
J. Komorowski Z.W. Ras (Eds.)

Methodologies for
Intelligent Systems
7th International Symposium, ISMIS '93
Trondheim, Norway, June 15-18, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Table of Contents

I n v i t e d T a l k I

J . M i n k e r & C. Ruiz
On Extended Disjunctive Logic Programs 1

Logic for A r t i f i c i a l Intell igence I

H . C h u & D . A . Plaisted
Model Finding Stategies in Semantically Guided Instance-Based
Theorem Proving 19

D .R . Busch
An Expressive Three-Valued Logic with Two Negations 2 9

J . Posegga
Compiling Proof Search in Semantic Tableaux 39

R. Hähnle
Short CNF in Finetely-Valued Logics 4 9

L . G iordano
Denning Variants of Default Logic: a Modal Approach 5 9

E x p e r t S y s t e m s

L . - Y . Shue & R. Z a m a n i
An Admissible Heuristic Search Algorithm 6 9

S.-J. Lee k C . - H . W u
Building an Expert System Language Interpreter with the Rule
Network Technique 76

G . Val iente
Input-Driven Control of Rule-Based Expert Systems 8 6

B . Lopez k E. Plaza
Case-Based Planning for Medical Diagnosis 9 6

J .P. Klüt & J . I I . P . Elof f
MethoDex: A Methodology for Expert Systems Development 1 0 6

I n v i t e d T a l k I I

F. B r y
Towards Intelligent Databases 1 1 6

VIII

L o g i c for Art i f ic ia l Intel l igence I I

L . Padgham k B . Nebel
Combining Classification and Nonmonotonic Inheritance
Reasoning: A First Step 132

H . Rasiowa k V . W . Marek
Mechanical Proof Systems for Logic I I , Consensus Programs
and Their Processing (Extended Abstract) 142

J . Chen
The Logic of Only Knowing as a Unified Framework for
Nonmonotonic Reasoning 1 5 2

P. L a m b r i x k R. Rönnquist
Terminological Logic Involving Time and Evolution:
A Preliminiary Report 1 6 2

Intell igent Databases

L . V . O r m a n
Knowledge Management by Example 172

H . M . Dewan k S.J. Stolfo
System Reorganization and Load Balancing of Parallel Database
Rule Processing 186

T . Gaasterland k J . Lobo
Using Semantic Information for Processing Negation and Disjunction
in Logic Programs 198

P. Bosc, L . L i e t a r d k 0 . P ivert
On the Interpretation of Set-Oriented Fuzzy Quantified Queries
and Their Evaluation in a Database Management System 209

I n v i t e d T a l k I I I

M . R . Lowry
Methodologies for Knowledge-Based Software Engineering 219

Logic for Art i f ic ia l Intell igence I I I

N . Leone, L . Palopol i k M . Romeo
Updating Logic Programs 235

D . Robertson, J . A g u s t i , J . Hesketh k J . Levy
Expressing Program Requirements using Refinement Lattices 245

R. Chadha k D . A . Plaisted
Finding Logical Consequences Using Unskolemization 255

IX

A . Rajasekar
Controlled Explanation Systems 2 6 5

N . V . M u r r a y k E. Rosenthal
Signed Formulas: A Liftable Meta-Logic for Multiple-Valued Logics 275

A p p r o x i m a t e R e a s o n i n g

S. Tano , W . O k a m o t o k T . I w a t a n i
New Design Concepts for the FLINS-Fuzzy Lingual System:
Text-Based and Fuzzy-Centered Architectures 2 8 5

A . Skowron
Boolean Reasoning for Decision Rules Generation 2 9 5

C . W . R . Chau , P. Lingras k S . K . M . Wong
Upper and Lower Entropies of Belief Functions Using Compatible
Probability Functions 306

C.J . L i a u k B . I -P . L i n
Reasoning About Higher Order Uncertainty in Possibilistic Logic 3 1 6

C M . Rauszer
Approximation Methods for Knowledge Representation Systems 3 2 6

I n v i t e d T a l k I V

L . L j u n g
Modelling of Industrial Systems 3 3 8

C o n s t r a i n t P r o g r a m m i n g

J . - F . Puget
On the Satisfiability of Symmetrical Constrainted Satisfaction Problems 3 5 0

A . L . B r o w n J r . , S. M a n t h a k T . Wakayama
A Logical Reconstruction of Constraint Relaxation Hierarchies
in Logic Programming 3 6 2

P. Berlandier
A Performance Evaluation of Backtrack-Bounded Search Methods
for N-ary Constraint Networks 3 7 5

M . A . Meyer k J .P. Müller
Finite Domain Consistency Techniques: Their Combination
and Application in Computer-Aided Process Planning 3 8 5

χ

L e a r n i n g and A d a p t i v e Systems I

I . F . I m a m k R.S. Micha lsk i
Should Decision Trees be Learned from Examples or from
Decision Rules? 3 9 5

H . Lounis
Integrating Machine-Learning Techniques in Knowledge-Based
Systems Verification 4 0 5

R. Bagai , V . Shanbhogue, J . M . Zy tkow k S.C. Chou
Automatic Theorem Generation in Plane Geometry 4 1 5

A . Giordana , L . Sa i t ta k C. Barogl io
Learning Simple Recursive Theories 4 2 5

I n v i t e d T a l k V

L . De Raedt k N . Lavrac
The Many Faces of Inductive Logic Programming 4 3 5

Methodologies

M . B a t e m a n , S. M a r t i n k A . Slade
CONSENSUS: A Method for the Development of Distributed
Intelligent Systems 4 5 0

H . G a n
Script and Frame: Mixed Natural Language Understanding System
with Default Theory 4 6 6

M . Franova, Y . Kodra to f f k M . Gross
Contructive Matching Methodology: Formally Creative or Intelligent
Inductive Theorem Proving? 4 7 6

G. Grosz k C. Ro l land
Representing the Knowledge Used During the Requirement Engineering
Activity with Generic Structures 4 8 6

S. Casell i , A . N a t a l i k F . Zanichell i
Development of a Programming Environment for Intelligent Robotics 4 9 6

Knowledge Representat ion

A . Schaerf
On the Complexity of the Instance Checking Problem in Concept
Languages with Existential Quantification 508

S. Ambroszkiewicz
Mutual Knowledge 518

XI

Κ. T h i r u n a r a y a n
Expressive Extensions to Inheritance Networks 5 2 8

G . B i t t e n c o u r t
A Connectionist-Symbolic Cognitive Model 5 3 8

M . D i Manzo k E. G iunch ig l ia
Multi-Context Systems as a Tool to Model Temporal Evolution 5 4 8

I n v i t e d T a l k V I

E. Sandewall
Systematic Assessment of Temporal Reasoning Methods for Use in
Autonomous Agents 558

M a n u f a c t u r i n g

C h . Klauck k J . Schwagereit
GGD: Graph Grammar Developer for Features in CAD/CAM 5 7 1

K . Wang
A Knowledge-Based Approach to Group Analysis in Automated
Manufacturing Systems 5 8 1

B . - T . B . C h u k H . D u
CENTER: A System Architecture for Matching Design and
Manufacturing 5 9 1

M . Sobolewski
Knowledge-Based System Integration in a Concurrent Engineering
Environment 6 0 1

L e a r n i n g and Adapt ive Systems I I

P. C h a r l t o n
A Reflective Strategic Problem Solving Model 6 1 2

B. Wüthrich
On the Learning of Rule Uncertainties and Their Integration
into Probabilistic Knowledge Bases 6 2 2

R. Zernbowicz k J . M . Zytkow
Recognition of Functional Dependencies in Data 6 3 2

R. Slowiriski
Rough Set Learning of Preferential Attitude in Multi-Criteria
Decision Making 6 4 2

A u t h o r s I n d e x 653

Towards Intelligent Databases

Frangois Bry

E C R C , Arabellastraße 17, 81925 München 81, Germany
Francois.Bry@ecrc.de

A b s t r a c t . T h i s article is a presentation of the objectives and techniques
of deductive databases. T h e deductive approach to databases aims at ex­
tending with intensional definitions other database paradigms that describe
applications extensionaUy. We first show how constructive specifications can
be expressed with deduction rules, and how normative conditions can be de­
fined using integrity constraints. We outline the principles of bottom-up and
top-down query answering procedures and present the techniques used for
integrity checking. We then argue that it is often desirable to manage with
a database system not only database applications, but also specifications of
system components. We present such meta-level specifications and discuss
their advantages over conventional approaches.

1 Introduction

Deductive Databases have been studied since more than a decade. Theoretical issues
have been investigated (see e.g. [28, 29, 30, 31 , 65, 21 , 8, 48, 64, 17, 18, 44, 45] for an
overview), and experimental deductive database management systems have been and
are s t i l l implemented (e.g. [54, 9, 23, 26, 32, 34, 51 , 56, 66, 33, 68, 40, 52]). Industrial
products are currently developed from research prototypes (e.g. [69]). This article is
informal presentation of the notions and objectives of deductive databases. Instead
of emphasizing technical aspects (that are explained in a number of articles and
tutorials , e.g. [28, 29, 30, 31 , 65, 21 , 8, 17, 18]), we prefer to insist on the goals of
the deductive approach to databases.

A first part of the presentation is devoted to recall how two complementary no­
tions are used in deductive databases for declaratively specifying an application. On
the one hand, deduction rules are used for constructive definitions. On the other
hand, normative specifications are expressed through integrity constraints. We i n ­
formally describe how deduction rules are evaluated for answering queries (see e.g.
[17, 18, 1, 2, 4, 7, 55, 57, 60, 61 , 67, 13]), and how integrity constraints are checked
when the database is updated (see e.g. [17, 18, 15, 25, 39, 43, 47, 49, 53, 19]).

I n a second part of the presentation, we argue that i t is often desirable to manage
w i t h the database system, not only an application, but also specifications of compo­
nents of the database sytem itself, the description of an application, or various kinds
of interpretations of this application. We informally introduce a few such meta-level
specifications, that rely on meta-programming [58, 62, 63, 59]. Final ly , we briefly
mention further applications of meta-level specifications towards enhanced database
management systems.

mailto:Francois.Bry@ecrc.de

117

2 A n Introduction to Deductive Databases

A main trend in database research is the enhancement of data modeling facilities. De­
ductive database techniques aim at extending conventional, nondeductive databases,
in which data are extensionally specified, w i t h intensional definitions in form of de­
duction rules and integrity constraints.

Database management systems historically developed from file managers, in
which applications are specified in terms of records and structured according to
storage and retrieval criteria. T w o data models were proposed at the end of the
sixties/beginning of the seventies for improving the descriptions of applications: the
hierarchical and the network data models. Like a file, a hierarchical or network
database consists of records. However, in contrast to files, records are structured in
trees and pointers express relationships between records. Both the hierarchical and
the network data models have a major drawback: The pointers these data model
rely upon make the design and the querying of databases rather diff icult. Database
users must be aware of rather complex networks even for posing simple queries.

The relational data model, defined by Codd [24] at the end of the seventies, over­
comes this difficulty in an elegant manner: no pointers are used and the conceptual
links between records (called tuples) are expressed through regular data. A relational
database consists in a set of relations. Relations are set of tuples. The semantical
relationship between tuples are expressed through the values they contain. Thus,
for example, the presence of a same character string (say, a name) in a tuple of a
"salary" relation and in a tuple of an "address" relation links salaries, addresses,
and employee's names. Because they are value-based, relational databases can be i n ­
terpreted in mathematics as logical theories consisting of formulas or, alternatively
as logical models consisting of relations. Relational databases can be seen as more
declarative than hierarchical or network databases since less knowledge of their inter­
nal structure is necessary for querying them. Indeed the knowledge of the relation's
names, the so-called database schema, and, possibly, of some values occurring in
tuples, suffices for posing queries.

2 . 1 D e d u c t i o n R u l e s

Deductive databases can be seen as an extension of the relational model. In a re­
lational database, the data are specified extensionally. T h a t is, the tuples of a re­
lational database are explicit ly defined. Deductive databases in contrast, also give
rise to specifying data intensionally by means of general properties, expressed us­
ing deduction rules. Consider for example the time-table of the Lufthansa airline.
The Lufthansa direct flights from Munich to Paris can be specified by the following
" f l ight" relation:

Monday
Tuesday

0725 0900
0725 0900
0725 0900
0725 0900
0725 0900
0725 0900

LII4356
LII4356
LH4356
LH4356
LH4356
LH4356

Wednesday
Tursday
Friday
Saturday

118

Monday
Tuesday

1110
1110
1110
1110
1110

1245
1245
1245
1245
1245

LH4384
LII4384
LH4384
LH4384
LH4384

Wednesday
Thursday
Friday

The first attr ibute (column) of this relation indicates the day of the flight, the second
and t h i r d are the departure and arrival times, respectively, and the last attribute
is the flight number. These eleven flights could be specified by the following two
deduction rules that somehow "factorize" the data common to several tuples:

f l ight (D, 0725, 0900, lh4356) < - d a y (D) , not D = Sunday.
f light (D, 1110, 1245, 1H4384) < - d a y (D) , not D = Saturday, not D = Sunday.

As usual, character strings beginning w i t h an upper case letter (e.g. D) are used for
denoting (logical) variables. The membership of a tuple (called "fact" in deductive
databases) " t " in a relation " r " is expressed by the term " r (t) " . We assume that
"day" denotes the relation containing the seven days of the week (monday, tuesday,
etc.). Lower case letters are used for distinguishing these constant values from vari­
ables. The expression "day(D)" can be thus evaluated to the facts "day(monday)" ,
"day(tuesday)", etc. The meaning of the first rule is that the facts "fiight(monday,
0725,0900, lh4356)", "ilight(tuesday, 0725, 0900, l h 4 3 5 6) " , " f l i g h t (s a t u r d a y , 0725,
0900, lh4356)" are derivable, i.e. are true facts in the database. I n more technical
terms,the variable D is (impl ic i t ly) universally quantified. The first deduction rule
is thus a shorthand notation for the following formula:

V D [(day(D) AO φ Sunday) => flight(D, 0725, 0900, lh4356)]

This simple example illustrates two important advantages of deductive databases
compared w i t h relational ones: (1) they require less storage, and (2) they give rise to
more natural specifications. The possible size reduction is sometimes dramatic : An
analysis of the time table of the Munich public transportation shows for example a
reduction factor of about 200! Database applications whose data cannot be speci­
fied according to general principles do not benefit as much of deductive techniques.
Most databases nevertheless contain some data that were implied from general laws
(e.g. business rules, legislation, scientific laws, etc.) and therefore can benefit from
deductive database techniques.

One could object that no deductive techniques are needed for achieving the fac­
torization described above. This is true. There are indeed, for this example, two
alternative ways to avoid the undesirable duplication of data using relational data
structures. The first approach consists in sp l i t t ing the original relation in two dis­
t inct relations, the first one giving the day and the flight number (which obviously
is a key), the second relation giving the times and the flight numbers. A j o i n then
permits ones to reconstruct the original relation at query t ime. The second approach
consists in using codes like in the following table for expressing on which days a flight
is available.

Xe7 0725 0900 LH4356

119

Xe67 1110 1245 LII4384

I n this relation, X stands for every day of the week, 6 for Saturdays, 7 for Sundays,
Xe7 for every day except on Sundays, and Xe67 for every week days. 1

We argue that both approaches have severe drawbacks. The first approach (the
split o f the original relation in two distinct smaller relation) examplifies an often
criticized (although necessary) practice in relational database design: For reasons of
storage (size) and coherency of the data (when updates are performed), the natural
description of an application usually needs to be modified. The two rules given above
as opposed achieve the same eiTect without compromising the natural character of
the specifications. The second approach (the encoding of the days in the tuples) is
very close to a specification by means of deduction rules. The difference however is
that the encoding is a notation "unknown" to the database management system,
while deduction rules are "understood" by a deductive database system for what
they are. Such an encoding is specific to a given application and must be interpreted
in the application programs, that is outside the database system. Deduction rules in
contrast give rise to interpreting intensional knowledge within the database system.

Deduction rules can also be used in lieu of relational views. Views are in relational
databases means for expressing predefined queries. One could for example define
connecting flights using a view: Λ connecting flight form A to Β is defined from a
flight from A to C and a flight from C to Β such that some conditions on the departure
and arrival times in C, and on the location of the airport C arc satisfied. A recursive
definition give rise to specifying connections involving an indefinite number of flights.
Such a definition is quite naturally expressed by the following deduction rule:

connection(D, Τ Ι , T 2 , [Nb]) < - flight(D, Τ Ι , T 2 , Nb) .
connection(D, T l , T 2 , [Nb | L]) f - f l ight (D, T l , T 3 , N b) ,

connection(D, T 3 , T 2 , L) ,
compatible(Nb, L) .

The first rule specifies a connection consisting of one single flight. The list of flight
involved in this connection ([Nb]) thus contains only one flight number. The second
rule " l inks" a flight to a connection and extends its list of flight numbers. The pred­
icate "compatible" is assumed to express whether times and airports are compatible
in a connection. I t might be specified intensionally by means of deduction rules,
or extensionally by a relation. Recursive specification are important in practice for
specifying several natural properties that apply on an indefinite number of object.
Another example is the definition of a " b i l l of mater ia l " : the price of a complex
object is obtained by summing up the prices of its parts, whose prices are in turn
s imilarly defined. Like for flight connections, i t is desirable to have a specification at
our disposal which is not l imited to a given number of components (e.g. flights or
parts) . I t has often been observed that recursive specifications are hardly avoidable
in real life applications.

Deduction rules thus are very similar to relational views. Since the first relational
database systems were not capable of handling recursive views, deduction rules are

1 This representation is taken from the time table booklet published by Lufthansa.

120

often seen as the extension of relational views to recursion. I n our opinion, deduc­
tion rules are more than extended views. Views are not handled like regular data,
i.e. tuples and relations, in a relational database management systems, while deduc­
tion rules should be seen as first class citizen in a deductive database system. This
means that al l the facilities that are provided by the system for storing, retrieving,
updating, and querying extensional specifications (i.e. facts) should also be appl i ­
cable to intensionally defined data (i.e. data defined by deduction rules) and to the
intensional specifications themselves. The full realization of this objective is s t i l l the
subject of active research.

2.2 R e m a r k s o n t h e L a n g u a g e o f D e d u c t i o n R u l e s

The deduction rules specifying connecting flights (cf. previous section) contain com­
plex, nested terms, namely lists. I t is often believed that nested terms and term
constructors should be prohibited in deductive databases. We think that nested
terms are needed (as in the above example). Moreover, the known techniques are
(almost) sufficient to acommodate them like flat, so-called first-normal form facts.
I t is probably the concept of Datalog, i.e. the language of rules w i t h flat terms and
no negation, which has widespread the idea that deductive databases should only
specify first-normal form tuples.

In deductive databases, the same form of negation is needed as in relational
databases. This negation has been formalized in various manner and under differ­
ent names (negation as failure, non-monotonic negation, negation according to the
closed-world assumption, etc.). Common to these formalizations is the basic notion
that an expression can be considered as false i f i t cannot be proved. This interpreta­
tion of negation is a rather intuit ive form of reasoning. This is this way of th ink ing
that leads us to conclude, for example, that there are no direct flights from Munich
to Trondheim i f we do not find any in the t ime table. Although there is a general
agreement on the semantics of this form of negation for relational databases, i t is
not always clear how to formalize i t in deductive databases. Rules like the fol lowing
ones are difficult to interpret, indeed:

a <— not b.
b «— not a.

"a" should be derivable only i f "b" is not derivable, and "b" should be nonderivablc
only "a" is also nonderivable. Various more or less complex, more or less intu i t ive
proposals have been made for giving convincing interpretations to such examples
(and to more sophisticated ones) as well as for defining query answering procedures
according to (some of) these interpretations. The problem is not yet completely
solved and is s t i l l investigated. There is however a general agreement on the semantics
of negation in so-called stratified deductive databases (or logic programs). The basic
idea of stratification is to part i t ion hierarchically the definitions of predicates, such
that no predicate definitions refers to the negation of a predicate defined in a higher
strata. Since one might have to deal wi th incompletely, or even incorrectly specified
databases - for example for debugging at design t ime - , i t is desirable to have a
semantics (and the corresponding answering procedures) at our disposal which docs
not impose any syntactical restrictions such as stratif ication.

121

There is however a syntactical restriction which is desirable, that of range restric­
tion. Range restriction basically requires that any variable occurring in a negated
expression in a query or in the body (i.e. the right hand side) of a rule also occurs
in a unnegated, positive expression. Thus, "p (X) , not q (X) " is range-restricted, but
" p (X) , not q (X , Y) " is not because the variable Y has no (positive) range. Since, due
to the interpretation of negation, negative expressions are absent from the database,
range restriction is needed for ensuring that the variables occurring in a query or in
a rule body can be assigned values from subexpressions occurring in this query or
rule.

2.3 I n t e g r i t y C o n s t r a i n t s

Deduction rules give rise to generating new facts from a database, i.e. deduction
rules express constructive specifications. In contrast to deduction rules, integrity
constraints are used for expressing non-constructive, normative specifications. Such
specifications are needed for ensuring that some properties remain satisfied when
data are updated. The following integrity constraint for example states that no
flights are allowed to land after 23:00:

V D T l T 2 Nb [flight(D, T l , T 2 , Nb) T 2 > 2300]

Any attempt to specify a flight landing after 23:00 would lead to a violation of this
integrity constraint. This violation would be reported to the database user who could
then either modify the update, or, i f i t appears to be no more val id, the integrity
constraint instead. A n integrity constraint can thus be viewed as a yes/no query
which is evaluated when the database is updated. Integrity constraints are needed
not only for specifying negative properties, as in the previous example, but also for
stating disjunctive or existential conditions, like in the following examples stating
that at least one of two flights must be recorded (i.e. specified) in the database, and
that there exists at least one day on which there is a flight, respectively:

flight(saturday, 0700, 0745, lh0345) V flight(saturday, 0735, 0810, lh0346)
3 D [day(D) Λ flight(D, 0700, 0745, lh0345)]

Although marketed database management systems can only maintain very l imited
types of integrity constraints (i f at a l l !) , normative specifications arc important in all
kinds o f database applications. Integrity constraints are expressed and maintained
through application programs in current databases, that is outside the scope of the
database system. This is undesirable because this makes the specification and the
maintenance of integrity constraints a (generally complex) programming task. In
deductive databases, this is part of the database design, for which tools should be
available [16]. Integrity constraints are not declaratively specified but are expressed
by means of imperative programs. Moreover these programs usually combine the
specifications of the normative conditions and their efficient evaluation. In deductive
databases in contrast, one only has to specify integrity constraints. Their efficient
evaluation is left to the database management system (cf. Section 4 below). This is
not only more convenient for the database designer. This also ensures that integrity
constraints are efficiently checked. This is hardly the case when application programs

122

are modified for acommodating the modifications of integrity constraints that are
unavoidable in any real life applications.

Range restriction is needed for integrity constraints like for deduction rules. A
universal quantification V X F[X] is range restricted i f the expression F[X] is of the
form R[X] => G[X] and i f X appears positively in R (cf. [10] for a precise definition).
Thus V X [p (X) => q(X)] is range restricted, while V X [(- 1 p (X)) => q (X)] is not.
A n existential constraint 3 X F[X] is range restricted i f F[X] is of the form R[X] Λ
G[X] and i f X appears positively in R[X] [10]. Range restriction ensures that only
updates affecting expressions occurring in a constraint (directly or indirectly through
deduction rules) might violate this constraint. This is an essential condition for an
efficient integrity checking (cf. Section 4). I t is worth noting that range restriction
is a very natural requirement: in natural languages, i t is almost impossible to ex­
press properties that are not range restricted. Moreover, formulas that are not range
restricted have "semantically equivalent" counterparts that are range restricted.

2.4 C o n s t r a i n t s as R u l e s

Deduction rules can be used for expressing integrity constraints in two different
ways. The first one consists in expressing quantifiers by means of rules, the sec­
ond approach, in rewrit ing the integrity constraint as special rules. The following
deduction rule express a range-restricted universal quantification:

foral l (X, R = > F) < - not (R, not F) .

Consider for example the following universal formula: V X p(X) => q (X) . I t would be
expressed as " foral l (X, p (X) = > q (X)) " using the formalism defined by the above
given rule. This expression evaluates to true i f and only i f i t is impossible to satisfy
the conjunctive query "p(X)> not q (X) " , i.e. to find a value X in the relation " p "
which is not also in the relation " q " . The deduction rule given above thus specifies
a constructive evaluation of range restricted universally quantified expressions [12].
Existential quantifications are even easier to express in the formalism of deduction
rule:

exists(X, F) < - F.

Instead of relying on the above given rules for quantifiers, one can also directly
rewrite the integrity constraints as rules. A n integrity constraint C is expressed as
a rule, called denial^ corresponding to "false <— not C". The examples of integrity
constraints given above lead thus to the following denials:

false < - flight(D, Τ Ι , T 2 , Nb) , T 2 > 2200.
false <- not flight(saturday, 0700, 0745, lh0345),

not flight(saturday, 0735, 0810, lh0346).
false < - not (day(D), i l i g h t (D , 0700, 0745, lh0345))

The two approaches are in fact the two sides of a same coin. The second rep­
resentation is obtained from the first by part ial evaluation (or part ial deduction)
[42, 35, 36, 37, 41] of the rules specifying quantifiers in the integrity constraints.

123

3 Query Answering

Queries are usually answered against the constructive specifications contained in
the database, i.e. against the facts and deduction rules. Standard query answering
methods do not make use of integrity constraints. Two complementary techniques
can be applied in standard query answering: bottom-up (or forward) or top-down (or
backward) reasoning. Bot tom-up reasoning procedures basically consist in repeating
the following as long as new facts are obtained: the bodies of al l rules are evaluated
against the explicit ly stored facts, and the corresponding facts specified by the heads
(i.e. the left hand side) of the rules are added to the database (in a special area).
Consider for example the following database which can be interpreted as follows.
" f (X , Y) " means that " X " is the father of " Y " ; the odd (even, resp.) numbers are in
a father-child relationship, and this relationship has circles on letters ("a" and "b"
as well as "c" and " d " are "fathers" of each other); "g(X, Y) " means that "X" and
" Y " belong to the same generation.

g (X, Y) < - f (F X , X) , g (FX, F Y) , f (FY , Y) . f (l , 3) f (2 , 4) f(a, b)
g (l , 2) f (3 ,5) f (4 , 6) f (b , a)
g(a, c) f (6 , 8) f(c, d)

f (d , c)

The facts " g (l , 2) " and "g(a, c)" give rise to deriving "g(3, 4) " , «g(b, d) " , and
"g(5, 6) " using the deduction rule. Dottom-up reasoning on this database leads to
generating these facts in stages:

Stage I : g(3, 4) g(b, d)
Stage 2: g(3, 4) g(b, d)

g(5, 6) g(a. c)
Stage 3: g(3 ,4) g(b, d)

g(5, 6) g(a. c)
g(b, d)

The next round derives the same facts are those proven at stage 3. For restricting
the repeated derivation of already proven facts, one can require that at least one of
the facts produced at the previous stage is used in a proof. This refined procedure is
called in the database community, the semi-naive method, while the straightforward,
redundant method is called naive. The naive and semi-naive methods terminate as
soon as no new facts are derived. I t is not possible to completely avoid a repeated
generation of some facts, for a same fact can have several distinct proofs. Using
bot tom-up reasoning for answering a query basically consists in generating all deriv­
able facts f rom the database, and then in evaluating the query against the resulting,
extended set of facts. There are methods for restricting to some extent and in some
cases this " b l i n d " generation. However, i t is an inherent feature of bottom-up reason­
ing not to make use of the posed query in t ry ing to answer i t : bot tom-up reasoning is
not "goal directed". I t is worth emphasizing that the naive and semi-naive methods
compute sets at each stages and that set-oriented techniques from relational system
can be applied for computing these sets. An efficient processing of quantifiers, nega­
t i o n , and disjunctions that are frequent in integrity constraints and deduction rules
requires to refine over the tradit ional techniques of relational algebra [10].

124

Top-down reasoning procedures overcome this drawback by reasoning backward
from the posed query. Consider once again the father-generation database given
above and the query "g(3, X) " asking for all Xs that are in the same generation
as 3. The only solution is 4, since 1 and 2 are fathers of 3 and 4, respectively and
belong themselves to a same generation. Reasoning backwards from the query "g(3,
X) " consists in selecting a rule whose head unifies w i t h the query. In our case,
there is only one candidate rule. The unification of its head w i t h the query binds
the variables in its body resulting in the following conjunctive subquery: f (F X , 3),
g (FX, F Y) , f (F Y , Y) . The first conjunct " f (FX , 3)" has one single solution which
binds the variable F X to 1. The next conjunct (or subquery) to evaluate is " g (l ,
F Y) " . I t can be answered either against the facts, or using once again the deduction
rule in which case the same process is repeated.

Top-down reasoning can be formalized in terms of bottom-up reasoning by relying
on the formalism of deduction rules as follows [13]:

fact(X) * - query(X) , rule(X « - Y) , answer(Y).
query(Y) <- query(X) , rule(X « - Y) .
query (Y l) < - q u e r y ((Y l , Y2)) .
query(Y2) f - q u e r y ((Y l , Y2) , answer(Yl) .
answer(X) <— query(X) , fact (X) .
answer((Yl , Y2)) < - q u e r y ((Y l , Y2)) , answer(Yl) , answer(Yl) .

Assume that these rules are evaluated bottom-up and that the predicate "fact"
("rule" , respectively) range over the facts (deduction rules, resp.) stored in the
database. The first rule select a deduction rule the head of which unifies w i t h a
query, and, i f an "answer" (a predicate defined by other rules) is found, generates
a fact. I n the formalism of deduction rules used here, unification docs not have to
be redefined: i t is already provided by this formalism. The second rule generates a
(generally conjunctive) query by unifying a query wi th the head of a rule. The t h i r d
and fourth rules split conjunctive queries; the last two rules derive conjunctive an­
swers by conjuncting already generated answers. The query "g(3, X) " is answered as
follows by processing the deduction rules given above wi th the semi-naive method:

Stage 1: query((f (ZX, 3), g(ZX, ZY) , f (ZY, Y)))
Stage 2: query(f (ZX, 3))

Stage 6: answer(g(3, 1)) query((f (ZX, 1), g(ZX, Z Y) , f (ZY, Y)))
Stage 7: query((g (l , ZY) , f (ZY, Y)))

Stage 11: answer(g(3, 4))

The above mentioned, rule-based specification of top-down reasoning is interest­
ing for several reasons. Firstly, since i t is expressed in terms of bottom-up reasoning,
i t is easily amenable to set-oriented computations. This is important for the sake
of efficiency in databases. Secondly, the above specified top-down procedure is com­
plete, more precisely exhaustive: I f there are finitely many answers, i t computes a l l
of them and terminates; i f there are infinitely many answers (in presence of function
symbols), each single answer in computed in finite t ime. The top-down reasoning

125

procedure generally used in logic programming, SLD resolution, in contrast might
loop in presence of recursive deduction rules. Termination (or exhaustivity) is i m ­
portant in databases, for database users as opposed to programmers cannot be made
responsible of termination of the queries they pose to a database. Finally , the speci­
fication given above provides w i t h a simple formalization of the Alexander or Magic
Set rewrit ing methods [1 , 2, 57, 7, 55, 4, 21 , 8]: these rewritings are obtainable from
the rule-based specification given above by partial evaluation (or part ial deduction)
[42, 35, 36, 37, 41]. These points are discussed in more detail i n [13]. [61] also shows,
f rom a different angle, that the Alexander and Magic rewritings in fact implement
top-down reasoning by means of deduction rules that are evaluated bottom-up.

We would like to conclude this section on deductive database query answering
methods w i t h some remarks. Firstly, although "goal directedness" in general is i m ­
portant for efficiency, there are cases where the overhead resulting from generating
and managingsubgoals does not pay off. In theses cases, that s t i l l remain to be fully
characterized, a bottom-up reasoning w i t h the semi-naive method is more efficient
than a top-down procedure like the above specified one or Magic Set. Secondly, i t is
in some cases preferable to compute all derivable facts beforehand instead of gener­
at ing the needed one for each query at query time. In these cases as well, bottom-up
reasoning w i t h the semi-naYve method is preferable. Final ly , there has been proposals
to use integrity constraints either for speeding up or for enhancing query answering
(cf. e.g. [22, 46, 50, 14]). These approaches are very promising. They often give rise
to more informative answers than conventional query answering methods.

4 Integrity Checking

Integrity constraints can be seen as yes/no queries (cf. Section 2.3). They can there­
fore be evaluated like regular queries. This is however often inefficient. Integrity
constraints indeed are to be checked only after updates, and updates usually do not
affect the whole of a database but only a l imited part of i t . For the sake of efficiency,
i t is desirable to check only those integrity constraints that might be affected by an
update. Various integrity checking methods have been proposed that all rely on s im­
ilar principles. Let us illustrates the techniques common to these so-called "integrity
checking" methods on an example. Consider an integrity constraint requiring that
all employees working for the sales department speak English:

V X [(empl (X) Λ works-for(X, sales-dept)) => speaks(X, english)]

Any update to the facts and deduction rules that have no efTect on the predicates
occurring in this constraint cannot violate i t . I t is worth not ing that this only holds
i f integrity constraints are range restricted. The insertion of any fact, say "p(a)"
might violate a non range restricted constraint such as C: V X q (X) . I f "a" d id not
occur in the database before the insertion of "p (a) " , C indeed does not hold after the
change. Whether an update might affect the definition of a relation can be specified
using deduction rules as follows:

potential-update(H, Sign) <— rule(H f - B) , potential-update(B, Sign).
potential -update((Cl , C2), Sign) <— potent ia l -update(Cl , Sign).

126

potential -update((Cl , C2), Sign) <- potential-update(C2, Sign).
potential-update(not F, Opp-Sign) <— potential-update(F, Sign),

opposite(Sign, Opp-Sign).
potential-update(F, - f) <— insert(F).
potential-update(F, -) <— remove(F).

Let us comment this specification starting from the last two rules. The insertion (re­
moval, resp.) of a fact F induces a "potential-update" on F w i t h positive (negative,
resp.) polarity. Negation changes the polarity of a potential update: For example,
i f "p(a)" is a potential removal, the negative information "not p(a)" is potentially
inserted. The second and th i rd rules specify that potential updates of conjuncts i n ­
duce potential updates of conjunctions w i t h same polarity. The first rule propagate
potential insertions through deduction rules. Thus, i f "p(a)" is inserted, the con­
junct ion " (pa) , q(a))" is a potential insertion. In presence of a rule " r (X) <— p (X) ,
q (X) . " " r (a) M is in t u r n a potential insertion.

A l l integrity checking method rely on analyses of possible (or actual) conse­
quences of updates similar to the computation of potential updates which is specified
above by means of deduction rules. This is quite intuit ive when integrity constraints
are expressed as denials. Integrity checking then indeed reduces to verifying whether
"false" w i l l become derivable after an update. Denials that cannot give rise to prov­
ing "false" can be filtered out by rules like the above mentioned ones, for "false" is
derivable after an update only i f "potential-update(false, - f) " holds.

The analyses performed by the various integrity checking methods in some cases
consider, in other cases ignore the values of the attributes. They sometimes perform
bottom-up, sometimes top-down reasoning on the deduction rules, or on rules used
for specifying the integrity constraints (cf. e.g. [43, 25, 39, 15, 17, 18] and [19] for
an overview). Some methods, e.g. [53, 25, 15], simplify the integrity constraints w i t h
respect to updates. Such simplifications can be formalized as a part ial evaluation (or
part ia l deduction) [42, 35, 36, 37, 41] of deduction rules similar to those specified
above.

In the rule-based specification of potential updates which is given above, we
assume that the updates are specified as sets specified by the relations "insert" and
"remove". I t is worth noting that these relations can be defined in tension ally by
deduction rules as well as cxtensionally by means of facts. One could for example
specify an update by the following rule:

insert(speaks(X, english)) nat ional i ty (X, br i t ish) .

This rule is rather similar to the deduction rule "speaks(X, english) <— nat ional i ty (X ,
b r i t i sh) " . The difference is that i t forces the explicit storage of facts in the database,
while the deduction rule for "speaks" does not. Integrity constraints can as well be
defined on the predicates "insert" and "remove". The following integrity constraint
for example forbids to fire of employees who work for the sales department:

V X [works-for(X, sales-dept) => -» remove(emp(X))]

127

5 Deduction Rules for Specifying System Components

I n the previous sections, we have outlined how query answering and integrity check­
ing procedures can be specified by means of deduction rules. The technique,which
was used is known as meta-programming, for the variables in these deduction rules
do not range, as in ordinary rules, over application data but instead over expres­
sions (i.e. integrity constraints or rules) that describe the application data. We have
pointed out that rewrit ing methods used for answering queries and evaluating i n ­
tegrity constraints can be seen as resulting from the part ia l evaluation (or part ial
deduction) of rule-based specifications. I n this section, we first argue that i t is bene­
ficial to specify and implement some components of a database management system
in this way. Then, we suggest further applications of this approach.

A first advantage of specifying components of a database management system us­
ing deduction rules and partial evaluation is the uni formity of the approach. Instead
of implementing several rewrit ing methods for, say, recursive query processing (e.g.
[1 , 57, 2, 7, 4]) , for simplifying integrity constraints (e.g. [43, 25, 15]), for query o p t i ­
mization (e.g. [46, 22, 10, 11]), etc. one could generate them automatically from the
rule-based specifications using techniques as proposed i n [58, 62, 42, 27, 35, 36, 37].

System components declaratively specified using deduction rules would probably
be easier to prove correct and to maintain than conventional programs. Moreover, the
very maintenance and updating tools provided by the database management system
(e.g. integrity checking) could be applied to maintaining those system components
that are specified in terms of deduction rules.

Specifying system components using deduction rules would in addition contribute
to enhance the extensibility of the system. I t is indeed easier to extend a set of
deduction rules w i t h additional rules for novel functionalities (e.g. additional query
opt imizat ion strategies) than to extend a conventional program.

To which extent this approach is applicable in designing database management
system is not yet known. The approach we suggest has however already been ap­
plied, more or less consciously, in many system prototypes that have been developed
during the last years, e.g. [41, 68]. From discussions we had w i t h designers of var­
ious database system prototypes (e.g. [54, 3, 23, 26, 33, 34, 40, 66, 68, 20, 69])
we gained the impression that meta-programming techniques are rather widely ap­
plied, although often quite unconsciously, in implementing database systems. The
systematic investigation of this techniques for database system design is, we th ink ,
a promising direction of research.

Deduction rules can also be used for specifying data models and query languages.
This is a widespread practice in logic programming to specify an interface model
or language by means of rules. This can be done in deductive databases as well
either for specifying a semantic data model (e.g. a entity-relationship model), or
for specifying a query language (e.g. a SQL-like language). Rules can also be used
for mapping complex objects on lower level data structures. Deductive databases
are often criticized for being, like relational databases, value-based, and for not
providing w i t h object identities. Identities are "logical pointers" that give rise to
naming objects [5, 6]. Extending the paradigm of logic programming and deductive
facilities w i t h identities is a promising issue. We th ink , this is the key issue to solve for
bringing closer together both paradigms of deductive and object-oriented databases.

128

Deduction rules can finally also be used for interpreting the data stored in a
database in various manners. Rules can be specified for various forms of reasoning
that can be needed for some applications (e.g. hypothetical or probabilistic queries).
Non-standard query answering methods (e.g. [62, 22, 46, 14]) often have been spec­
ified using met a-programming techniques.

6 Conclusion

This article has introduced and discussed the goals and techniques of deductive
databases. We outlined how deductive databases give rise to declaratively specifying
both , constructive and normative aspects of an application, using deduction rules
and integrity constraints, respectively.

We informally presented bottom-up and top-down, set-oriented query answering
methods, and we introduced to the principles upon which integrity checking methods
are based. We have shown that deduction rules are not only useful for specifying
database applications, but can also serve to specify and implement components of a
database management system.

We finally argued that this approach is of interest for several reasons: I t gives
rise to a more uniform system design, system components implemented this way are
easier to mainta in ; system extensibility is made easier.

Finally, we suggested further applications of this approach towards enhanced
database systems.

References

1. Bancilhon, F . , Maier, D. , Sagiv, Y . , Ullman, J . : Magic Sets and Other Stange Ways to
Implement Logic Programs. Proc. 5th A C M S I G M O D - S I G A R T Symp. on Principles of
Database Systems (1986)

2. Bancilhon, F . , Ramakrishnan, R . : A n Amateur's Introduction to Recursive Query Pro­
cessing. Proc . A C M S I G M O D Conf. on the Management of Data (1986)

3. Beierle, C : Knowledge Based P P S Applications in P R O T O S - L . Proc . 2nd Logic Pro­
gramming Summer School (1992)

4. Been, C : Recursive Query Processing. Proc. 8th A C M S I G A C T - S I G M O D - S I G A R T
Symp. on Principles of Database Systems (1989) (tutorial)

5. Beeri, C : A Formal Approach to Object-Oriented Databases. Data L· Knowledge E n ­
gineering 5 (1990) (Invited paper. A preliminary version of this article appeared in the
proc. of the 1st Int. Conf. on Deductive and Object-Oriented Databases)

6. Beeri, C : Some Thoughts on the Evolution of Object-oriented Database Concepts. Proc .
GI-Fachtagung Datenbanksysteme in Büro, Technik und Wissenschaft (1993)

7. Beeri, C , Ramakrishnan, R. : On the Power of Magic. Proc. 6th A C M S I G A C T -
S I G M O D - S I G A R T Symp. on Principles of Database Systems (1987)

8. Bidoit, N . : Bases de Donnees Deductives. Armand Colin (1992) (in FVench)
9. Bocca, J . : O n the Evaluation Strategy of Educe. Proc. A C M S I G M O D Conf. on the

Management of Data (1986)
10. Bry, F : Towards an Efficient Evaluation of General Queries: Quantifier and Disjunction

Processing Revisited. Proc. A C M S I G M O D Conf. on the Management of Data (1989)
11. Bry, F . : Logical Rewritings for Improving the Evaluation of Quantified Queries. P r o c .

Int. Conf. Mathematical Fundamentals of Data Base Systems (1989)

129

12. Bry» F . : Logic Programming as Constructivism: Λ Formalization and its Applica­
tion to Databases. Proc. 8th A C M - S I G A C T - S I G M O D - S I G A R T Symp. on Principles
of Database Systems (1989)

13. Dry, F . : Query Evaluation in Recursive Databases: Bottom-up and Top-down Recon­
ciled. Data Knowledge Engineering 5 (1990) (Invited paper. A preliminary version of
this article appeared in the proc. of the 1st Int. Conf. on Deductive and Object-Oriented
Databases)

14. Bry, F . : Constrained Query Answering. Proc. Workshop on Non-Standard Queries and
Answers (1991)

15. Bry, F . , Decker, I L , Manthey, R . : A Uniform Approach to Constraint Satisfaction
and Constraint Satisfiability in Deductive Databases. Proc . 1st Int. Conf. on Extending
Database Technology (1988)

16. Bry, F . , Manthey, R . : Checking Consistency of Database Constraints: A Logical Basis.
Proc . 12th Int. Conf. on Very Large Databases (1986)

17. Bry, F . , Manthey, R. : Deductive Databases - Tutorial Notes. 6th Int. Conf. on Logic
Programming (1989)

18. Bry, F . , Manthey, R. : Deductive Databases - Tutorial Notes. 1st Int. Logic Program­
ming Summer School (1992)

19. Bry, F . , Manthey, R. , Martens, B . : Integrity Verification in Knowledge Bases. Proc.
2nd Russian Conf. on Logic Programming (1991) (invited paper)

20. Cacace, F . , Ceri , S . , Crespi-Reghizzi, S. , Tanca, L . , Zicari, R . : Integrating Object-
Oriented Data Modelling With a Rule-based Programming Paradigm. Proc. A C M S I G -
M O D Conf. on the Management of Data (1990)

21. Ceri , S . , Gottlob, G . , Tanca, L . : Logic Programming and Databases. Surveys in Com­
puter Science, Springer-Verlag (1990)

22. Chakravarthy, U . S . , Grant , J . , Minker, J . : Foundations of Semantic Query Optimization
for Deductive Databases. In [48] (1988)

23. Chimenti, D . , Gamboa, R . , Krishnamurthy, R. , Naqvi, S . , T s u r , S. , Zaniolo, C : T h e
L D L System Prototype. I E E E Trans, on Knowledge and D a t a Engineering 2 (1) (1990)
76-90

24. Codd, E . F . : A Relational Model of Data for Large Shared D a t a Banks . Comm. A C M
13 (1970) 377-387

25. Decker, H . : Integrity Enforcement on Deductive Databases. Proc. 1st Int. Conf. Expert
Database Systems (1986)

26. Freitag, Β., Schütz, Η., Specht, G . : L O L A - A Logic Language for Deductive Databases
and its Implementation. Proc. 2nd Int. Symp. on Database System for Advanced Ap­
plications (1991)

27. Gallagher, J . : Transforming Logic Program by Specializing Interpreters. Proc. Euro­
pean Conf. on Artif. Intelligence (1986) 109-122

28. Gallaire, Η., Minker, J . (eds): Logic and Databases. Plenum Press (1978)
29. Gallaire, I L , Minker, J . , Nicolas, J . - M . (eds): Advances in Database Theory. Vol. 1.

Plenum Press (1981)
30. Gallaire, Η., Minker, J . , Nicolas, J . - M . (eds): Advances in Database Theory. Vol. 2.

Plenum Press (1984)
31. Gallaire, Η., Minker, J . , Nicolas, J . - M . (eds): Logic and Databases: A Deductive Ap­

proach. A C M Computing Surveys 1G:2 (1984)
32. Haas, L . M. , Chang, W . t Lohman, G . M. , McPherson, J . , Wilms, P. F . , Lpis, G . ,

Lindsay, B . , Pirahesh, I L , Carey, M. , Shekita, E . : Starburst Mid-Flight: As the Dust
Clears. I E E E Trans, on Knowledge and Data Engineering (1990) 143-160

130

33. Jarke, Μ., Jeusfeld, Μ., Rose, Τ.: Software Process Modelling as a Strategy for K B M S
Implementation. Proc. 1st Int. Conf. on Deductive and Object-Oriented Databases
(1989)

34. Kiernan, G . , de Maindreville, C , Simon, E . : Making Deductive Databases a Practical
Technology: A Step Forward. Proc. A C M S I G M O D Conf. on the Management of Data
(1990)

35. Komorowski, J . : Partial Evaluation - Tutorial Notes. North Amer. Conf. on Logic
Programming (1989)

36. Komorowski, J . : Synthesis of Program in the Framework of Partial Deduction. Tech­
nical Report T R - 8 1 , Computer Science Depart. Abo Akademi, Finland (1989)

37. Komorowski, J . : Towards Synthesis of Programs in the Framework of Partial Deduc­
tion. Proc. Workshop on Automating Software Design. X l t h Int. Joint Conf. on Artif.
Intelligence (1989)

38. Komorowski, J . : Towards a Programming Methodology Founded on Partial Deduction.
Proc. 9th European Conf. on Artif. Intelligence (1990) 404-409

39. Kowalski, R . Sadri, F . , Soper, P.: Integrity Checking in Deductive Databases. Proc.
13th Int. Conf. on Very Large Databases (1987)

40. Lefebvre, Α., Vieille, L . : O n Query Evaluation in the DedGin* System. Proc. 1st Int.
Conf. on Deductive and Object-Oriented Databases (1989)

41. Lei , L . , Moll, G . - H . , Kouloumdjian, J . : A Deductive Database Architecture Based on
Partial Evaluation. S I G M O D Records 19(3) (1990) 24-29

42. Lloyd, J . , Shepherdson, J . C : Partial Evaluation in Logic Programming. Jour, of Logic
Programming 11 (1991) 217-242

43. Lloyd, J . W . , Sonenberg, Ε. Α., Topor, R . W. : Integrity Constraint Checking in Strat ­
ified Databases. Jour, of Logic Programming 1(3) (1984)

44. Lloyd, J . W. , Topor, R. W. : A Basis for Deductive Database Systems. Jour, of Logic
Programming 2 (2) (1985)

45. Lloyd, J . W. , Topor, R. W. : A Basis for Deductive Database Systems I I . Jour, of Logic
Programming 3(1) (1986)

46. Lobo, J . , Minker, J . : A Metaprogramming Approach to Semantically Optimize Queries
in Deductive Databases. Proc. 2nd Int. Conf. Expert Database Systems (1988)

47. Martens, B . , Bruynooghe, M. : Integrity Constraint Checking in Deductive Databases
Using a R u l e / G o a l Graph. Proc. 2nd Int. Conf. Expert Database Systems (1988)

48. Minker, J . (ed.): Foundations of Deductive Databases and Logic Programming. Morgan
Kaufmann (1988)

49. Moerkotte, K a r l , S. : Efficient Consistency Control in Deductive Databases. Proc. 2nd
Int. Conf. on Database Theory (1988)

50. Motro, Α.: Using Integrity Constraints to Provide Intensional Responses to Database
Queries. Proc. 15th Int. Conf. on Very Large Databases (1989)

51. Morris, K . , Ullman, J . D . , Van Gelder, Α.: Design Overview of the N A I L ! System. Proc .
3rd Int. Conf. on Logic Programming (1986)

52. Naqvi, S. , T s u r , S. : A Logical Language for Data and Knowledge Bases. Computer
Science Press (1989)

53. Nicolas, J . - M . : Logic for Improving Integrity Checking in Relational Databases. A c t a
Informatica 18(3) (1982)

54. Nicolas, J . - M . , Yazdanian, K . : Implantation d'un Systeme Deductif sur une Base de
Donnees Relationnelle. Research Report, O N E R A - C E R T , Toulouse, France (1982) (in
French)

55. Ramakrishnan, R . : Magic Templates: A Spellbinding Approach to Logic Programming.
Proc. 5th Int. Conf. and Symp. on Logic Programming (1988)

131

56. Ramakrishnan, R. , Srivastava, D . , Sudarshan, S. : C O R A L : Control, Relation and Logic.
Proc . Int. Conf. on Very Large Databases (1992)

57. Rohmer, J . , Lescoenr, R. , Kerisit , J . - M . : T h e Alexander Method. A Technique for the
Processing of Recursive Axioms in Deductive Databases. New Generation Computing
4 (3) (1986)

58. Safra, S . , Shapiro, E . : Meta-interpreters for Real . Information Processing 86. North-
Holland (1986) 271-278

59. Sakama, C , Itoh, I L : Partial Evaluation of Queries in Deductive Databases. New Gen­
eration Computing 6 (1988) 249-258

60. Schmidt, H . , Kiessling, W. , Günther, Η., Bayer, R. : Compiling Exploratory and Goal-
Directed Deduction Into Sloopy Delta-Iteration. Proc . Symp. on Logic Programming
(1987)

61. Seki, H . : O n the Power of Alexander Templates. Proc . 8th A C M S I G A C T - S I G M O D -
S I G A R T Symp. on Principles of Database Systems (1989)

62. Sterling, L . S . , Beer, R . D . : Meta-interpreters for Expert System Construction. Tech­
nical Report T R 86-122, Center for Automation and Intelligent System Research, Case
Western Reserve Univ. (1986)

63. Takuchi , Α., Purukawa, K . : Partial Evaluation of Prolog Programs and its Application
to Meta Programming. Information Processing 86. North-Holland (1986) 415-420

64. T s u r , S . : A (Gentle) Introduction to Deductive Databases. Proc. 2nd Int. Logic Pro­
gramming Summer School (1992)

65. Ullman, J . D . : Principles of Database and Knowledge-Base Systems. Vol. 1 and 2.
Computer Science Press. (1988, 1989)

66. Vaghani, J . , Ramamohanarao, K . , Kemp, D. , Somogyi, Z., Stuckey, P.: T h e Aditi De­
ductive Database System. Proc. N A C L P Workshop on Deductive Database Systems
(1990)

67. Vieille, L . : Recursive Query Processing: T h e Power of Logic. Theoretical Computer
Science 69 (1) (1989)

68. Vieille, L . , Bayer, P. , KüchenhofT, Lefebvre, Α.: E K S - V l : A Short Overview. Proc.
A A A I - 9 0 Workshop on Knowledge Base Management Systems (1990)

69. Vieille, L . : A Deductive and Object-Oriented Database System: Why and How? Proc.
A C M S I G M O D Conf. on the Management of Data (1993)

