Calling ‘satchmo([], M)’ successively binds the variable M to
the minimal models — represented as lists of atoms — of the set of implications
defined with the infixed binary predicate ‘=>’. Conjunctions and disjunctions are
expressed & la Prolog with ¢ and ¢, respectively. The atom ‘true’ is the Prolog
built-in which is always satisfied, while ‘false’ is an undefined atom: Its evaluation
therefore always fails.

satchmo(M1, M2) - evaluate(M, (Al, A2)) :- !,
P=>C, evaluate(M, Al),
evaluate(M1, P), evaluate(M, A2).
not evaluate(M1, C), !, evaluate(M, (Al ; A2)) =- |,
not (C = false), ( evaluate(M, Al)
satisfy(A, C), ; evaluate(M, A2) ).
satchmo([A | M1], M2). evaluate(M, A) :-

satchmo(M, M). member(A, M).

evaluate(M, true).

satisfy(A, (A ; D)).

satisfy(A, (B ; D)) =- !,
satisfy(A, D).

satisfy(A, A).

The procedure ‘satchmo’ first searches the implications P => C. When an im-
plication is found the body of which is satisfied by the atoms in the list M1 (test
‘evaluate(M1, P)’), its head is evaluated over M1 (‘evaluate(M1, C)’). If C is not
satisfied by M1 and is not the atom ‘false’, then one of its components A is selected
(‘satisfy(A, C)’) and added to M1. The search for unsatisfied implications is pur-
sued through the recursive call (‘satchmo([A | M1], M2)"). Assoon as no unsatisfied
conclusions can be generated, i.e., as soon as the test

evaluate(M1, P), not evaluate(M1, C)

fails, the second clause for ‘satchmo’ succeeds and returns as second argument the
constructed list of atoms.!

This program has been published in [22] in a slightly different style. It is the
basic program of the theorem prover Satchmo. It is applicable to proving theorems
in non-ground theories, provided their formulas are expressed as Skolemized and
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range-restricted implications [22]. Range-restriction can be achieved with any set
of formulas by introducing a new predicate ‘dom’ describing the domain of the
already constructed set of atomic formulas, and by adding auxiliary implications
[22].

Skolemization is acceptable in refutation theorem proving because a theory T is
inconsistent if and only if a Skolemized form Sk(T) of T is inconsistent. However,
Skolemization may have an undesirable side-effect if Satchmo is used for generating
the minimal sets of atomic formulas that are logically compatible with a consistent
theory. Consider for example the following logic program, the intensional update
new(p(a, b)), and the constraint — insert(p(a, b)):

p(z, ¥) — a(y) A p(z, 2) q(b)

By Definition 4.2, we have: new(p(z, y)) = 3z new(q(y)) A new(p(z, 2)). If
the existential variable z is represented the Skolem function f(z, y), new(p(a, b))
implies new(p(a, {(a, b)) which in turn implies new(p(a, f(a, f(a,b))), etc. No finite
realizations are found. Such realizations however exist, e.g., {p(a, a)}.

We first define the implicative form for formulas with explicit existential quan-
tifications. Then, we give a version of the procedure Satchmo for such implications.

Definition 5.1 A formula F is in implicative form if F = A; A ... A A, =
Cy V ... V C, where the Ajs are atoms (possibly ‘true’ if n = 1) or ezistential
formulas in conjunctive form, and where the Cjs are atoms (possibly ‘false’ if m
= 1) or existential formulas in conjunctive form. An ezistential formula G is in
conjunctive form if G =32z A; A ... AAy or G=3zA; A ... NAL AF
where the Ajs are atoms or ezistential formulas in conjunctive form containing the
variable  and where F is a formula in implicative form.

One can show that syntactical transformations permit to rewrite any first-order
theory as a set of formulas in implicative form.

A procedure constructing all minimal sets of atomic formulas consistent with
a set of formulas in implicative form is obtained by first trying to instantiate the
existential variables over the already constructed domain and with a new domain
value. So does the ‘satchmo_1’ procedure given below. In contrast with ‘satchmo’,
‘satchmo_l’ stores the formulas in a list which is dynamically modified.

Calling ‘satchmo_1(S, [}, [], M)’ successively binds the variable M to the finite
models — represented as lists of atoms — of a list S of range-restricted formulas in
implicative form. We assume that calling ‘new_value(X)’ instantiate X with a term
which is not in the current domain.

In [22], we have given a leveled version of Satchmo which achieves completeness
with respect to inconsistency: If a set of Skolemized formulas in implicative form
is inconsistent ‘leveled Satchmo’ will report it in finite, indefinite time. Although
it is complete with respect to inconsistency, ‘leveled Satchmo’ may fail to construct
the minimal sets of atoms consistent with a recursive set of implications. This is
because, in presence of Skolem functions, a consistent set of formulas has always
infinite ITerbrand models (Skolem-Léwenheim Theorem). In such a case, ‘leveled
Satchmo’ can very well start the construction of an infinite model before building
finite models.

As shown in [7], an exhaustive procedure for constructing minimal models —
i.e.. a procedure generating each minimal. finite model in finite but indefinite time
— requires to abandon the depth-first search strategy of Prolog for a breath-first
strategy.
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Proposition 5.1 When evaluated under a breadth-first strategy, ‘satchmo.l’ is a
sound and exhauslive procedure for generating minimal, finite models.

satchmo_1(S1, S3, M1, M3) :- evaluate(M, exists(X, F)) :- !,
member(P => C, S1), evaluate(M, F).
evaluate(M1, P), evaluate(M, (A1, A2)) - !,
not evaluate(M1, C), !, evaluate(M, Al),
not (C = false), evaluate(M, A2).
satisfy(S1, S2, M1, M2, C), evaluate(M, (Al ; A2)) :- |,
satchmo_1(S2, S3, M2, M3). ( evaluate(M, A1)
satchmo_1(S1, S3, M1, M3) :- ; evaluate(M, A2) ).
member(exists(X, F), S1), evaluate(M, A) :-
not evaluate(M1, F), member(A, M).
satisfy(S1, S2, M1, M2, exists(X, F)), evaluate(M, true).

satchmo_1(S2, S3, M2, M3).
satchmo_1(S, S, M, M).

satisfy(S, [F | S], M, M, exists(X, F)) :-
member(dom(X), M).

satisfy(S, [F | S], M, [dom(X) | M], exists(X, F)) :- |,
new_value(X).

satisfy(S, S, M, [A | M], (A ; D)).

satisfy(S, S, M1, M2, (B ; D)) :- !,
satisfy(S, S, M1, M2, D).

satisfy(S, S, M, [A, | M], A).

6 Intensional Update Realization

In this section, we propose an implementation of Definition 4.2 by means of formulas
in implicative form to be processed by ‘satchmo_1’. We rely on the meta-predicates
‘ground_atom’, ‘base_atom’, and ‘satisfied’. A call ‘ground._atom(A)’ succeeds when
A is an ground atom. ‘base_atom(A)’ holds if A is a ground atom the literal of which
does not appear in the head of any rule. ‘satisfied’ refers to a meta-interpreter which,
given a logic program P and and an extensional update M, simulates evaluation
against the updated program Py. We do not give these programs here, since they
are rather simple (an implementation of ‘satisfied’ is given under the name ‘new’ in
[6]). We assume moreover that the procedure ‘evaluate’ is extended with the clause
evaluate(M, F) :- satisfied(M, F).

For the sake of simplicity and without loss of generality, we assume that the
existential quantifications are explicit in the bodies of rules in the object logic
program: If a variable z does occur only in the body of a program clause, then this
body must have the form 3z F.

new((F, G)), not (F, G) => new(F).

new((F, G)), not (F, G) => new(G).

new((F ; G)), not (F ; G) => new(F) ; new(G).
new(forall(X, R => F), R, not FF => new(not R) ; new(F).
new(exists(X, F)), not I => exists(X, new(F)).

new(A), base.atom(A), not A => insert(A).
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new(A), ground_atom(A),

not A, clause(A, B) => insert(A) ; new(B).
new(not (F, G)) => new((not I ; not G)).
new(not (F ; G)) => new((not F, not G)).
new(not forall(X, R => F)) => new(exists(X, (R, not F))).
new(not exists(X, (R, F)) => new(forall(X, R => not F)).
new(not A), ground._atom(A), A => remove(A).
new(not A), ground_atom(A),

clause(A, B), not (B = true), B => new(not B).
insert(A), remove(A) => false.
new(false) => false.

The procedure ‘satchmo.1’ must be constrained such that only ‘insert’, ‘remove’,
and ‘new’ atoms are collected in the list representing the set of atoms under con-
struction. It is also necessary to restrict the instantiation of existential variables
over new constants to those variables that occur in ‘new’ expressions. The first re-
striction is enforced by an additional test, the second by distinguishing two kinds of
existential quantifications, depending whether the variable occurs in a ‘new’ atom
or not. We do not give the program specialized in this way: It follows easily from
‘satchmo_1’.

Since the implications given above implement Definition 5.1, we have by Propo-
sition 4.2:

Corollary 6.1 The finite minimal realizations of an intensional update to a logic
program are ezhaustively generated when the above-defined implications are pro-
cessed with (specialized) ‘satchmo_.l’ under a breadih-first evaluation strategy.

The meta-interpreter ‘satisfied’ reflects the evaluations of the underlying system,
and therefore conveys its restrictions. If the object rules are recursive, Prolog cannot
be used because the evaluation may never stop. If the object logic program contains
negative premise literals and is not hierarchical, a Prolog-like evaluation may be
incorrect. However, it suffices to consider, in place of Prolog, a top-down reasoning
method that correctly handles recursive or non-hierarchical programs for obtaining
a correct evaluation of ‘satisfied’ expressions and hence a correct generation of
intensional update realizations — such procedures are described, e.g., in [4, 3].

We conclude with an example. The reasoning is illustrated on the figure below.
The branchings of this figure express alternative hypotheses that are made during
disjunction processing.

Clauses and Facts:

q(z) — 1(z) A -s(z) p(2) r(a) t(a, b)
s(z) — r(z) A Jy t(z, y) A -u(z) r(b) t(a, c)
Intensional Update: Integrity Constraints:

Vz p(z) = new(q(z)) Vz insert(q(z)) = false

Vz r(z) A insert{u(z))=> false

7 Conclusion

We have investigated an approach aiming to free Logic Programming from procedu-
ral updates. We have proposed the concept of ‘intensional update’ for specifying an
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update without defining its procedural execution. Thus, intensional updates depart
in their principle from the Prolog side-effect ‘assert’ and ‘retract’ predicates, and
from the update primitives proposed in [1, 2] for bottom-up Logic Programming,.

Intensional updates generalize database ‘view updates’. While view updates
permit one to express ground, atomic updating intentions, intensional updates are
more general. They give rise to cxpress updating intentions involving quantifiers.
Intensional updates also give rise to relating the updated logic program to the
version prior to the update. Therefore, they are more general than the updates
considered in (17, 11, 25, 19].

remove(p(a)) new(g(a))
l l
insert(q(a)) new(r(a) A —s(a))
false new(r(a))
new(-s(a))
l |
insert(u(a))) new(—( r(a) A Jy t(a, y) ))
false new(—r(a)) V new(— 3y t(a, y))
| |
new(-r(a)) new(— Jy t(a, y))
remove(r(a)) new(-t(a, b))

new(-t(a, c))
| |

false remove(t(a, b))
remove(t(a, c))

In order to be effective, intensional updates must be translated into changes
of the logic program, or ‘extensional updates’. In this study, we have considered
extensional updates consisting of fact insertions and removals, although the same
framework also gives rise to handling ‘exceptions’ to rules and clause deletions. We
have investigated the reasoning involved in generating minimal extensional updates
that realize an intensional update. This reasoning is not deductive, but abductive.

We have formalized abduction as deduction in a meta-theory. Then, we have
applied a specialized version of the theorem prover Satchmo [22] to process the
disjunctive formulas of this formalization. Relying on results we established for
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Satchmo [7], we have established the completeness of the abductive intensional
update realization method.

This study is related to the large amount of articles on database view updates,
that we cannot all cite here. The generation of realizations for view updates has
been formalized in [14]. This article does however not describe any implementa-
tion. [20] proposes a declarative expression of sequential updates and investigates
the hypothetical reasoning they require, which is close to that performed by the
meta-interpreter mentioned in Section 6 and [6]. The article [31] investigates the
control of concurrent database updates by considering updating intentions instead
of procedural definitions.

The methods described in [17, 11, 25, 19] also consider intensional updates. How-
ever, they do not handle dynamic integrity constraints, nor do [17, 25, 19] address
completeness issues. {17, 11] propose to handle static integrity constraints according
to a ‘generate-and-test’ scheme: Realizations are first generated without consider-
ing the constraints. Then, those violating some of the constraints are rejected. In
contrast, the method we proposed interupts as soon as possible the construction of
constraint violating realizations.

There are interesting links between the method we proposed and logic-based
diagnosis. On the one hand, the concept of intensional update realization is ex-
tremely close to that of diagnosis: Invalidating a literal is in fact similar to assum-
ing a disease or a malfunction. On the other hand, Satchmo can be used as a —
in some respect, improved — truth maintenance system and can therefore serve
for consistency-based diagnosis as it is shown in [16]°. In [26] it is argued that the
two diagnosis paradigms — consistency-based and abduction — are ”fundamentally
different” and require ”different ways to think about a domain”. However, we have
shown that the reasoning involved in both paradigms can be performed with the
same inference engine, namely Satchmo. There are nevertheless slight differences:
They are expressed through the meta-logical implications of Section 6.

Further research should be devoted to several issues. First, it would be desirable
to investigate if efficiency could be improved through other implementations of
the same principle, in particular for data intensive applications. Second, the two-
state language we have proposed for expressing intensional updates and dynamic
constraints could be extended into a n-state language for applications with historical
data. We think that the formal treatment of intensional updates given in this article
should provide one with the appropriate formal basis for such an extension. Finally,
it would be desirable to investigate how preferences between realizations can be
declaratively and elegantly expressed. A proposal in this direction has been made
in [29].
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Notes

1. In Section 6, ‘evaluate’ is applied on quantified formulas. A variance test must
replace unification in ‘member’, for preventing undesirable bindings such as X:b and
Y:a from ‘forall(X, p(X, a) => q(X, a))’ and ‘forall(Y, p(b, Y) => q(b, Y))".

2: The program called Momo in [16] is identical with Satchmo up to unsubstantial
changes, and not only based on a basic principle described in [22] as it is claimed
in [16).
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