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Towards Intelligent Databases 

Frangois Bry 

E C R C , Arabellastraße 17, 81925 München 81, Germany 
Francois.Bry@ecrc.de 

A b s t r a c t . T h i s article is a presentation of the objectives and techniques 
of deductive databases. T h e deductive approach to databases aims at ex­
tending with intensional definitions other database paradigms that describe 
applications extensionaUy. We first show how constructive specifications can 
be expressed with deduction rules, and how normative conditions can be de­
fined using integrity constraints. We outline the principles of bottom-up and 
top-down query answering procedures and present the techniques used for 
integrity checking. We then argue that it is often desirable to manage with 
a database system not only database applications, but also specifications of 
system components. We present such meta-level specifications and discuss 
their advantages over conventional approaches. 

1 Introduction 

Deductive Databases have been studied since more than a decade. Theoretical issues 
have been investigated (see e.g. [28, 29, 30, 31 , 65, 21 , 8, 48, 64, 17, 18, 44, 45] for an 
overview), and experimental deductive database management systems have been and 
are s t i l l implemented (e.g. [54, 9, 23, 26, 32, 34, 51 , 56, 66, 33, 68, 40, 52]). Industrial 
products are currently developed from research prototypes (e.g. [69]). This article is 
informal presentation of the notions and objectives of deductive databases. Instead 
of emphasizing technical aspects (that are explained in a number of articles and 
tutorials , e.g. [28, 29, 30, 31 , 65, 21 , 8, 17, 18]), we prefer to insist on the goals of 
the deductive approach to databases. 

A first part of the presentation is devoted to recall how two complementary no­
tions are used in deductive databases for declaratively specifying an application. On 
the one hand, deduction rules are used for constructive definitions. On the other 
hand, normative specifications are expressed through integrity constraints. We i n ­
formally describe how deduction rules are evaluated for answering queries (see e.g. 
[17, 18, 1, 2, 4, 7, 55, 57, 60, 61 , 67, 13]), and how integrity constraints are checked 
when the database is updated (see e.g. [17, 18, 15, 25, 39, 43, 47, 49, 53, 19]). 

I n a second part of the presentation, we argue that i t is often desirable to manage 
w i t h the database system, not only an application, but also specifications of compo­
nents of the database sytem itself, the description of an application, or various kinds 
of interpretations of this application. We informally introduce a few such meta-level 
specifications, that rely on meta-programming [58, 62, 63, 59]. Final ly , we briefly 
mention further applications of meta-level specifications towards enhanced database 
management systems. 

mailto:Francois.Bry@ecrc.de
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2 A n Introduction to Deductive Databases 

A main trend in database research is the enhancement of data modeling facilities. De­
ductive database techniques aim at extending conventional, nondeductive databases, 
in which data are extensionally specified, w i t h intensional definitions in form of de­
duction rules and integrity constraints. 

Database management systems historically developed from file managers, in 
which applications are specified in terms of records and structured according to 
storage and retrieval criteria. T w o data models were proposed at the end of the 
sixties/beginning of the seventies for improving the descriptions of applications: the 
hierarchical and the network data models. Like a file, a hierarchical or network 
database consists of records. However, in contrast to files, records are structured in 
trees and pointers express relationships between records. Both the hierarchical and 
the network data models have a major drawback: The pointers these data model 
rely upon make the design and the querying of databases rather diff icult. Database 
users must be aware of rather complex networks even for posing simple queries. 

The relational data model, defined by Codd [24] at the end of the seventies, over­
comes this difficulty in an elegant manner: no pointers are used and the conceptual 
links between records (called tuples) are expressed through regular data. A relational 
database consists in a set of relations. Relations are set of tuples. The semantical 
relationship between tuples are expressed through the values they contain. Thus, 
for example, the presence of a same character string (say, a name) in a tuple of a 
"salary" relation and in a tuple of an "address" relation links salaries, addresses, 
and employee's names. Because they are value-based, relational databases can be i n ­
terpreted in mathematics as logical theories consisting of formulas or, alternatively 
as logical models consisting of relations. Relational databases can be seen as more 
declarative than hierarchical or network databases since less knowledge of their inter­
nal structure is necessary for querying them. Indeed the knowledge of the relation's 
names, the so-called database schema, and, possibly, of some values occurring in 
tuples, suffices for posing queries. 

2 . 1 D e d u c t i o n R u l e s 

Deductive databases can be seen as an extension of the relational model. In a re­
lational database, the data are specified extensionally. T h a t is, the tuples of a re­
lational database are explicit ly defined. Deductive databases in contrast, also give 
rise to specifying data intensionally by means of general properties, expressed us­
ing deduction rules. Consider for example the time-table of the Lufthansa airline. 
The Lufthansa direct flights from Munich to Paris can be specified by the following 
" f l ight" relation: 

Monday 
Tuesday 

0725 0900 
0725 0900 
0725 0900 
0725 0900 
0725 0900 
0725 0900 

LII4356 
LII4356 
LH4356 
LH4356 
LH4356 
LH4356 

Wednesday 
Tursday 
Friday 
Saturday 
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Monday 
Tuesday 

1110 
1110 
1110 
1110 
1110 

1245 
1245 
1245 
1245 
1245 

LH4384 
LII4384 
LH4384 
LH4384 
LH4384 

Wednesday 
Thursday 
Friday 

The first attr ibute (column) of this relation indicates the day of the flight, the second 
and t h i r d are the departure and arrival times, respectively, and the last attribute 
is the flight number. These eleven flights could be specified by the following two 
deduction rules that somehow "factorize" the data common to several tuples: 

f l ight (D, 0725, 0900, lh4356) < - d a y ( D ) , not D = Sunday. 
f light (D, 1110, 1245, 1H4384) < - d a y ( D ) , not D = Saturday, not D = Sunday. 

As usual, character strings beginning w i t h an upper case letter (e.g. D) are used for 
denoting (logical) variables. The membership of a tuple (called "fact" in deductive 
databases) " t " in a relation " r " is expressed by the term " r ( t ) " . We assume that 
"day" denotes the relation containing the seven days of the week (monday, tuesday, 
etc.). Lower case letters are used for distinguishing these constant values from vari­
ables. The expression "day(D)" can be thus evaluated to the facts "day(monday)" , 
"day(tuesday)", etc. The meaning of the first rule is that the facts "fiight(monday, 
0725,0900, lh4356)", "ilight(tuesday, 0725, 0900, l h 4 3 5 6 ) " , " f l i g h t ( s a t u r d a y , 0725, 
0900, lh4356)" are derivable, i.e. are true facts in the database. I n more technical 
terms,the variable D is ( impl ic i t ly ) universally quantified. The first deduction rule 
is thus a shorthand notation for the following formula: 

V D [ (day(D) AO φ Sunday) => flight(D, 0725, 0900, lh4356) ] 

This simple example illustrates two important advantages of deductive databases 
compared w i t h relational ones: (1) they require less storage, and (2) they give rise to 
more natural specifications. The possible size reduction is sometimes dramatic : An 
analysis of the time table of the Munich public transportation shows for example a 
reduction factor of about 200! Database applications whose data cannot be speci­
fied according to general principles do not benefit as much of deductive techniques. 
Most databases nevertheless contain some data that were implied from general laws 
(e.g. business rules, legislation, scientific laws, etc.) and therefore can benefit from 
deductive database techniques. 

One could object that no deductive techniques are needed for achieving the fac­
torization described above. This is true. There are indeed, for this example, two 
alternative ways to avoid the undesirable duplication of data using relational data 
structures. The first approach consists in sp l i t t ing the original relation in two dis­
t inct relations, the first one giving the day and the flight number (which obviously 
is a key), the second relation giving the times and the flight numbers. A j o i n then 
permits ones to reconstruct the original relation at query t ime. The second approach 
consists in using codes like in the following table for expressing on which days a flight 
is available. 

Xe7 0725 0900 LH4356 
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Xe67 1110 1245 LII4384 

I n this relation, X stands for every day of the week, 6 for Saturdays, 7 for Sundays, 
Xe7 for every day except on Sundays, and Xe67 for every week days. 1 

We argue that both approaches have severe drawbacks. The first approach (the 
split o f the original relation in two distinct smaller relation) examplifies an often 
criticized (although necessary) practice in relational database design: For reasons of 
storage (size) and coherency of the data (when updates are performed), the natural 
description of an application usually needs to be modified. The two rules given above 
as opposed achieve the same eiTect without compromising the natural character of 
the specifications. The second approach (the encoding of the days in the tuples) is 
very close to a specification by means of deduction rules. The difference however is 
that the encoding is a notation "unknown" to the database management system, 
while deduction rules are "understood" by a deductive database system for what 
they are. Such an encoding is specific to a given application and must be interpreted 
in the application programs, that is outside the database system. Deduction rules in 
contrast give rise to interpreting intensional knowledge within the database system. 

Deduction rules can also be used in lieu of relational views. Views are in relational 
databases means for expressing predefined queries. One could for example define 
connecting flights using a view: Λ connecting flight form A to Β is defined from a 
flight from A to C and a flight from C to Β such that some conditions on the departure 
and arrival times in C, and on the location of the airport C arc satisfied. A recursive 
definition give rise to specifying connections involving an indefinite number of flights. 
Such a definition is quite naturally expressed by the following deduction rule: 

connection(D, Τ Ι , T 2 , [Nb]) < - flight(D, Τ Ι , T 2 , Nb ) . 
connection(D, T l , T 2 , [Nb | L]) f - f l ight (D, T l , T 3 , N b ) , 

connection(D, T 3 , T 2 , L ) , 
compatible(Nb, L ) . 

The first rule specifies a connection consisting of one single flight. The list of flight 
involved in this connection ([Nb]) thus contains only one flight number. The second 
rule " l inks" a flight to a connection and extends its list of flight numbers. The pred­
icate "compatible" is assumed to express whether times and airports are compatible 
in a connection. I t might be specified intensionally by means of deduction rules, 
or extensionally by a relation. Recursive specification are important in practice for 
specifying several natural properties that apply on an indefinite number of object. 
Another example is the definition of a " b i l l of mater ia l " : the price of a complex 
object is obtained by summing up the prices of its parts, whose prices are in turn 
s imilarly defined. Like for flight connections, i t is desirable to have a specification at 
our disposal which is not l imited to a given number of components (e.g. flights or 
parts) . I t has often been observed that recursive specifications are hardly avoidable 
in real life applications. 

Deduction rules thus are very similar to relational views. Since the first relational 
database systems were not capable of handling recursive views, deduction rules are 

1 This representation is taken from the time table booklet published by Lufthansa. 
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often seen as the extension of relational views to recursion. I n our opinion, deduc­
tion rules are more than extended views. Views are not handled like regular data, 
i.e. tuples and relations, in a relational database management systems, while deduc­
tion rules should be seen as first class citizen in a deductive database system. This 
means that al l the facilities that are provided by the system for storing, retrieving, 
updating, and querying extensional specifications (i.e. facts) should also be appl i ­
cable to intensionally defined data (i.e. data defined by deduction rules) and to the 
intensional specifications themselves. The full realization of this objective is s t i l l the 
subject of active research. 

2.2 R e m a r k s o n t h e L a n g u a g e o f D e d u c t i o n R u l e s 

The deduction rules specifying connecting flights (cf. previous section) contain com­
plex, nested terms, namely lists. I t is often believed that nested terms and term 
constructors should be prohibited in deductive databases. We think that nested 
terms are needed (as in the above example). Moreover, the known techniques are 
(almost) sufficient to acommodate them like flat, so-called first-normal form facts. 
I t is probably the concept of Datalog, i.e. the language of rules w i t h flat terms and 
no negation, which has widespread the idea that deductive databases should only 
specify first-normal form tuples. 

In deductive databases, the same form of negation is needed as in relational 
databases. This negation has been formalized in various manner and under differ­
ent names (negation as failure, non-monotonic negation, negation according to the 
closed-world assumption, etc.). Common to these formalizations is the basic notion 
that an expression can be considered as false i f i t cannot be proved. This interpreta­
tion of negation is a rather intuit ive form of reasoning. This is this way of th ink ing 
that leads us to conclude, for example, that there are no direct flights from Munich 
to Trondheim i f we do not find any in the t ime table. Although there is a general 
agreement on the semantics of this form of negation for relational databases, i t is 
not always clear how to formalize i t in deductive databases. Rules like the fol lowing 
ones are difficult to interpret, indeed: 

a <— not b. 
b «— not a. 

"a" should be derivable only i f "b" is not derivable, and "b" should be nonderivablc 
only "a" is also nonderivable. Various more or less complex, more or less intu i t ive 
proposals have been made for giving convincing interpretations to such examples 
(and to more sophisticated ones) as well as for defining query answering procedures 
according to (some of) these interpretations. The problem is not yet completely 
solved and is s t i l l investigated. There is however a general agreement on the semantics 
of negation in so-called stratified deductive databases (or logic programs). The basic 
idea of stratification is to part i t ion hierarchically the definitions of predicates, such 
that no predicate definitions refers to the negation of a predicate defined in a higher 
strata. Since one might have to deal wi th incompletely, or even incorrectly specified 
databases - for example for debugging at design t ime - , i t is desirable to have a 
semantics (and the corresponding answering procedures) at our disposal which docs 
not impose any syntactical restrictions such as stratif ication. 
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There is however a syntactical restriction which is desirable, that of range restric­
tion. Range restriction basically requires that any variable occurring in a negated 
expression in a query or in the body (i.e. the right hand side) of a rule also occurs 
in a unnegated, positive expression. Thus, "p (X ) , not q ( X ) " is range-restricted, but 
" p ( X ) , not q (X , Y ) " is not because the variable Y has no (positive) range. Since, due 
to the interpretation of negation, negative expressions are absent from the database, 
range restriction is needed for ensuring that the variables occurring in a query or in 
a rule body can be assigned values from subexpressions occurring in this query or 
rule. 

2.3 I n t e g r i t y C o n s t r a i n t s 

Deduction rules give rise to generating new facts from a database, i.e. deduction 
rules express constructive specifications. In contrast to deduction rules, integrity 
constraints are used for expressing non-constructive, normative specifications. Such 
specifications are needed for ensuring that some properties remain satisfied when 
data are updated. The following integrity constraint for example states that no 
flights are allowed to land after 23:00: 

V D T l T 2 Nb [ flight(D, T l , T 2 , Nb) T 2 > 2300 ] 

Any attempt to specify a flight landing after 23:00 would lead to a violation of this 
integrity constraint. This violation would be reported to the database user who could 
then either modify the update, or, i f i t appears to be no more val id, the integrity 
constraint instead. A n integrity constraint can thus be viewed as a yes/no query 
which is evaluated when the database is updated. Integrity constraints are needed 
not only for specifying negative properties, as in the previous example, but also for 
stating disjunctive or existential conditions, like in the following examples stating 
that at least one of two flights must be recorded (i.e. specified) in the database, and 
that there exists at least one day on which there is a flight, respectively: 

flight(saturday, 0700, 0745, lh0345) V flight(saturday, 0735, 0810, lh0346) 
3 D [ day(D) Λ flight(D, 0700, 0745, lh0345) ] 

Although marketed database management systems can only maintain very l imited 
types of integrity constraints ( i f at a l l ! ) , normative specifications arc important in all 
kinds o f database applications. Integrity constraints are expressed and maintained 
through application programs in current databases, that is outside the scope of the 
database system. This is undesirable because this makes the specification and the 
maintenance of integrity constraints a (generally complex) programming task. In 
deductive databases, this is part of the database design, for which tools should be 
available [16]. Integrity constraints are not declaratively specified but are expressed 
by means of imperative programs. Moreover these programs usually combine the 
specifications of the normative conditions and their efficient evaluation. In deductive 
databases in contrast, one only has to specify integrity constraints. Their efficient 
evaluation is left to the database management system (cf. Section 4 below). This is 
not only more convenient for the database designer. This also ensures that integrity 
constraints are efficiently checked. This is hardly the case when application programs 
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are modified for acommodating the modifications of integrity constraints that are 
unavoidable in any real life applications. 

Range restriction is needed for integrity constraints like for deduction rules. A 
universal quantification V X F[X] is range restricted i f the expression F[X] is of the 
form R[X] => G[X] and i f X appears positively in R (cf. [10] for a precise definition). 
Thus V X [ p (X ) => q(X) ] is range restricted, while V X [ ( - 1 p (X) ) => q (X) ] is not. 
A n existential constraint 3 X F[X] is range restricted i f F[X] is of the form R[X] Λ 
G[X] and i f X appears positively in R[X] [10]. Range restriction ensures that only 
updates affecting expressions occurring in a constraint (directly or indirectly through 
deduction rules) might violate this constraint. This is an essential condition for an 
efficient integrity checking (cf. Section 4). I t is worth noting that range restriction 
is a very natural requirement: in natural languages, i t is almost impossible to ex­
press properties that are not range restricted. Moreover, formulas that are not range 
restricted have "semantically equivalent" counterparts that are range restricted. 

2.4 C o n s t r a i n t s as R u l e s 

Deduction rules can be used for expressing integrity constraints in two different 
ways. The first one consists in expressing quantifiers by means of rules, the sec­
ond approach, in rewrit ing the integrity constraint as special rules. The following 
deduction rule express a range-restricted universal quantification: 

foral l (X, R = > F) < - not (R, not F ) . 

Consider for example the following universal formula: V X p(X) => q ( X ) . I t would be 
expressed as " foral l (X, p (X) = > q ( X ) ) " using the formalism defined by the above 
given rule. This expression evaluates to true i f and only i f i t is impossible to satisfy 
the conjunctive query "p(X)> not q ( X ) " , i.e. to find a value X in the relation " p " 
which is not also in the relation " q " . The deduction rule given above thus specifies 
a constructive evaluation of range restricted universally quantified expressions [12]. 
Existential quantifications are even easier to express in the formalism of deduction 
rule: 

exists(X, F) < - F. 

Instead of relying on the above given rules for quantifiers, one can also directly 
rewrite the integrity constraints as rules. A n integrity constraint C is expressed as 
a rule, called denial^ corresponding to "false <— not C". The examples of integrity 
constraints given above lead thus to the following denials: 

false < - flight(D, Τ Ι , T 2 , Nb ) , T 2 > 2200. 
false <- not flight(saturday, 0700, 0745, lh0345), 

not flight(saturday, 0735, 0810, lh0346). 
false < - not (day(D), i l i g h t ( D , 0700, 0745, lh0345)) 

The two approaches are in fact the two sides of a same coin. The second rep­
resentation is obtained from the first by part ial evaluation (or part ial deduction) 
[42, 35, 36, 37, 41] of the rules specifying quantifiers in the integrity constraints. 



123 

3 Query Answering 

Queries are usually answered against the constructive specifications contained in 
the database, i.e. against the facts and deduction rules. Standard query answering 
methods do not make use of integrity constraints. Two complementary techniques 
can be applied in standard query answering: bottom-up (or forward) or top-down (or 
backward) reasoning. Bot tom-up reasoning procedures basically consist in repeating 
the following as long as new facts are obtained: the bodies of al l rules are evaluated 
against the explicit ly stored facts, and the corresponding facts specified by the heads 
(i.e. the left hand side) of the rules are added to the database ( in a special area). 
Consider for example the following database which can be interpreted as follows. 
" f ( X , Y ) " means that " X " is the father of " Y " ; the odd (even, resp.) numbers are in 
a father-child relationship, and this relationship has circles on letters ("a" and "b" 
as well as "c" and " d " are "fathers" of each other); "g(X, Y ) " means that "X" and 
" Y " belong to the same generation. 

g (X, Y ) < - f ( F X , X ) , g (FX, F Y ) , f (FY , Y ) . f ( l , 3) f (2 , 4) f(a, b) 
g ( l , 2 ) f ( 3 ,5 ) f ( 4 , 6 ) f ( b , a ) 
g(a, c) f ( 6 , 8 ) f(c, d) 

f (d , c) 

The facts " g ( l , 2 ) " and "g(a, c)" give rise to deriving "g(3, 4 ) " , «g(b, d ) " , and 
"g(5, 6 ) " using the deduction rule. Dottom-up reasoning on this database leads to 
generating these facts in stages: 

Stage I : g(3, 4) g(b, d) 
Stage 2: g(3, 4) g(b, d) 

g(5, 6) g(a. c) 
Stage 3: g(3 ,4) g(b, d) 

g(5, 6) g(a. c) 
g(b, d) 

The next round derives the same facts are those proven at stage 3. For restricting 
the repeated derivation of already proven facts, one can require that at least one of 
the facts produced at the previous stage is used in a proof. This refined procedure is 
called in the database community, the semi-naive method, while the straightforward, 
redundant method is called naive. The naive and semi-naive methods terminate as 
soon as no new facts are derived. I t is not possible to completely avoid a repeated 
generation of some facts, for a same fact can have several distinct proofs. Using 
bot tom-up reasoning for answering a query basically consists in generating all deriv­
able facts f rom the database, and then in evaluating the query against the resulting, 
extended set of facts. There are methods for restricting to some extent and in some 
cases this " b l i n d " generation. However, i t is an inherent feature of bottom-up reason­
ing not to make use of the posed query in t ry ing to answer i t : bot tom-up reasoning is 
not "goal directed". I t is worth emphasizing that the naive and semi-naive methods 
compute sets at each stages and that set-oriented techniques from relational system 
can be applied for computing these sets. An efficient processing of quantifiers, nega­
t i o n , and disjunctions that are frequent in integrity constraints and deduction rules 
requires to refine over the tradit ional techniques of relational algebra [10]. 
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Top-down reasoning procedures overcome this drawback by reasoning backward 
from the posed query. Consider once again the father-generation database given 
above and the query "g(3, X ) " asking for all Xs that are in the same generation 
as 3. The only solution is 4, since 1 and 2 are fathers of 3 and 4, respectively and 
belong themselves to a same generation. Reasoning backwards from the query "g(3, 
X ) " consists in selecting a rule whose head unifies w i t h the query. In our case, 
there is only one candidate rule. The unification of its head w i t h the query binds 
the variables in its body resulting in the following conjunctive subquery: f ( F X , 3), 
g (FX, F Y ) , f ( F Y , Y ) . The first conjunct " f (FX , 3)" has one single solution which 
binds the variable F X to 1. The next conjunct (or subquery ) to evaluate is " g ( l , 
F Y ) " . I t can be answered either against the facts, or using once again the deduction 
rule in which case the same process is repeated. 

Top-down reasoning can be formalized in terms of bottom-up reasoning by relying 
on the formalism of deduction rules as follows [13]: 

fact(X) * - query(X) , rule(X « - Y ) , answer(Y). 
query(Y) <- query(X) , rule(X « - Y ) . 
query (Y l ) < - q u e r y ( ( Y l , Y2 ) ) . 
query(Y2) f - q u e r y ( ( Y l , Y2 ) , answer(Yl) . 
answer(X) <— query(X) , fact (X) . 
answer( (Yl , Y2)) < - q u e r y ( ( Y l , Y2 ) ) , answer(Yl ) , answer(Yl ) . 

Assume that these rules are evaluated bottom-up and that the predicate "fact" 
( "rule" , respectively) range over the facts (deduction rules, resp.) stored in the 
database. The first rule select a deduction rule the head of which unifies w i t h a 
query, and, i f an "answer" (a predicate defined by other rules) is found, generates 
a fact. I n the formalism of deduction rules used here, unification docs not have to 
be redefined: i t is already provided by this formalism. The second rule generates a 
(generally conjunctive) query by unifying a query wi th the head of a rule. The t h i r d 
and fourth rules split conjunctive queries; the last two rules derive conjunctive an­
swers by conjuncting already generated answers. The query "g(3, X ) " is answered as 
follows by processing the deduction rules given above wi th the semi-naive method: 

Stage 1: query( ( f (ZX, 3), g(ZX, ZY) , f (ZY, Y ) ) ) 
Stage 2: query( f (ZX, 3) ) 

Stage 6: answer( g(3, 1) ) query( ( f (ZX, 1), g(ZX, Z Y ) , f (ZY, Y ) ) ) 
Stage 7: query( ( g ( l , ZY ) , f (ZY, Y ) ) ) 

Stage 11: answer( g(3, 4) ) 

The above mentioned, rule-based specification of top-down reasoning is interest­
ing for several reasons. Firstly, since i t is expressed in terms of bottom-up reasoning, 
i t is easily amenable to set-oriented computations. This is important for the sake 
of efficiency in databases. Secondly, the above specified top-down procedure is com­
plete, more precisely exhaustive: I f there are finitely many answers, i t computes a l l 
of them and terminates; i f there are infinitely many answers ( in presence of function 
symbols), each single answer in computed in finite t ime. The top-down reasoning 
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procedure generally used in logic programming, SLD resolution, in contrast might 
loop in presence of recursive deduction rules. Termination (or exhaustivity) is i m ­
portant in databases, for database users as opposed to programmers cannot be made 
responsible of termination of the queries they pose to a database. Finally , the speci­
fication given above provides w i t h a simple formalization of the Alexander or Magic 
Set rewrit ing methods [ 1 , 2, 57, 7, 55, 4, 21 , 8]: these rewritings are obtainable from 
the rule-based specification given above by partial evaluation (or part ial deduction) 
[42, 35, 36, 37, 41]. These points are discussed in more detail i n [13]. [61] also shows, 
f rom a different angle, that the Alexander and Magic rewritings in fact implement 
top-down reasoning by means of deduction rules that are evaluated bottom-up. 

We would like to conclude this section on deductive database query answering 
methods w i t h some remarks. Firstly, although "goal directedness" in general is i m ­
portant for efficiency, there are cases where the overhead resulting from generating 
and managingsubgoals does not pay off. In theses cases, that s t i l l remain to be fully 
characterized, a bottom-up reasoning w i t h the semi-naive method is more efficient 
than a top-down procedure like the above specified one or Magic Set. Secondly, i t is 
in some cases preferable to compute all derivable facts beforehand instead of gener­
at ing the needed one for each query at query time. In these cases as well, bottom-up 
reasoning w i t h the semi-naYve method is preferable. Final ly , there has been proposals 
to use integrity constraints either for speeding up or for enhancing query answering 
(cf. e.g. [22, 46, 50, 14]). These approaches are very promising. They often give rise 
to more informative answers than conventional query answering methods. 

4 Integrity Checking 

Integrity constraints can be seen as yes/no queries (cf. Section 2.3). They can there­
fore be evaluated like regular queries. This is however often inefficient. Integrity 
constraints indeed are to be checked only after updates, and updates usually do not 
affect the whole of a database but only a l imited part of i t . For the sake of efficiency, 
i t is desirable to check only those integrity constraints that might be affected by an 
update. Various integrity checking methods have been proposed that all rely on s im­
ilar principles. Let us illustrates the techniques common to these so-called "integrity 
checking" methods on an example. Consider an integrity constraint requiring that 
all employees working for the sales department speak English: 

V X [ ( empl (X) Λ works-for(X, sales-dept) ) => speaks(X, english) ] 

Any update to the facts and deduction rules that have no efTect on the predicates 
occurring in this constraint cannot violate i t . I t is worth not ing that this only holds 
i f integrity constraints are range restricted. The insertion of any fact, say "p(a)" 
might violate a non range restricted constraint such as C: V X q ( X ) . I f "a" d id not 
occur in the database before the insertion of "p (a) " , C indeed does not hold after the 
change. Whether an update might affect the definition of a relation can be specified 
using deduction rules as follows: 

potential-update(H, Sign) <— rule(H f - B ) , potential-update(B, Sign). 
potential -update( (Cl , C2), Sign) <— potent ia l -update(Cl , Sign). 
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potential -update( (Cl , C2), Sign) <- potential-update(C2, Sign). 
potential-update(not F, Opp-Sign) <— potential-update(F, Sign), 

opposite(Sign, Opp-Sign). 
potential-update(F, - f ) <— insert(F). 
potential-update(F, - ) <— remove(F). 

Let us comment this specification starting from the last two rules. The insertion (re­
moval, resp.) of a fact F induces a "potential-update" on F w i t h positive (negative, 
resp.) polarity. Negation changes the polarity of a potential update: For example, 
i f "p(a)" is a potential removal, the negative information "not p(a)" is potentially 
inserted. The second and th i rd rules specify that potential updates of conjuncts i n ­
duce potential updates of conjunctions w i t h same polarity. The first rule propagate 
potential insertions through deduction rules. Thus, i f "p(a)" is inserted, the con­
junct ion " (pa) , q(a))" is a potential insertion. In presence of a rule " r (X ) <— p ( X ) , 
q (X ) . " " r (a ) M is in t u r n a potential insertion. 

A l l integrity checking method rely on analyses of possible (or actual) conse­
quences of updates similar to the computation of potential updates which is specified 
above by means of deduction rules. This is quite intuit ive when integrity constraints 
are expressed as denials. Integrity checking then indeed reduces to verifying whether 
"false" w i l l become derivable after an update. Denials that cannot give rise to prov­
ing "false" can be filtered out by rules like the above mentioned ones, for "false" is 
derivable after an update only i f "potential-update(false, - f ) " holds. 

The analyses performed by the various integrity checking methods in some cases 
consider, in other cases ignore the values of the attributes. They sometimes perform 
bottom-up, sometimes top-down reasoning on the deduction rules, or on rules used 
for specifying the integrity constraints (cf. e.g. [43, 25, 39, 15, 17, 18] and [19] for 
an overview). Some methods, e.g. [53, 25, 15], simplify the integrity constraints w i t h 
respect to updates. Such simplifications can be formalized as a part ial evaluation (or 
part ia l deduction) [42, 35, 36, 37, 41] of deduction rules similar to those specified 
above. 

In the rule-based specification of potential updates which is given above, we 
assume that the updates are specified as sets specified by the relations "insert" and 
"remove". I t is worth noting that these relations can be defined in tension ally by 
deduction rules as well as cxtensionally by means of facts. One could for example 
specify an update by the following rule: 

insert( speaks(X, english) ) nat ional i ty (X, br i t ish) . 

This rule is rather similar to the deduction rule "speaks(X, english) <— nat ional i ty (X , 
b r i t i sh ) " . The difference is that i t forces the explicit storage of facts in the database, 
while the deduction rule for "speaks" does not. Integrity constraints can as well be 
defined on the predicates "insert" and "remove". The following integrity constraint 
for example forbids to fire of employees who work for the sales department: 

V X [ works-for(X, sales-dept) => -» remove( emp(X) ) ] 
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5 Deduction Rules for Specifying System Components 

I n the previous sections, we have outlined how query answering and integrity check­
ing procedures can be specified by means of deduction rules. The technique,which 
was used is known as meta-programming, for the variables in these deduction rules 
do not range, as in ordinary rules, over application data but instead over expres­
sions (i.e. integrity constraints or rules) that describe the application data. We have 
pointed out that rewrit ing methods used for answering queries and evaluating i n ­
tegrity constraints can be seen as resulting from the part ia l evaluation (or part ial 
deduction) of rule-based specifications. I n this section, we first argue that i t is bene­
ficial to specify and implement some components of a database management system 
in this way. Then, we suggest further applications of this approach. 

A first advantage of specifying components of a database management system us­
ing deduction rules and partial evaluation is the uni formity of the approach. Instead 
of implementing several rewrit ing methods for, say, recursive query processing (e.g. 
[ 1 , 57, 2, 7, 4]) , for simplifying integrity constraints (e.g. [43, 25, 15]), for query o p t i ­
mization (e.g. [46, 22, 10, 11]), etc. one could generate them automatically from the 
rule-based specifications using techniques as proposed i n [58, 62, 42, 27, 35, 36, 37]. 

System components declaratively specified using deduction rules would probably 
be easier to prove correct and to maintain than conventional programs. Moreover, the 
very maintenance and updating tools provided by the database management system 
(e.g. integrity checking) could be applied to maintaining those system components 
that are specified in terms of deduction rules. 

Specifying system components using deduction rules would in addition contribute 
to enhance the extensibility of the system. I t is indeed easier to extend a set of 
deduction rules w i t h additional rules for novel functionalities (e.g. additional query 
opt imizat ion strategies) than to extend a conventional program. 

To which extent this approach is applicable in designing database management 
system is not yet known. The approach we suggest has however already been ap­
plied, more or less consciously, in many system prototypes that have been developed 
during the last years, e.g. [41, 68]. From discussions we had w i t h designers of var­
ious database system prototypes (e.g. [54, 3, 23, 26, 33, 34, 40, 66, 68, 20, 69]) 
we gained the impression that meta-programming techniques are rather widely ap­
plied, although often quite unconsciously, in implementing database systems. The 
systematic investigation of this techniques for database system design is, we th ink , 
a promising direction of research. 

Deduction rules can also be used for specifying data models and query languages. 
This is a widespread practice in logic programming to specify an interface model 
or language by means of rules. This can be done in deductive databases as well 
either for specifying a semantic data model (e.g. a entity-relationship model), or 
for specifying a query language (e.g. a SQL-like language). Rules can also be used 
for mapping complex objects on lower level data structures. Deductive databases 
are often criticized for being, like relational databases, value-based, and for not 
providing w i t h object identities. Identities are "logical pointers" that give rise to 
naming objects [5, 6]. Extending the paradigm of logic programming and deductive 
facilities w i t h identities is a promising issue. We th ink , this is the key issue to solve for 
bringing closer together both paradigms of deductive and object-oriented databases. 
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Deduction rules can finally also be used for interpreting the data stored in a 
database in various manners. Rules can be specified for various forms of reasoning 
that can be needed for some applications (e.g. hypothetical or probabilistic queries). 
Non-standard query answering methods (e.g. [62, 22, 46, 14]) often have been spec­
ified using met a-programming techniques. 

6 Conclusion 

This article has introduced and discussed the goals and techniques of deductive 
databases. We outlined how deductive databases give rise to declaratively specifying 
both , constructive and normative aspects of an application, using deduction rules 
and integrity constraints, respectively. 

We informally presented bottom-up and top-down, set-oriented query answering 
methods, and we introduced to the principles upon which integrity checking methods 
are based. We have shown that deduction rules are not only useful for specifying 
database applications, but can also serve to specify and implement components of a 
database management system. 

We finally argued that this approach is of interest for several reasons: I t gives 
rise to a more uniform system design, system components implemented this way are 
easier to mainta in ; system extensibility is made easier. 

Finally, we suggested further applications of this approach towards enhanced 
database systems. 
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