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Abstract. It is desirable to answer queries' posed to deductive databases by computing fixpoints because such 
computations are directly amenable to set-oriented fact processing. However, the classical fixpoint proce- 
dures based on bottom-up processing- the naive and semi-naive methods- are rather primitive and often 
inefficient. In this article, we rely on bottom-up meta-interpretation for formalizing a new fixpoint procedure 
that performs a different kind of reasoning: We specify a top-down query answering method, which we call 
the Backward Fixpoint Procedure. Then, we reconsider query evaluation methods for recursive databases. 
First, we show that the methods based on rewriting on the one hand, and the methods based on resolution on 
the other hand, implement the Backward Fixpoint Procedure. Second, we interpret the rewritings of the 
Alexander and Magic Set methods as specializations of the Backward Fixpoint Procedure. Finally, we argue 
that such a rewriting is also needed in a database context for implementing efficiently the resolution-based 
methods. Thus, the methods based on rewriting and the methods based on resolution implement the same 
top-down evaluation of the original database rules by means of auxiliary rules processed bottom-up. 

Keywords. Deductive databases, Logic programming, Query answering, Recursive queries, Recursive logic 
programs, Bottom-up reasoning, Top-down reasoning, Meta-interpretation, Partial evaluation. 

I .  Introduct ion 

For various reasons, fixpoint procedures are rather natural ways of processing queries 
posed to deductive databases. First, the declarative semantics of a set of Horn clauses can be 
defined as the fixpoint of an ' immediate consequence operator ' ,  as shown by van Emden and 
Kowalski in [34]. Moreover,  although this so-called 'fixpoint semantics' is not procedural,  it 
directly induces set-oriented query answering procedures, namely the methods that are 
called 'naive' and 'semi-naive' by Bancilhon and Ramakrishnan in [3]. Finally, the fixpoint 
theory which was developed in formal logic for studying recursive functions provides us with 
a useful mathematical tool for investigating query answering procedures for recursive 

databases. 
Many studies have been devoted to fixpoint computations for querying databases. In 

particular, various search strategies for the semi-naive method are investigated in [25]. The 
articles [1] and [35] define a fixpoint semantics for a class of non-Horn deductive databases, 
the class of stratified databases. The variant methods Alexander [24] and Magic Set [2, 5] 
permit an efficient fixpoint processing of recursive queries on Horn databases by relying on a 
rewriting of the deduction rules. In [6], we extended these methods to a class of non-Horn 
databases by using a 'Conditional Fixpoint Procedure ' .  This fixpoint procedure is extended 
to a ternary logic in [A] for querying unrestricted non-Horn databases. All these studies rely 
on naive or semi-naive fixpoint computations. 

The naive and semi-naive methods are based on rather primitive deduction techniques and 
are often inefficient. Indeed, both methods perform forward reasoning, i.e. they proceed 
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bottom-up from the database rules and facts. Therefore, they do not use the constants 
occurring in the queries for restricting the search space. In contrast, such a restriction is a 
by-product of backward - or top-down - reasoning. The rewriting of the Alexander [24] and 
Magic Set [2, 5] methods aims at achieving the same restriction on the search space with 
bottom-up reasoning. 

In this paper, we show that it is possible to keep the advantages of processing queries 
through fixpoint computations, without necessarily sticking to the basic principle of the naive 
and semi-naive methods. We specify a new fixpoint query answering procedure, the 
'Backward Fixpoint Procedure',  which is based on top -down-  or backward-reasoning.  In 
other words, we apply fixpoint theory to databases with another operator than the classical 
immediate consequence operator of van Emden and Kowalski. The Backward Fixpoint 
Procedure is a sound and complete query answering method for recursive databases. 

We rely on bottom-up meta-interpretation for formalizing the Backward Fixpoint Pro- 
cedure, i.e. we specify a top-down evaluation of the database rules in a meta-language by 
means of rules intended for bottom-up processing. Meta-interpretation is a technique 
commonly used in Functional and Logic Programming. Although unusual in databases, it is 
implicit in database systems that store predefined queries. As we show below, bottom-up 
meta-interpretation permits one to obtain a surprisingly simple specification for the Back- 
ward Fixpoint Procedure. This approach can also be applied to specify other advanced 
fixpoint procedures like top-down meta-interpretation is conventionally applied in logic 
programming for enhancing the in te rpre te r - see ,  e.g. [28]. Bottom-up meta-interpretation 
gives rise for example to specifying fixpoint procedures for querying databases with uncertain 
values or for performing updates specified on derived relations [B]. 

Then, we reconsider evaluation methods for recursive databases from the viewpoint of 
fixpoint computation. Several methods have been proposed for evaluating queries on 
recursive databases. Those that ensure termination on all recursive databases defining finitely 
many facts - e.g. function-free databases - follow one or the other of two approaches. The 
methods of the first type rewrite the database rules and process the rewritten rules 
bottom-up. The Alexander [24] and Magic Set [2, 5] methods are based on this principle. 
The second approach is an extension of SLD-Resolution [13, 18] that consists of storing the 
encountered queries and the proven answers. The ET* and ET,,t~rp algorithms [11], 
OLDT-Resolution [30], QSQ and SLDAL-Resolution [37], and the R Q A / F Q I  strategy [22], 
are methods of the second type. We investigate both types of methods. We show that the 
methods based on rewriting as well as the methods based on resolution implement the 
Backward Fixpoint Procedure. In other words, they express the same top-down reasoning 
principle in different formalisms. 

Similarities between rewriting-based and resolution-based methods were already observed 
by many authors. In particular, Beeri and Ramakrishnan showed in [5] that the same 
strategies - called "sideway information passing strategies' - can be applied to optimize both 
types of methods. Moreover, Ramakrishnan noticed in [23] that the same propagation of 
constants is possible with rewriting-based and resolution-based methods. This point was 
investigated more formally by Ullman in [33]. Commonalities in the inferences of both types 
of methods were often c i t e d - e . g ,  in [10, 4~ 38]. Recently, Seki established a one-to-one 
mapping between the inferences performed by methods of both types [26]. These observa- 
tions and results are precursors of the study we present here. 

Examining efficient implementations of the Backward Fixpoint Procedure, we investigate 
a technique called specialization. Specializing meta-interpreters is a classical way of obtaining 
efficient procedures from formal specifications - see e.g. [27]. We show that the rewriting of 
the Alexander and Magic Set methods can be interpreted as a specialization of the Backward 
Fixpoint Procedure. We argue that this rewriting is also needed in efficient implementations 
of resolution-based methods. This motivates features of the implementation of SLDAL- 
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Resolution which is reported in [17]. Thus, efficient implementations of methods of both 
kinds have to rely on the same rewriting of the database rules and to process the rewritten 
rules bottom-up. 

Relying on the meta-interpreter  for the Backward Fixpoint Procedure,  we give simple 
soundness and completeness proofs for the Alexander and Magic Set methods on the one 
hand, and for the ET* and ETinterp algorithms, OLDT-Resolut ion,  QSQ and SLDAL- 
Resolution, and the R Q A / F Q I  strategy, on the other hand. Thus, bottom-up meta- 
interpretation appears to be a useful formalism for theoretical investigations of query 
answering procedures. 

The article consists of eight sections, the first of which is this introduction. In Section 2, we 
review background notions and introduce notations. In Section 3, we show how rules 
intended for bottom-up computation can be used for specifying fixpoint procedures.  Then we 
show in Section 4 that top-down processing of queries can be performed by a fixpoint 
procedure:  We make use of bottom-up meta-interpretat ion for specifying the Backward 
Fixpoint Procedure.  In Section 5, we refine the definition of this procedure.  In Section 6, we 
investigate implementation issues and we show that the rewritings of the Alexander and 
Magic Set methods are specializations of the Backward Fixpoint Procedure.  Section 7 is 
devoted to query answering methods based on SLD-Resolution.  We first show that they 
implement the Backward Fixpoint Procedure as well. Then we show that they require the 
very rewriting of the Alexander  and Magic Set methods. In Section 8, we summarize the 
results presented in the article and we indicate directions for further research. 

The results established in this article have been informally presented in a tutorial on 
deductive databases during the 6th International Conference on Logic Programming [9]. 
They have been presented in a shortened form at the 1st International Conference on 
Deductive and Object-Oriented Databases [7]. 

2. Background 

A deductive database is a finite set of deduction rules and facts. Given a database DB, we 
shall denote its subset of deduction rules by D R ( D B )  and its subset of facts by F(DB).  Facts 
are ground atoms and deduction rules are expressions of the form: 

H * - - L  I A ' ' ' A L .  

where n/> 1, H is an atom, and the Lis are literals. Such a rule denotes the formula: 

V X l . . . V X k ( L  I ^ . . . ^ L n ~ H )  

where the xjs are the variables occurring in H or in the Lis. If all Lis are positive literals, 
then the rule is called a H o r n  rule. A database is called a Horn  database if all its rules are 
Horn  rules. H is called the head of the rule. The conjunction L 1 ̂  • • • ^ L n is called its body.  

A dependency relationship on database predicates - or relations - is inductively defined as 
follows. A predicate p depends on each predicate occurring in the body of a rule with head 
predicate p,  and on each predicate on which one of these body predicates depends. A 
predicate which depends on itself is said to be recursive. A database is recursive if one of its 
predicates is recursive. 

Words beginning with lower case letters from the end of the alphabet (u, v, w, etc.) - with 
or without subsc r ip t s -deno te  variables. Words beginning with other  lower case characters 
are used for denoting constants and predicates. 

The Herbrand base H B ( D B )  of a database DB is the set of ground atoms that can be 
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constructed from the predicate, constant, and function symbols occurring in DB. H B ( D B )  is 
finite if and only if DB contains no function symbols. 

A ground atom A is said to be an immediate consequence of a database DB if there exist: 
• a r u l e H ~ - - L ~ / x . . . / x  L , , ~ D B  
• a substitution or 

such that: 
• H~r=A 
• Liar E F ( D B  ) if Li is a positive literal, and L i c r ~ F ( D B )  otherwise. 

The L io- are called premises of A. 
The immediate consequence operator T on DB - formally, on H B ( D B )  U D R ( D B )  - is the 

function associating with each D C H ( D B ) U D R ( D B )  the set T(D) of its immediate 
consequences. 

More generally, an operator on a set S is a function on the power set of S. An operator  F 
on a set S is monotonic if it satisfies the property: 

VP, C_S VP2C_S [P,C_P2~F(P,)CF(P2) ] 

Restricted to Horn  databases, the immediate consequence operator  T is monotonic. How- 
ever, T is not monotonic on non-Horn databases. 

If F is an operator  on a set S and if P C S, we recall the notation: 

r t '~(P)  = u . ~ r t ' ( P )  

where: 

F1, 0(p) = p 

r t  = r ( r t ' ( P ) )  u F'~'(P) for n E 

Intuitively, TI' ' (DB)  denotes DB augmented with its immediate consequences; T I " ( D B )  
denotes DB augmented with all the facts that can be derived from DB. 

A least fixpoint of an operator  F on a set S is a set F1'~(S) (n E ~J* U {to}) such that: 

r t  ~(s)= r t ' ( s )  

FI' ~(S) # FI' *(S) for k < n 

A monotonic operator  on a set S has a unique least fixpoint on S [31]. Therefore ,  T admits a 
unique least fixpoint on Horn databases. This fixpoint is finite if TI' ° ' (DB)=  T 1 " ( D B )  for 
some n < to. This is in particular (but not only) the case if no function symbols occur in DB. 
The semantics of a Horn  database DB is formalized by defining its true facts as the facts in 
the least fixpoint T1' ~(DB). 

The least fixpoint of T on a function-flee Horn database DB can be constructed by 
iteratively computing the sets T1' " (DB) for increasing n. The computation halts as soon as 
no new facts are generated,  i.e. when a step n is reached such that: 

T(T'~ "(DB))  C_ T 1' ~(DB) 

Since the least fixpoint TI '~(DB)  of T on a function-free Horn database is finite, this 
procedure always terminates when applied to such databases. In particular, it terminates on 
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recursive function-free Horn databases. Following Bancilhon and Ramakrishnan [3], we call 
this procedure the naive method. 

A drawback of the naive method is to compute repeatedly facts that have already been 
generated: While computing T'[n+~(DB), all immediate consequences of TI ' i (DB) for 
0 ~< i < n are recomputed. Since T is monotonic on Horn databases, it suffices to generate 
those elements of TI'n+~(DB) that have at least one premise in TI 'n(DB)\TI 'n- I (DB).  
Improving the naive method in this way results in the so-called semi-naive method. Various 
search strategies for the semi-naive method are investigated in [25]. These strategies depart 
from the strict breadth-first generation of consequences. 

The naive and semi-naive methods are sound query answering procedures for Horn 
databases, i.e., they generate only facts that belong to the least fixpoint TI' °~(DB) of T on a 
Horn database DB. They are complete query answering procedures for non-recursive and for 
function-free Horn databases, i.e. they determine all the facts in TI"°(DB). They may never 
terminate when applied on a database such that TI' °~(DB) is infinite. Nevertheless, the naive 
and semi-naive methods are exhaustive query answering procedures, i.e. given a ground fact 
F such that F E TI' ~'(DB), they always determine this membership in finite - but indefinite - 
time, even if TI' ~(DB) is infinite. 

3. Fixpoint procedures as bottom-up meta-interpreters 

In this section, we introduce the 'bottom-up meta-interpretation' technique with a quite 
obvious and simple example similar to the so-called 'Prolog in Prolog' or 'vanilla' Prolog 
meta-interpreter [28]. We show how the fixpoint computation of immediate consequences 
can be specified by meta-rules intended for bottom-up evaluation. This technique is used in 
more interesting ways in Section 4. 

The computation of the immediate consequences T(DB) of a Horn database DB can be 
paraphrased as follows. For all rules H ~-- A 1 ̂  " " " A A n in DB and all substitutions o" such 
that A i o ' ~ D B  ( i =  1 . . . .  , n), the facts Ho- are proved. The immediate consequence 
operator T can be expressed as the forward processing of the following rule: 

fact(H) ~ rule(H ~ B) A evaluate(B) 

where the predicates 'rule' and 'evaluate' respectively express access to the set of deduction 
rules and facts. For the sake of simplicity, we assume here and in the rest of the article that 
bodies of rules are evaluated from left to right. Note, however, that this hypothesis is not 
necessary and that the results we establish do not require it. A different evaluation of the 
body of the above-defined meta-rule would be very inefficient or could compromise 
termination, for the variable B would have to be bound to all possible atomic or conjunctive 
expressions. 

A bottom-up evaluation of the above-defined rule produces an expression 'fact(F) '  for 
each F E T(DB). By iterating in the naive or semi-naive manner, one generates an 
expression ' fact(F) '  for each F E T]' '°(DB). Fig. 1 (next page) illustrates this principle on an 
example. The evaluation of ' rule(H *-- B) '  first binds H to 'p(x)' and B to 'q(x) A r(x)'. 
Since there are no q facts in the database, the evaluation of B fails. H and B are then 
respectively bound to 'q(x)' and 's(x)' from the second rule. Processing 'evaluate(B)'  yields 
the bindings o r  1 = Ix:a] and ~r 2 = [x: b], i.e. 'fact(q(a)) '  and 'fact(q(b)) '  are proven. They are 
added to the database. These new facts now 'fire' the database rule 'p(x) ~-- q(x) A r(x)' 
when H is bound to 'p(x)' and B to 'q(x) A r(x)'. 'evaluate(B)'  succeeds with the binding 
cr 3 = [x:a]: ' fact(p(a)) '  is proven. The procedure stops because the most recently derived fact 
p(a) cannot serve as a premise in any rule. 
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Database: r(a) s(a) p(x)  ~- q(x)  A r(x) 

s(b) q(x) ~- s(x) 

Successful derivations: 

Step I: fact(q(x)) ~- rule(q(x) ~ s(x)) /x  evaluate(s(x)) 

Step 2: fact(p(x)) ~-- rule(p(x) ~-- q(x) ^ r(x)) A evaluate(q(x) A r(x)) 

,,, : [x:.l 
~r~= [x:b] 

~ = Ix:a] 

Fig. 1. Bottom-up reasoning with a bottom-up meta-interpreter. 

The semantics of 'evaluate' can be formally defined as follows: If B is an atom or a 
conjunction of atoms and ~ is a substitution of constants for variables in B, 'evaluate(B)o-' 
holds if and only if Bo- evaluates to true over the current facts, i.e. the database facts and the 
already generated 'fact' atoms. Formally, the predicate 'evaluate' could be omitted and 
'evaluate(B)'  could be replaced by B. In the sequel, in particular in proofs, we shall rely 
implicitly on this semantics. We do not specify here any procedure for 'evaluate': Let us 
assume that we rely on a non-deductive, relational query evaluator. 

The above-defined rule is a meta-interpreter, i.e. it is a logic program that treats another 
logic program, namely the database under consideration, as data and interprets or runs it. 
Meta-programming is a common practice in Functional and Logic P rog ramming- see  e.g. 
[28]. It is natural in these languages because they give the same structure to data and 
programs. More generally, the ability to specify a given programming language in itself is 
generally considered as a necessary feature of powerful languages. 

It is worth noting that the meta-interpreters considered in logic programming are usually 
intended for top-down evaluation. In contrast, the above-defined meta-interpreter corre- 
sponding to the immediate consequence operator is intended for bottom-up processing. 
Meta-interpreters of the respective types are not interchangeable. Processing the above- 
defined meta-interpreter with SLD-Resolution would enter an infinite loop in case the object 
p r o g r a m - i . e ,  the database under cons idera t ion- is  recursive. Similarly, conjunctions of 
unbounded growing lengths are usually generated by processing bottom-up meta-interpreters 
intended for top-down evaluation. The study of similarities and differences of both types of 
meta-interpreters seems to be an interesting direction of research. Moreover, bottom-up 
meta-interpretation seems an interesting technique to investigate, especially for databases. 

The variables in a meta-interpreter range over atomic and conjunctive queries. We denote 
them with upper case letters, in order to distinguish them from conventional variables that 
range over attribute values. 

Formally, the specification of a query procedure by means of rules can be viewed as 
extending the first-order, one-sorted language of the database into a first-order, two-sorted 
language. We do not discuss this issue h e r e - s e e  e.g. [14, 29]. Other formalizations of 
meta-interpretation rely on second-order logic. Extending a database language with variables 
ranging over queries is implicitly done in conventional database systems that store predefined 
queries. 

Let MDB denote a database consisting of the above-defined deduction rule and of the two 
relations {rule(R)] R E DR(DB)} and {fact(A) t A E F(DB)}. The following proposition 
shows that the least fixpoint T ~ ( M o B )  expresses the least fixpoint TI '~(DB) of the 
underlying database DB. 

Proposition 3.1. Le t  DB be a H o r n  database, A a fact ,  and n @ N*. 
1. A E T'[' '°(DB) i f f  fact(A) E TI' '°(MOB) 
2. A E TI '"(DB)\TI '  " - I (DB)  i f f  fact(A) E TI' ~(MDB)\T1' "-I(MDB). 
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Proof. We first prove by induction on n that: 

,(t) V n ~  A E  T~n(DB)C:~fact(A)~ TI'~(MDB) 

This is the case for n = 0, by definition of MoB and T 1' 0. Assume that this is true for all k 
such that 0 ~< k < n. If A E TI' "(DB) (fact(A) @ TI'"(MoB), resp.), then, by definition of T, 
there is a rule H ~ L~ ^ . - .  ^ L,  in DB (a fact rule(H ~-- L~ ^ .--  ^ L , )  in MoB, resp.) and 
a substitution r such that A = H r  (fact(A)=fact(H)~-,  resp.) and Li~-CTI ' " -~(DB)  
(fact(Li)~-E T]'n-~(DB), resp.) for all i = 1 , . . . ,  n. By definition of ME, B, rule(H ~-- L, ^ 
• . .  a L , ) E  MDB(H ~--L~ ^ . . .  A L ,  E D R ( D B ) ,  resp.), and by induction hypothesis 
fact(L/)~-E T'~" I(MDB)(Lir E TI '"-~(DB),  resp.) for all i = 1 . . . . . .  n. It follows from the 
definition of T that fac t (H)r  ~ T]'"(MDB)(Hr @ TI '"(DB),  resp.). Point 1 follows from ( t )  
and from the definition of a least fixpoint. Point 2 is an immediate consequence of ( t ) .  [] 

Intuitively, the second point of Proposition 3.1 means that the semi-naive computation of 
T'~°'(MDB) expresses the semi-naive computation of Tq'~(DB) in the meta-language. It 
follows that the above specification of the operator T by means of a rule can be viewed - and 
u s e d -  as an implementation, if we have at our disposal a naive or semi-naive query 
evaluator. This is not really interesting here, since we use the operator T itself. However, it 
is useful with other operators, as it permits us to run fixpoint procedures that perform 
deductions of other types with a semi-naive eva lua tor -  e.g. for test purposes. 

Specifying fixpoint query answering procedures as bottom-up meta-interpreters has two 
main consequences, as far as the computation of fixpoints is concerned. First, terms that are 
not in first normal f o r m - o r  nested t e r m s - a r e  generated, e.g. ' fact(p(a)) ' .  Second, 
non-ground terms can be generated, as happens with the Backward Fixpoint Procedure of 
Section 4. This requires replacing syntactical identity tests by more expensive instance tests. 
In section 5, we describe a normalization technique and we show how to perform instance 
tests efficiently. In the next section, we shall assume that the semi-naive query evaluator at 
hand correctly handles unnormalized and non-ground terms. 

We conclude this section with a generalization of Proposition 3.1. It formally justifies the 
use of meta-interpretation with bottom-up rules for specifying fixpoint query answering 
procedures. 

Proposition 3.2. Let DB be a Horn database. Let MR be a set of  meta-rules defining a 
predicate 'fact' such that the predicates in MR do not occur in DB and are defined in terms of  
the base relations 'rule' and 'fact' that describe DB. Let TMR be the operator on DB which is 
specified by MR. 
For all D C DB and n E [N U {to}, let: 

F D = {fact(F) I F E F(D)} U {rule(R) I R ~ DR(D)} 

S D = D U {A I fact(A) E T~ n(F D U MR)} 

The following property holds: 

VD_CDB V n E N U  {to} S~o = TMR?"(D ) 

Proof. By induction on n, one first establishes the property for n < to in the same ways as ( t )  
is established in the proof of Propositions 3.1. The property for n --- to is a consequence of 
that result and of the definition of a least fixpoint. [] 
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Intuitively, Proposition 3.2 shows that the least fixpoint of an operator TMR can be 
computed by running its rule-based specification with an evaluator for the immediate 
consequence operator T, Moreover, if the evaluator for T implements a semi-naive method. 
this would reflect the semi-naive computation of the least fixpoint for TMR in the meta- 
language of MR. 

4. The backward fixpoint procedure: principle 

In the previous section, we have given a bottom-up meta-interpreter to process the object 
ru les- i .e ,  the database ru les - in  a bottom-up manner. In this section, we show that 
bottom-up meta-interpretation can also be applied for specifying top-down reasoning on the 
object rules. We define a bottom-up meta-interpreter that 'reverses' the reasoning principle: 
Processing it bottom-up performs a top-down evaluation at the object level. 

The following rules specify an operator, that we call T h. This operator processes the 
database rules - accessed with the predicate 'rule' - in a top-down manner. The rule for 'fact' 
expresses that a body of a rule is evaluated only in case a query is posed on the head of that 
rule. The top-down evaluation principle is rather clearly recognizable in the rules for 
'querYb': The first queryb-rule for example induces a query on the body of a rule from a 
query on its head. The last two rules split conjunctive queries into atomic ones in order to 
permit the top-down expansion of these atomic expressions with the first queryb-rule. 

(i) fact(Q) ~-- querYb( Q) /x rule(Q ~ B)/x evaluate(B) 

(ii) queryh(B ) ~-- querYb(Q)/x rule(Q ~--B) 

(iii) querYb(Q, ) <--querYb(Q, /x Q2) 

(iv) queryb(Q2) ~ querYb(Qt A Q2) ^ evaluate(Qt) 

The predicate 'evaluate' expresses access to the already generated facts, as in the rule for 
the immediate consequence operator T given in Section 3. 

We emphasize that a bottom-up processing of the meta-interpreter defined by rules (i)-(iv) 
realizes a top-down evaluation of the database rules. In other words, the rules given above 
implement a top-down evaluation of database rules in a meta-language of bottom-up rules. 
We call 'Backward Fixpoint Procedure' the procedure that, applied to a Horn database DB 
and to a set Q of queryb-atoms, computes the least fixpoint T b I' ~(DB t,3 Q) of the operator 
T b on DB and Q. The atoms in Q are the initial queries posed to the database DB. Fig. 2 
shows on an example how the Backward Fixpoint Procedure computes Tb(DB U Q). Note 
that no t facts are derived. 
k 

Database: r(a) s(a) u(a) p(x) *--q(x) A r(x) 
s(b) u(b) q(x) *--s(x) 

t(x) ,--s(x) ^ u(x) 

Queries: queryb(p(b)) 

Success fu l  derivation: 

queryb(q(x)) 

fact(q(x)) ~-- queryb(q(x)) A rule(q(x) *-- s(x))  A evaluate(s(x)) 

query.(q(x) A r(x))  ~ queryb(p(b)) A rule(p(x) ~ q(x)  A r(x)) 

querYb(S(X)) ~ queryb(q(x)) ^ rule(q(x) ~-- s(x))  

~1 = Ix:a] 
~,= [x:b] 

~ =  [x:b] 

~4 = [] 

Fig. 2. Top-down reasoning with the Backward Fixpoint Procedure. 
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Evaluating the body of rule (i) first binds 'querYb(Q)' to 'querYb(P(b))', B to 'q(x) ^ r(x)' 
and yields the binding [x:b]. B is not satisfied by the database facts: No facts are generated. 
'queryb(Q)' from rule (i) is then bound to 'queryb(q(x))', and B to 's(x)'. The evaluation of 
B over the database facts yields the bindings o" 1 = [x:a] and o, 2 = [x:b], thus generating 
'fact(q(a))' and 'fact(q(b))'. Rule (ii) generates from 'queryb(p(b))' the expression 
'queryb(q(x ) A r(x))' with the binding o'3 = [x:b]. Similarly, 'queryb(s(x))' is derived by rule 
(ii) from 'queryb(q(x))'. 

It is reasonable to evaluate the bodies of rules (i)-(iv) from left to right. With this 
ordering, the queryb-atoms constrain the evaluations. In rule (iv), this ordering ensures that 
Q1 is bound to an atom when 'evaluate(Q1)' is processed. With another ordering, the type of 
the variable Q1, i.e. the set of database queries, would have to be searched. Evaluating the 
conjunction 

rule(Q ~-- B) ^ evaluate(B) 

before 'querYb(Q)' in rule (i) would be inefficient because useless 'evaluate(B)' expressions 
would be processed. However, this inefficient ordering would not compromise the top-down 
paradigm: The useless values would be filtered out during the evaluation of 'queryb(Q)'. 

It is worth noting that, although based on backward reasoning like Linear Resolution 
[20, 16], the Backward Fixpoint Procedure differs significantly from this method and from 
procedures related to it, like Model-Elimination [19] and SLD-Resolution [13, 18]. A 
fundamental difference with SLD-Resolution is that new answers generated with the 
Backward Fixpoint Procedure- i .e .  new values for the relation ' f a c t ' -may  trigger the 
generation of new quer ies- i .e ,  new values for the relation 'queryb'. For example, an 
expression 

queryb(p(x ) ^ q(x, y)) 

can be generated during the computation of TI' n(DB) at a time where p facts have not yet 
been generated. The generation of a fact 'p(a)' at step m > n induces from the previously 
computed querYb-expression a term ' queryb(q(a ,y ) ) '  during the computation of 

r n + l  TI' (DB). In contrast, SLD-Resolution would have to recompute the expression 

queryb(p(x ) ^ q(x, y)) 

in order to generate 'queryb(q(a, y))' once 'p(a)' is obtained. In order to ensure termination 
on recursive databases, the query answering procedures based on SLD-Resolution collect 
queries and answers, in the same way as the Backward Fixpoint Procedure does. 

The following proposition establishes the soundness and completeness of the Backward 
Fixpoint Procedure. 

Proposition 4.1. Let DB be a Horn database, A an atom, and ~" a substitution such that AT is 
ground. 

A~- E T I''°(DB) iff  fact(A)~- E Tb' ~ ~(DB U {querYb(A)}) 

The proof of Proposition 4.1 can be sketched as follows. A proof P of fact(A)z in 
DB U {queryb(A)} yields a proof of Ar  in DB by pruning the queryb-facts from P. 
Conversely, a proof of fact(A)'r in DB U {queryb(A) } is obtained from a proof P of Az in 
DB by inserting querYb-facts in P according to the rules that specify the Backward Fixpoint 
Procedure. 
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Proof. 
Necessary  cond i t ion  

We first prove by induction on n that for all atoms F, substitutions ~-, and integers n, the 
following implication holds: 

( t )  F~- E T~'"(DB) ~ ::lm C ~ fact(F)~- E The' . . . .  (DB U {queryb(F)}) 

Since T] ' ° (DB)  = T b ] ' ° ( D B ) = D B ,  ( t )  holds for n = 0  with m = 0 .  Let  n E ~ *  and 
assume that ( t )  holds for all k such that 0 ~< k < n. Let  Fz  E T ~ " ( D B ) \ T ] ' "  ~(DB). There  is 
a rule H ~--L~ A . . . L p  in DB and a substitution o- such that Fz = Ho-, and L,o- 
T] '"  ~(DB), for all i = 1 . . . . .  p. By induction hypothesis, there are p integers m~ such that 
fact(L/)o- ~ T b 1"" t+m'(DB U {querYb(L~)}). 

Since q u e r y b ( L , ) ~ T b ' ~ P ( D B U { q u e r y b ( F ) } ) ,  we have fac t (L~) r~Tb~  ' ' t  ..... ~'(DBU 
{query~(F)}),  where m is the maximum of the rn~s. Therefore ,  ( t )  holds for n. It follows 
that, for all atoms F and substitutions ~-: 

F~- E T~' ~(DB) ~ fact(F)~- ~ T b 1' '°(DB U {queryb(F) }) 

Suf f i c ien t  cond i t ion  
We prove by induction on n that for all atoms F, substitutions r, and integers n: 

($) fact(F)~- E ThJ'"(DB U { q u e r y b ( F ) ) ) ~  F~- ~ T~'"(DB) 

The property holds for n = 0. Let n ~ N/* and assume that ($) holds for all k such that 
0 ~< k < n. Assume: 

fact(F)~-E T h 1' ~(DB U {queryb(F)}) \T b 1'" ~(DB U {queryb(F)} ) 

By Proposition 3.2, F r ~  T~'"(B)\T~'" ~(B), where B is the database with set of facts: 

(fact(A) I A E F(DB)} U (querYb(F)) U (rule(A) I A E R(DB)} 

and with rules the set of rules R that specify the Backward Fixpoint Procedure.  
There is a rule r = H *-- L~ A • • • A L e in R and a substitution o- such that f ac t (F ) r  = Her, 

and Lio- E TI' n ~(B) for all i = 1 . . . . .  p. The only rule in R the head predicate of which is 
'fact' is rule (i) fact(X) ~ querYb(X ) A rule(X *-- Y) A evaluate(Y). 

Hence,  there is a rule A ~-- B~ A - "  A B k in DB, and a substitution v such that Fr  = A v  

and fact(Biv ) ~ T~q'"-~(DB U {queryb(F)}),  for all i = 1 . . . . .  k. By induction hypothesis, 
B i v E  T~'~-~(DB), for all i = 1 . . . . .  k. Hence,  F~-E T~'~(DB), i.e. ($) holds for n. It 
follows that, for all atoms F and substitutions r: 

fact(F)~- ~E 7"6" ~ '°(DB U {queryb(F)} ) ::> Fr  E T 1' '°(DB) 

The proof  is complete.  [] 

The semi-naive method always terminates on databases defining finitely many facts, even if 
they are recursive. Therefore ,  so does the Backward Fixpoint Procedure.  It follows from 
Proposition 4.1 that: 
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Corollary 4.1. The Backward Fixpoint Procedure is a sound, complete, and exhaustive query 
answering method for (possibly recursive) Horn databases. 

It is a terminating query answering method for Horn databases defining finitely many 
fac t s -  e.g. function-free databases. 

It is often desirable to evaluate queries with a top-down reasoning method in order to 
propagate the constants - i.e. in terms of relational algebra, the selections - from the initial 
and subsequent queries to the queries on the base relations. This can only be achieved by 
top-down reasoning, indeed. 

In the next sections, we first refine the definition of the Backward Fixpoint Procedure. 
Then we investigate the relationship between this procedure and methods that were 
proposed for querying recursive databases. We show that the methods based on rewritings of 
the database rules as well as the methods based on resolution implement the Backward 
Fixpoint Procedure. In other terms, the top-down reasoning principle is conveyed by the 
rewriting of these methods. 

5. The Backward Fixpoint Procedure revisited 

A direct implementation of the rules (i)-(iv) can induce undesirable redundancies. 
Consider for example a database containing a rule 'p ~ q A r' and the query 'p'. The 
following instances of the rules (i)-(iv) are relevant: 

fact(p) ~-- queryb(p) A rule(p *-- q A r) ^ evaluate(q A r) from (i) 

querYb( q ^ r) ~-- queryb(p) A rule(p ~-- q A r) from (ii) 

queryb(q) ~ queryb(q A r) from (iii) 

queryb(r ) ~ queryb( q A r) ^ evaluate(q) from (iv) 

Both the first and the last rules consult the facts for 'q'. This access can be shared by 
refining the specification of the predicate 'evaluate'. 

We replace the unary predicate 'evaluate' by a binary one, whose arguments respectively 
denote the already evaluated part of a conjunctive query, and the rest of the query. Thus, an 
expression 'evaluate(0, Q)'  denotes a completely non-evaluated query 'Q' .  In contrast, 
'evaluate(B)' in rules (i) ('evaluate(Q1)' in rule (iv), resp.) must be replaced by 
'evaluate(B,0)'  ( 'evaluate(Q1,0)' ,  resp.) which denotes a completed evaluation of B 
(Q1, resp.). The following bottom-up rules specify the binary predicate 'evaluate': 

(v) evaluate(0, B) ~-- querYb(Q) A rule(Q *-- B) 
(vi) evaluate(B 1, B2) ~ evaluate(0, Bj ^ B2) ^ fact(B1) 

(vii) evaluate(B~ ^ B2, B3) ~ evaluate(B1, B 2 A B3) A B 1 ¢ 0 A fact(B2) 
(viii) evaluate(B, 0) ~-- fact(B) 

(ix) evaluate(B~ A B 2, 0) ~ evaluate(B~, B2) ^ B 1 ~ 0 ^ fact(B 2) 

Let T~ be the operator specified by the rules (i)-(ix) - an expression 'evaluate(X)' being 
replaced in rule (i) and (iv) by 'evaluate(X, 0)'. 
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Proposition 5.1. Consider a database DB and a set o f  queryb-facts Q. Let  B 1 denote either 0, 
or an atom,  or a conjunction o f  atoms. Let  B~ and B 3 denote atoms or conjunctions o f  atoms. 
Le t  n ~ ~ .  

3 B ~ 3 B  3 evaluate(B,, B 2/x B3)E T;,I"°(DB O Q) i f f  querYb(B,)~ T~'~(DB U Q) 

Proof. One first shows by induction on n that, for all integers n: 

evaluate(B1, B 2/x B3) E T;, '~ "(DB U Q) ::), 3m ~ ~ queryb(B2) E T~ 1' . . . .  (DB U Q) 

By definition of a least fixpoint, we have: 

evaluate(B l , B 2 A B3) ~ T~ 1' ~(DB O Q) ~ queryb(B2) E T~ 1"°(DB U Q) 

Conversely, one proves by induction on n that, for all n E ~: 

queryb(B2) ~ T~I' "(DB U Q) :ff 

3m ~/~ ::lB 2 ::IB 3 evaluate(B1,  B 2 A B3) ~ T~I' n+"(DB U Q) 

It follows that 

queryb(B2) E T~I' ~°(DB U Q) ~ evaluate(B~, B e/x B3) E T~I' ~(DB U Q) 

This implication completes the proof. [] 

By Proposition 5.1, rules (ii)-(iv) can be replaced by the following rules, without affecting 
the semantics of the operator T~. 

(x) queryh(B2) *-- evaluate(B~, B2) ^ B 2 ~ (Ct A Cz) 

(xi) querYb(B2) ~ evaluate(Bj, B 2/x B3) 

Finally, we prove the equivalence of the operator T~ specified by rules (i) and (v)-(xi) and 
the operator T b specified by rules (i)-(iv). 

Proposition 5.2. Le t  D B  be a Horn  database, Q a set o f  querYb-facts, A and atom,  and ~ a 
substitution such that A~" is g round  

evaluate(At, 0) E T~ 1' '°( DB U Q) i f f  fact(At) E T~ 1' °'(DB U Q) 

Proof. One first proves by induction on n that for all atoms F, substitutions ~-, and integers n, 
the following implication holds: 

evaluate(F~-, 0) E T~ 1' "(DB U Q) ~ 3m ~ ~ fact(F~') E T b 1' "+m(DB U Q) 

in the same way as (?) is established in the proof of Proposition 4.1. Conversely, one proves 
by induction on n that: 
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fact(F~) E Tb~ n(DB U Q ) ~  evaluate(Fr, 0) ~ Tb~' n(DB t.J Q) 

for all atoms F, substitutions ~', and integers n like (~:) is established in the proof of 
Proposition 4.1. Proposition 5.2 follows by definition of a least fixpoint. [] 

When it is not otherwise stated, we shall not distinguish any more between T b and Tb, and 
we shall implicitly refer to the last specification of the Backward Fixpoint Procedure, i.e. the 
specification by means of rules (i) and (v)-(xi). 

6. Specialization: the logic of magic 

Two difficulties are encountered when implementing the Backward Fixpoint Procedure. 
The meta-interpreter which specifies it, on the one hand relies on structures like 
'querYb(P(a, b))' that are not in first normal form, i.e. that contain nested terms. On the 
other hand, it generates non-ground tuples such as 'queryb(p(x, b))'. 

First, we show that normalized structures can be obtained by relying on a technique called 
'specialization'. We consider an encoding of variables by means of ground expressions and 
we show that a specialization also permits us to perform this encoding at compile time. Then, 
we apply these specializations to the Backward Fixpoint Procedure. This yields the rewriting 
algorithms of the Alexander and Magic Set methods. 

6. i Normal i za t ion  by specialization 

Consider rule (i) of the Backward Fixpoint Procedure: 

(i) fact(Q) ~-- queryb(Q) ^ rule(Q ~-- B) ^ evaluate(B) 

It can be specialized with respect to a database DB by pre-evaluating the expression 
'rule(Q ~--B)' over the rules in DB. Doing so, each rule in DB yields one partially 
instantiated version of (i). For example, a database rule 'p(x) ~-- q(x)  A r(x) '  yields: 

fact(p(x)) ~ queryb(p(x)) A evaluate(q(x) ^ r(x)) 

which can be simplified into: 

p(x )  ~ queryb(p(x)) ^ q(x)  ^ r(x) 

The expression 'querYb(p(x))' can similarly be normalized by specializing the predicate 
'query b' with respect to the relation 'p' into a predicate 'queryb-p': 

p(x )  ~ querYb-p(x ) ^ q(x)  A r(x) 

Such a normalization by means of rule and predicate specialization is a kind of 'partial 
evaluation'. Partial evaluation techniques are commonly applied in artificial intelligence [27]. 

By the following lemma, normalization by specialization does not affect the semantics of a 
database. Given a database DB, let BFPDB denote the set of rules obtained by evaluating the 
'rule' expressions in the rules (i)-(iv) that specify the Backward Fixpoint Procedure over the 
database rules in R(DB). Given a set Q of queryb-atoms, let N(BFPDB ) denote the set of 
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rules and facts obtained from BFPD• tO Q by applying the following rewriting rules, where p 
denotes a database predicate and ~ a list of terms: 

fact(F) ~ F 
evaluate(B) ---, B 
querYb(P(X)) ~ queryh-p(2 ) 

Lemma 6.1. Let DB be a database, Q a set of  queryb-atoms, and n ~ N U {o9}. 

1. f ac t (p (£) )~  Th1'"(DB ) iff  p ( £ ) E  TI'"(N(BFPDB)) 

2. queryb(p(£)) C Tbl'n(DB) iff  queryb-p(£ ) E T~"(N(BFPDB)) 

Proof. Let BFP denote the set of rules that specify the Backward Fixpoint Procedure. 
Lemma 6.1 follows from the fact that the transformation N induces a one-to-one mapping 
between interpretations of {fact(F) I F E F(DB)} U {rule(R) I R E R(DB)} U Q tO BFPDB and 
interpretations of N(BFPoB ). [] 

The improved version of the Backward Fixpoint Procedure given in Section 5, i.e., the 
specification by means of rules (i) and (v)-(xi), relies on a binary predicate 'evaluate'. The 
normalization by specialization of rules (i) and (v)-(xi) therefore requires a more sophisti- 
cated rewriting than the one given above. This rewriting is introduced below, in Section 6.3. 
Lemma 6.1 also holds for this refined rewriting. 

6.2 Pre-encoding of  variables 

The Backward Fixpoint Procedure may generate non-ground tuples. Non-ground tuples 
are undesirable for two reasons. On the one hand, the elimination of logical duplicates has to 
rely on full unification instead of syntactical identity. Indeed, although they are syntactically 
different, the non-ground tuples 'querYb(p(x))' and 'querYb(p(y))' are logically equivalent. 
On the other hand, non-ground tuples either have to be encoded, or special file systems are 
needed for storing non-encoded tuples. 

Non-ground expressions can be represented in terms of ground expressions by encoding 
the variables with ground values. One way of doing this is to reserve special symbols, not 
available in the user language, for this usage. Thus, a non-ground tuple 'p(x, y, a)' is 
rewritten into the ground tuple 'p(*, *, a)', assuming that '*' denotes the reserved constant 
used for encoding variables. 

Such an encoding is not completely faithful, for distinct tuples like 'p(x, y, a)' and 
'p(z,  z, a)' are represented identically. In order to faithfully encode the constellation of 
variables, different codes - e.g. "1, *2, etc. - for different variables are needed. This permits 
for example to encode the tuple 'p(x, y, a)' as 'p(*l,  *2, a)' the tuple 'p(z,  z, a)' as 
'p(*l,  *1, a)'. 

The following proposition shows that it is possible to rely on matching-or  half-unifica- 
tion - for checking if a non-ground expression is subsumed by an expression the variables of 
which are faithfully encoded. 

Proposition 6.1. Let DB be a database, A and B non-ground atoms, and B c a faithful 
encoding of  B - i.e. an instance B~r o f  B such that the substitution o" uniquely assigns to each 
variable in B a constant '*i' which is not in the language of  DB. 

B subsumes A if  and only i f  A and B c match. 
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Proof. If B subsumes A, then by definition there exists a substitution ~- of variables in B for 
terms in A such that Br = A. Hence, a faithful encoding of A is an instance of B. The 
necessary condition follows. Conversely, if A and B C match, then there exists a substitution ~- 
such that Bc~" = A~-. Since B c is ground, we have B c = At. The sufficient condition follows 
from the fact that Bc = Bo-, where or instantiates variables in B with constants that do not 
occur in A. [] 

Proposition 6.1 shows that encoding variables is useful not only for storing non-ground 
tuples with conventional file systems, but also for performing subsumption tests efficiently. 
Examples better treated with faithful encoding are discussed in [33]. 

However, it is a debatable question, whether or not the overhead of faithful encoding pays 
off. We do not discuss this issue here, and we assume in the sequel that an encoding with a 
single reserved symbol suffices. 

Using the notation introduced by Ullman in [32], an encoded term 'p(*, *, a, *, c)' is 
written 'pSrbrb(a, C)', where the adornment 'ffbfb' expresses that the first two attributes are 
variables ( ' f '  stands for free), the third is the constant 'a '  ( 'b' stands for bound), etc. 
Expressed either with reserved symbols or with adornments, the encoding of variables can be 
pre-computed by specializing the rules. Assume that predicates with subscript 'v' may have 
non-ground facts. Consider the following rule: 

po(x, z) *-- q(x, y) ^ ro(y, z) 

If z is bound during the evaluation of 'rv(y, z)', then it is bound in po(x, z). Otherwise, it 
is free. The relation 'rv' can be specialized into four relations 'r~ b', 'r~ y', 'r~ b', and 'r{ r' 
denoting respectively the various possible patterns of free variables in an rv-tuple. The 
specialization of 'ro' induces among others the following specialized rule for 'Pv': 

p~(x ,  z) --> q(x, y) ^ r~b(y, z) 

Such a transformation of rules performs the" encoding of variables once, during rule 
specialization. It is far less efficient to perform it each time a non-ground tuple is generated. 
The specialization of rules according to the patterns of instantiated variables can serve other 
purposes than the encoding of variables. 

It is in general also used for enforcing an optimal propagation of constants during the 
evaluation of bodies of rules, by reordering the body literals. This can be viewed as a 
compilation ahead of time of 'selection functions' [16]. By Corollary 4.1 this optimization is 
not necessary for the correctness, the completeness, the exhaustivity, or the termination of 
the method. 

6.3 Specialization of the Backward Fixpoint Procedure 

Consider a Horn database DB. We assume that the rules in DB are assigned unique 
identifiers (1), (2), etc. Consider a rule labeled (k) in DB. The general form of a database 
rule is: 

(k) P(J?0) ~-- q,(x,) ^ " "  ^ qj(xj) ^ " "  ^ q,(xn) 

where n ~ N*, and where the 2is denote lists of terms. Let us denote the body of this rule by: 

^ ~m-~qm(~m) 
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The specialization with respect to (k) of the rules specifying the Backward Fixpoint 
Procedure refers to the body of rule (k) and to beginning subparts of it: 

/x .... ~q,,,t ,,,) (1 ~<j~<n) 

We shall denote such a beginnmg subpart by the pair (k, j). This characterization is not 
ambiguous since, by hypothesis, the database rules are assigned unique identifiers. 

Proposition 6.2. Specializing the rules (i) and (v)-(xi) of  the Backward Fixpoint Procedure 
with respect to a database rule (k) P(£o) *- /x ,,m,-'l'q.,(£., ) yields the following rules: 

(a k) p(£,,) e-- querYb-p(£o) /x evaluate(k, n, 2) from (i) 

(b k) evaluate(k, O, 2) ~- queryh-p(£o) from (v) 

For j = 0 . . . . .  n - 1 : 

(c)) evaluate(k, j + 1,2) ~evaluate(k,  j, £)/x qj+,(Xj.l) from (vi)-(ix) 

k (dj) queryb-q1+l(Xj~ i ) ~ evaluate(k, j, £) from (x)-(xi) 

Proof. Proposition 6.2 is obtained by evaluating over (k) the rule expressions in rules 
(i)-(ix) and by denoting (k, j) an expression /x ~U~qm(£,, ). [] 

Fig. 3 illustrates the specialization of the Backward Fixpoint Procedure on an example. As 
usual, the base relations 'r' and 's' are not specialized with adornments. 

The direct generation of the adorned form of the rules (ak)-(d~)~j .... of Proposition 6.2 
from a database rule 

(k) p(2,,) ~-- q1(2,) /x . . . / x  q/(Yj) /x . . .  Ix q,(£,,) 

is precisely the rewriting procedure of the Alexander and of the Supplementary Magic Set 
method, the improved version of the Magic Set method given in [5]. In other words, the 
Alexander and the Supplementary Magic Set methods implement the Backward Fixpoint 
Procedure by specializing its meta-interpretative specification with respect to the database 
rules. Like the Backward Fixpoint Procedure, these methods perform top-down processing 
of the original, non-rewritten database rules. 

Database rules : 

Specialized rules': 

y ' ( x )  ~ queryb-p~(x) A evaluate(l ,  2, x) 

evaluate( 1,0, x) ~ queryh-p~'(x) 
evaluate( 1, 1, x) ~ evaluate( 1, O, x) A qt'(x) 
evaluate(I,  2, x) <-- evaluate( 1, 1, x) A r(x) 

queryb-qh(x) *-- evaluate( 1,0, x) 

(1) p~(x) ~-- q"(x) /x r(x) 
(2) q~'(x) ~ s(x) 

q~(x) *-- queryb-q~(x)/x evaluate(2, 1. x) 

evaluate(2, 0, x) *-- queryh-qh(x) 
evaluate(2, 1, x) ~-- evaluate(2, O, x) /~ s(x) 

query~-sb(x) *- evaluate(2, O, x) 

Fig. 3. A specialization of the Backward Fixpoint Procedure. 
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By Lemma 6.1 and Proposition 6.2, it follows from Proposition 4.1 that: 

Corollary 6.1. The Alexander, Magic Set, and Supplementary Magic Set methods are sound, 
complete, and exhaustive query answering methods for (possibly recursive) Horn databases. 

They are terminating methods for Horn databases defining finitely many fac ts -  e.g. 
function-free databases. 

The representation of beginning parts of rule bodies by a pair (k, j)  in the specialized 
rules of Proposition 6.2 is a simple means for normalizing expressions containing conjunc- 
tions. 

Omitting the lists of terms £ or £ / in  the 'evaluates' terms of rules (ak)-(d~)~/~<n would 
compromise the propagation of constants during the evaluation of bodies of rules. The 
Alexander method does keep the lists £, while the Magic Set method does not. The 
Supplementary Magic Set method has been proposed for remedying this deficiency. In fact, 
the Supplementary Magic Set method re-expresses the Alexander method in a different 
terminology. A 'querYb- p' predicate is called 'problem-p' in the Alexander method, while it 
is called 'magic-p' in the Magic Set method. The 'evaluate' atoms correspond to the 
'continuations' of the Alexander method and to the 'supplementary-magic' atoms of the 
Supplementary Magic Set method. 

If the rule (k) considered in Proposition 6.2 is adorned, i.e. specialized according to 
variable instantiation patterns as it is discussed in Section 6.2, then so are rules (ak) - 

k , ~ , (d/)l~/~ n. The pre-encoding of variables in expressions 'queryb-P(£0)', querYb-qj(xj) 
(1 ~<j ~< n) is realized by removing the variables corresponding to ' f '  adornments. If the 
database rule (k) is not adorned, the adornment can as well be performed on the generated 
rules (ak)-(d~)l<j<~n. The result is the same, as it is shown by the following proposition. 

Proposition 6.3. Given a database rule (k), let B(k) denote the set of  rules obtained by 
specializing with respect to rule (k) the rules that specify the Backward Fixpoint Procedure, 
according to Proposition 6.2. Let A(k) denote the set of  adorned rules associated with rule 
(k), according to Section 6.2. We have: 

A(B(k)) = B(A(k)) 

Proof. Proposition 6.3 follows from the fact that by definition the transformation B does not 
affect variables, and the transformation A affects only variables occurring in query b- 
atoms. [] 

7. From SLD-resolution to fixpoint computation: linearity abandoned 

In this section, we consider the algorithms ET* and ETinterp [11], OLDT-Resolution [30], 
QSQ or SLDAL-Resolution [37], and the procedure R QA/ FQI  [22]. All these methods are 
based on SLD-Resolution [13, 18] and extend it in the same way. We first investigate the 
differences between SLD-Resolution and the Backward Fixpoint Procedure. Then, we show 
that the above-mentioned procedures basically remove these differences. Finally, we argue 
that efficient implementations of resolution-based methods must rely on the rewriting of 
Proposition 6.2 and process the rewritten rules bottom-up. 

Applied to Horn databases, SLD-Resolution evaluates an atomic query Q by trying to 
unify it with database facts or heads of rules. A unification with a fact yields an immediate 
answer. A unification with the head of a rule in turns entails the evaluation of the rule body. 
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Conjunctive bodies are evaluated atom after atom, following the ordering specified by a 
'selection function', e.g. strictly left to right. 

This approach is very similar to the Backward Fixpoint Procedure. In order to evaluate the 
same query, SLD-Resolution and the Backward Fixpoint Procedure in fact access the same 
database rules and pose the same queries. Therefore, the rules that specify the Backward 
Fixpoint Procedure can bc viewed as a logical specification of SLD-Resolution, in the case of 
Horn databases. 

However, although SLD-Resolution and the Backward Fixpoint Procedure are based on 
the same 'logic', they do not apply the same 'control', in the sense of Kowalski's well-known 
equation [15]: Algorithm = Logic+ Control. In contrast to the Backward Fixpoint Pro- 
cedure, SLD-Resolution does not share results between different evaluations. Consider the 
example of Fig. 4. In order to answer the query ' h ( x ) ' ,  the Backward Fixpoint Procedure 
shares the evaluation of the query 'r(x)' between the processing of 'p(x)' and 'q(x)'. It does 
not expand the proof trees rooted at 'r(x)' twice. SLD-Resolution expands it first at node 
(3), and re-expands it at node (8). This feature of SLD-Resolution - and of other methods 
based on the Resolution principle-  is called l ineari ty .  

The difference between the Backward Fixpoint Procedure and SLD-Resolution can be 
explained in terms of data structures. The Backward Fixpoint Procedure collects generated 
queries and proven facts in relations. Therefore, identical queries occurring in distinct parts 
of a proof tree are merged (this merging is the 'admissibility test' of resolution-based 
methods). In contrast, SLD-Resolution relies on a hierarchical data structure that relates 
proven facts and generated queries to the queries they come from. 

Database: s(a) t(a) u(a) u(a) p(x) <-- r(x) A S(X) 
s(b) t(b) u(b) q(x) , -  r(x) A t(x) 

r(x) ~- a(x) A v(x) 
h(x) ~- p(x) A q(x) 

Evaluation qf "h(x)': 

(1) h(x)~(2) p(x )* -  (3) r (x )*-  (4) u(x) [x:al or Ix:b] 
(5) v(x) Ix:4 

(6) s(x) [x:al 
(7) q(x)*-- (8) r(x)*- (9) u(x) [x:a] or [x:b I 

(1o) v(x) Ix:a] 
(11) t(X) Ix:a] 

Fig. 4. A SLD-Resolution proof tree. 

In order to make clear the commonalities as well as the differences between the Backward 
Fixpoint Procedure and SLD-Resolution, we specify the latter method in the formalism of 
bottom-up meta-interpretation. We express the hierarchical data structure by labeling 
generated queries and proven facts. Although a faithful expression of SLD-Resolution 
should be based on the version of the Backward Fixpoint Procedure given in Section 5 (rules 
(i) and (v)-(xi)), we consider the version of Section 4 (rules (i)-(iv)) for the sake of 
simplicity: 

factr(Q, L)  <--- queryf(Q, I, L)/x rule(Q <-- B)/x evaluater(B , I) 
f r o m  (i) 

queryr(Q~ A Q2, [I[ L]) *--- queryr(Q, I, L)  ^ rule(Q * -  Q ,  A Q2)  f r o m  (ii) 
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query~(Q~, J, [II L]) ~ query~(Q, I, L) ^ rule(Q ~ Q1) 

^ Ql ~ (C1 ^ C2) ^ new-identifier(J) from (ii) 

query~(Q1, J, L) ~-- query~(Ql ^ Q2, L) ^ new-identifier(J) from (iii) 

query~(Q2, J, L) query~(Ql ^ Q2, L) ^ factr(Q l, L) ^ new-identifier(J) 

from (iv) 

An expression 'fact~(F, L)'  relates a proven fact F to the queries it contributes to answer: 
The list L consists of the identifiers of these queries. For example 

fact~(r(a), [3,2, 11) 

denotes the first evaluation of 'r(x)' in the example of Fig. 4. The ternary predicate 'query~' 
associates with a query Q its identifier and the identifiers of the queries it comes from. Thus 
the two 'r(x)' queries in Fig. 4. are respectively represented by: 

query~(r(x), 3, [2, 1]) 

query~(r(x), 8, [7, 1]) 

Conjunctive queries are similarly related to the atomic queries they come from (no 
identifiers are given to conjunctive queries). [I lL ] denotes the list obtained by adding the 
identifier I in front of the list L. An initial query Q is expressed as: 

query~(Q, 1, [ l) 

The 'evaluate r' predicate is defined as follows: If B is an atom or a conjunction of atoms 
and o- is a substitution, 'evaluater(B, I)~r' holds if and only if Bo- evaluates to true over the 
facts that are labeled by I or that are explicit in the database. 

The 'new-identifier' expression is a call to a procedural subroutine which returns a new 
identifier. 

In an actual implementation of SLD-Resolution, the dependencies between queries are 
implicitly expressed by the data structure. If a depth-first strategy is chosen, a stack suffices 
to express it. PROLOG interpreter, for example, rely on this data structure. In the example 
of Fig. 4, the stack would be successively [1], [2, 1], [3, 2, 1], [4, 3, 2, 1], [5, 3, 2, 1], [6, 2, 1], 
etc. 

As opposed to the Backward Fixpoint Procedure, SLD-Resolution is incomplete for 
querying recursive databases: The extension that was proposed in [11,30, 37, 22] achieves 
completeness by preventing reprocessing of queries that were already answered, and by 
evaluating these queries over the facts that were proven. In terms of the above-defined rules, 
this extension consists on the one hand of tracking the generated queryr-atoms that coincide 
on the first argument, and on the other hand of modifying the definitions of 'evaluater' so 
that the identifiers are no longer considered. Clearly, this extension can be specified by 
simply removing the query identifiers and query dependency lists, i.e. by the Backward 
Fixpoint Procedure. 

It can also be redundantly specified by means of rules in which the query identifiers are 
kept. A set-oriented implementation of SLDAL-Resolution is reported in [17]. It relies on a 
rewriting of the database rules similar to that of the Alexander and Supplementary Magic Set 
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methods, It processes the rewritten rules with a sort of semi-naive inference engine. This 
engine, however, uses a hierarchical data structure in main memory that relates the 
encountered queries to the queries they are issued from. This makes the semi-naive 
computations more complex. 

Since the resolution-based methods can be specified by the Backward Fixpoint Procedure, 
we have from Proposition 4.1: 

Corollary 7.1. The algorithms ET* and ETimerp, OLDT-Resolution, QSQ, SLDAL-Resolu- 
tion and the R Q A / F Q I  procedure are sound, complete, and exhaustive query answering 
methods for (possibly recursive) Horn databases. 

They are terminating query answering methods for Horn databases defining finitely many 
facts - e.g. function-free databases. 

The fixpoint formalism is useful to understand the differences between some resolution- 
based methods. In this formalism, the resolution-based methods are viewed as computing a 
fixpoint on answers and queries. In [11] an incomplete algorithm, called ET, is considered 
for defining the complete methods ET* and ETinterp. The algorithm ET corresponds to the 
procedure QSQ as it is defined in [36]-  QSQ is corrected in [22] and [37]. The reason for 
incompleteness is that queries are generated only during the first round. During the 
subsequent rounds, the fixpoint is performed on answers only. Completeness requires 
treating answers and queries similarly, i.e. computing a fixpoint on both answers and queries. 

Also, the difference between the so-called recursive and iterative versions of QSQ [36] lies 
in different processing of queries and answers: Recursive QSQ applies the semi-naive 
optimization to both, queries and answers, while Iterative QSQ applies it only to queries and 
does not eliminate answers that are not new. Clearly, the former approach is more efficient 
than the latter. This was experimentally observed in [3]. Like completeness, efficiency 
requires treating answers and queries similarly. 

The formalization of resolution-based as well as rewriting-based methods in terms of the 
same procedure yields the following questions. In order to achieve an efficient implementa- 
tion of one of these methods is it desirable to: 

1. structure hierarchically the encountered queries following their generation? 

2. rely on a semi-naive query evaluator? 

3. rely on the rewriting of the Alexander or Supplementary Magic Set method? 

We think that the first question must be answered negatively, the other two positively, for 
the following reasons: 
1. A hierarchical data structure that follows the way in which the queries are generated 
could make their retrieval more complicated. In particular, such a structure would induce an 
overhead for checking if an encountered query is new. 

Moreover, a great advantage of relying on a relational data structure is to build on other 
components of the database management system. This makes it easier to store large sets of 
queries on secondary memory. Also, this permits centralized control of main memory 
resources. 

2. It is not mandatory to rely on a language of bottom-up rules for implementing a 
fixpoint procedure. However, the optimization principle that distinguishes the semi-naive 
from the naive method is needed for the sake of efficiency. As discussed in Section 3, 
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fixpoint procedures can be formalized in terms of bottom-up rules in a rather natural 
manner. No gains in efficiency seem to be reachable by changing the rule syntax on which a 
semi-naive procedure relies to some other, e.g. the equational syntax which is conventionally 
used in mathematics. 

Moreover, relying on a semi-naive evaluator has the advantage of using a component of 
the system that is useful for efficiently processing queries that do not give rise to constant 
propagation, e.g. for materializing the whole of a relation. The various search strategies of 
the resolution-based methods - depth-first, breadth-first, and their multi-stage versions - are 
as well obtainable with a semi-naive method. They are investigated in [25]. 

Finally, relying explicitly on a semi-naive query evaluator allows us to process some rules 
top-down, others bottom-up, during the same query evaluation process: It suffices not to 
rewrite the rules whose bottom-up evaluation is desired. This is a very simple way to 
implement sophisticated query optimization strategies. 

3. The rewriting of the Alexander and Supplementary Magic Set methods results from the 
specialization of the Backward Fixpoint Procedure with respect to the database rules, as 
shown in Section 5. There, we justified it by showing that it permits on the one hand to 
normalize nested terms, and on the other hand to pre-encode the variables occurring in the 
generated queries. The rationale of normalization is to simplify the data structures and to 
permit one to rely on well-established file systems. 

As we have observed, it is more efficient to pre-encode variables than to do it repeatedly 
when query-tuples are generated. Pre-encoding is possible only if auxiliary predicates- the  
'query b' predicate of the Backward Fixpoint P rocedure -a re  introduced. Indeed, these 
auxiliary predicates give rise to distinguishing queries that are amenable to encoding from 
the atoms that must be kept unchanged in order to permit their later evaluation. This 
justifies the introduction of the 'query b' expressions-i .e,  the 'problem' atoms of the 
Alexander method or the 'magic' atoms of the Magic Set method. 

The remaining feature of the rewriting, the ternary predicate 'evaluate' of Proposition 
5 .2 - i . e .  the 'continuation' or 'supplementary magic' a toms- i s  justified by efficiency 
considerations, as discussed in [24], in [5], and more briefly in Section 6. 

An additional advantage of the rewriting of the Alexander and Magic Set methods is not 
to have to distinguish between tuples that express answers and tuples that express queries. 
This simplifies the procedure as well as the data structure. 

8. Conclusion 

During the last five years, several methods have been proposed for evaluating queries on 
recursive databases. Those that are exhaustive and ensure termination on recursive data- 
bases defining finitely many facts follow one or the other of two approaches. The methods of 
the first type rewrite the database rules and process the rewritten rules bottom-up. This is 
how the Alexander [24] and Magic Set [2, 5] methods proceed. The second approach is an 
extension of SLD-Resolution that consists of storing the encountered queries and the proven 
answers. It .has been proposed in [11] with the ET* and ETinterp algorithms, in [30] with 
OLDT-Resolution, in [37] with QSQ and SLDAL-Resolution, and in [22] with the RQA/  
FQI procedure. 

On the one hand, the bottom-up processing of the first approach is often opposed to the 
top-down reasoning principle of the second - SLD-Resolution performs top-down reasoning. 
On the other hand, strong similarities between the two approaches were often observed. 
However, Beeri and Ramakrishnan noted: 
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"so far there is no uniform framework in terms of which these strategies may be 
described and compared, and the basic ideas that are common to these strategies remain 
unclear" 

in an article [5] giving, with the notion of 'sideway information passing strategy', a first 
contribution towards such a framework. 

In this article, we have proposed a common framework. We relied on the concept of 
fixpoint procedure for comparing the rewriting-based and the resolution-based methods. We 
showed that fixpoint theory can be applied to databases with other operators then the 
bottom-up reasoning immediate consequence operator of van Emden and Kowalski [34]. 

We specified a fixpoint query answering procedure, which we call the Backward Fixing 
Procedure. This procedure performs top-down reasoning but it is specified by a bottom-up 
meta-interpreter, i.e. in a meta-language by means of rules intended for bottom-up 
processing. Thus, it is possible to process queries by computing fixpoints without necessarily 
sticking to the bottom-up reasoning principle of the naive and semi-naive methods. The 
Backward Fixpoint Procedure was shown to be a sound, complete, and exhaustive query 
answering method for (possibly recursive) Horn databases. 

Then, we interpreted the Alexander and Magic Set methods on the one hand, the 
algorithms ET* and ETinterp, OLDT-Resolution, QSQ, SLDAL-Resolution, and the pro- 
cedure RQA/FQI  on the other hand, in terms of the Backward Fixpoint Procedure. We 
showed that all these methods implement the Backward Fixpoint Procedure. Roughly 
speaking, rewriting-based and resolution-based methods are no longer distinguishable when 
expressed as fixpoint procedures in the formalism of meta-interpretation. 

More  precisely, we first showed that the rewriting of the Alexander and Magic Set method 
results from specializing the Backward Fixpoint Procedure with respect to the database rules. 
Specialization is a common technique in artificial intelligence [27]. It is used for improving 
the efficiency of recta-interpreters. 

Then, investigating the nature of the extensions to SLD-Resolution in the ET* and 
ETinterp algorithms, OLDT-Resolution, SLDAL-Resolution, and the RQA/FQI  procedure, 
we showed that the Backward Fixpoint Procedure formalizes these methods as well. Finally, 
we argued that an efficient implementation of a resolution-based procedure has to explicitly 
rely on a semi-naive query evaluator and on the very rewriting of the Alexander and 
Supplementary Magic Set methods. 

Relying on bottom-up meta-interpreters for specifying fixpoint query answering pro- 
cedures appears to be a useful technique for both theoretical and practical issues. On the one 
hand, it often permits simple soundness and completeness proofs, like in this article. On the 
other hand, we have applied bottom-up meta-interpretation for specifying advanced fixpoint 
query answering procedures, e.g. for databases with uncertain data. This technique seems to 
be an interesting direction for further research. 

The Backward Fixpoint Procedure can be called an 'upside-down meta-interpreter', for it 
relies on bottom-up reasoning for implementing a top-down evaluation. Meta-interpretation 
can also be applied in the reverse way, i.e. for specifying bottom-up reasoning in a top-down 
language. We applied this approach for implementing the rather unconventional theorem 
prover SATCHMO in the top-down language PROLOG [21]. Upside-down meta-interpreta- 
tion does not seem to have attracted much attention. The article [12] which describes an 
approach similar to that of the Alexander and Magic Set methods seems to be a noticeable 
exception. 

In [8] we studied this technique by referring to SATCHMO on the one hand, to the 
Alexander and Magic Set methods on the other hand. We refuted the intuition that direct 
implementations of a reasoning principle - bottom-up or top-down - necessarily yield better 
performances than implementing it by means of the other principle. 
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Further research on upside-down meta-interpretation is desirable. In particular, efforts 
should be devoted to investigating strategies for combining top-down and bottom-up 
reasoning, i.e. strategies for choosing which rules to rewrite ~ la Alexander/Supplementary 
Magic Set and which rules to keep unchanged. As recent results in various fields of 
automated reasoning show, approaches combining the two inference principles often permit 
considerable gains in efficiency. 
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