OFFICIAL ORGAN OF THE RADIATION RESEARCH SOCIETY

RADIATION
RESEARCH

EDITOR-IN-CHIEF: DANIEL BILLEN

Volume 86, 1981

ACADEMIC PRESS
New York London Toronto Sydnev San Francisco

ErT
oo A IR R



Copyright © 1981 by Academic Press, Inc.

All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and
retrieval system, without permission in writing from the copyright owner.

The appearance of the code at the bottom of the first page of an article in this journal
indicates the copyright owner’s consent that copies of the article may be made for personal
or internal use, or for the personal or internal use of specific clients. This consent is given
on the condition, however, that the copier pay the stated per copy fee through the Copyright
Clearance Center, Inc. (21 Congress Street, Salem, Massachusetts 01970), for copying
beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does
not extend to other kinds of copying, such as copying for general distribution, for advertising
or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-
1981 articles are the same as those shown for current articles.

MADE IN THE UNITED STATES OF AMERICA



RADIATION RESEARCH

OFFICIAL ORGAN OF THE RADIATION RESEARCH SOCIETY

Editor-in-Chief: DANIEL BILLEN, University of Tennessee—Oak Ridge Graduate School of
Biomedical Sciences, Biology Division, Oak Ridge National Laboratory, P.O. Box Y,
Oak Ridge, Tennessee 37830

Managing Technical Editor: MARTHA EDINGTON, University of Tennessee—Oak Ridge Graduate
School of Biomedical Sciences, Biology Division, Oak Ridge National Laboratory, P.O. Box Y,
Oak Ridge, Tennessee 37830

ASSOCIATE EDITORS

H. 1. ADLER, Oak Ridge National Laboratory
J. W. BAUM, Brookhaven National Laboratory
S. S. BOGGS, University of Pittsburgh

J. M. BROWN, Stanford University

S. S. DONALDSON, Stanford University

J. D. EARLE, Mayo Clinic

J. J. FISCHER, Yale University

E. W. GERNER, University of Arizona

E. L. GILLETTE, Colorado State University
R. H. HUEBNER, Argonne National Laboratory

J. W. HUNT, Ontario Cancer Institute, Toronto,
Canada

S. LIPSKY, University of Minnesota
S. OKADA, University of Tokyo, Japan

N. L. OLEINICK, Case Western Reserve
University

A. M. RAUTH, Ontario Cancer Institute,
Toronto, Canada

M. C. SAUER, JR., Argonne National
Laboratory

S. P. STEARNER, Argonne National Laboratory

R.C. THOMPSON, Battelle, Pacific Northwest
Laboratories

J. E. TURNER, Oak Ridge National Laboratory
S. S. WALLACE. New York Medical College

OFFICERS OF THE SOCIETY

President: ODDVAR F. NYGAARD, National Cancer Institute, National Institutes of Health,
Bethesda, Maryland 20205
Vice President and President-Elect: MORTIMER M. ELKIND, Division of Biological and
Medical Research, Argonne National Laboratory, Argonne, Illinois 60439
Secretarv-Treasurer: ROBERT B. PAINTER, Laboratory of Radiobiology,
University of California, San Francisco, California 94143
Secretary-Treasurer-Elect: EDWARD R. EPP, Department of Radiation Medicine,
Massachusetts General Hospital, Boston, Massachusetts 02114
Editor-in-Chief: DANIEL BILLEN, University of Tennessee—QOak Ridge Graduate School
of Biomedical Sciences, Biology Division, Oak Ridge National Laboratory,
P.O. Box Y, Oak Ridge, Tennessee 37830
Executive Director: RICHARD J. BURK, JR., 4720 Montgomery Lane,
Suite 506, Bethesda, Maryland 20014

ANNUAL MEETINGS

1981: May 31-June 4, Minneapolis, Minnesota
1982: April 18-22, Salt Lake City, Utah

Titus C. Evans, Editor-in-Chief Volumes 1-50
Oddvar F. Nygaard, Editor-in-Chief Volumes 51-79

VOLUME 86, 1981




Councilors Radiation Research Society 1980-1981

PHysIcs
M. Inokuti, Argonne National Laboratory
H. J. Burki, University of California, Berkeley

BioLoGy
J. S. Rasey, University of Washington
A. M. Rauth, Ontario Cancer Institute, Toronto, Canada

MEDICINE
H. D. Suit, Massachusetts General Hospital
J. A. Belli, Harvard Medical School

CHEMISTRY
J. F. Ward, University of California, San Diego
M. Z. Hoffman, Boston University

AT-LARGE
L. A. Dethlefsen, University of Utah
R. M. Sutherland, University of Rochester



CONTENTS OF VOLUME 86

NUMBER 1, APRIL 1981

W. G. BurNns, R. May, aND K. F. BaVERsTOCK. Oxygen as a Product of Water Radiolysis in

High-LET Tracks. 1. The Origin of the Hydroperoxyl Radical in Water Radiolysis ....... 1
K. F. BAVERSTOCK AND W. G. BURNs. Oxygen as a Product of Water Radiolysis in High-LET
Tracks. I1. Radiobiological Implications ........ ... ... ... . . i ... 20
B. H. EricksoN. Survival and Renewal of Murine Stem Spermatogonia following “Co 7y
RaAiation ... e 34
G. P. RaarHORsT aND E. 1. AzzaM. Fixation of Potentially Lethal Radiation Damage in Chinese
Hamster Cells by Anisotonic Solutions. Polyamines, and DMSO ....................... 52
P. M. Nana. Differential Mutagenic Response of G1 Phase Variants of Balb/c-3T3 Cells to uv
Trradiation ... ..o e 67
GeORG ILiakis. Characterization and Properties of Repair of Potentially Lethal Damage as
Measured with the Help of B-Arabinofuranosyladenine in Plateau-Phase EAT Cells ...... 77
SIDNEY MITTLER. Effect of Hyperthermia upon Radiation-Induced Chromosome Loss in
Mutagen-Sensitive Drosophila melanogaster ... o i 91

RyszarD OLINSKI, ROBERT C. BRIGGS, LUBOMIR S. HNiLICA, JANET STEIN, AND GARY STEIN.
Gamma-Radiation-Induced Crosslinking of Cell-Specific Chromosomal Nonhistone Protein-

DNA Complexes in HelLa Chromatin .......... ...ttt 102
GLENN N. TayLoRr, CRAIG W. JONES, PAUL A. GARDNER, RAY D. LLoYD, CHARLES W. MaYs,

AND KEeITH E. CHARRIER. Two New Rodent Models for Actinide Toxicity Studies ...... 115
WirGILIUSZ Dupa. Effect of y Irradiation on the « and B-Chains of Bovine Hemoglobin and

GlObiN . o oo e 123
BrRUCE E. MaGuN anND CHRISTOPHER W. FENNIE. Effects of Hyperthermia on Binding,

Internalization. and Degradation of Epidermal Growth Factor ......................... 133
YU-AUNG YAU, SHU-CHEN HUANG, PIN-CHIEH Hsu, AND PA0-SHAN WENG. Gonadal Dose

Obtained from Treatment of Nasal Carcinoma by lonizing Radiation ................... 147
YOsHIHIKO YOsHII, YUTAKA Maki, HirRosHI TSUNEMOTO, SACHIKO KOIKE, AND TsuTtoMu

KasuGa. The Effect of Acute Total-Head X Irradiation on C;H/He Mice ............... 152
CORRESPONDENCE

J. L. ANTOINE, G. B. GERBER, A. LEONARD, F. RICHARD, AND A. WAMBERSIE. Chromo-
some Aberrations Induced in Patients Treated with Telecobalt Therapy for Mammary

CAPCINOMA oottt e et e e e e e e e e e e e e e e 171
BOOK REVIEW Lo e e e e 178
ACKNOWLEDGMENTS L o ittt ittt ettt e e e e e e e e e e e et e e e e 180
ANNOUNCEMENT o1ttt ittt et ettt et et et e e e e e e e e e e e e e e e 183

NUMBER 2, May 1981

SYMPOSIUM ON RaDICAL PROCESSES IN RADIOBIOLOGY AND CARCINOGENESIS
JoHN F. WaRrD. Some Biochemical Consequences of the Spatial Distribution of lonizing

Radiation-Produced Free Radicals ............ . ... i 185
C. L. GREENSTOCK. Redox Processes in Radiation Biology and Cancer ................. 196
JoH~N E. BiacLow. Cellular Electron Transfer and Radical Mechanisms for Drug
MetabolisSm ..o e 212
ROBERT A. FLOYD. Free-Radical Events in Chemical and Biochemical Reactions Involving
Carcinogenic Arylamines ......... .. ...ttt 243
A. M. KeLLERER. Proximity Functions for General Right Cylinders ........................ 264

A. M. KELLERER. Criteria for the Equivalence of Spherical and Cylindrical Proportional
Counters in MiCTOAOSIMEITY ... ...ttt e 277



JooN Y. LEE AND WiLLiAM A. BERNHARD. An ESR Study of Hydrogen-Bombarded
9-Methyladenine . ... ... o e
KEISUKE MAKINO, NOBUHIRO Suzuki, FuMio MoORIYA, Soujl ROKUSHIKA, AND HIROYUKI
HaTaNoO. A Fundamental Study of Aqueous Solutions of 2-Methyl-2-nitrosopropane as a
SDIN TP vttt ettt et e
D. W. WHiLLANS AND G. F. WHITMORE. The Radiation Reduction of Misonidazole .........
C. CLIFTON LING, HOWARD B. MICHAELS, LEO E. GERWECK, EDWARD R. EPP, AND ELEANOR
C. PeTERSON. Oxygen Sensitization of Mammalian Cells under Different Irradiation
(003 1 T 4T ) 1 -
JoAN B. CHIN AND ANDREW M. RAUTH. The Metabolism and Pharmacokinetics of the Hypoxic
Cell Radiosensitizer and Cytotoxic Agent, Misonidazole, in C3H Mice .................
M. J. GaLviN, C. A. HaLL, aNnD D. 1. McREE. Microwave Radiation Effects on Cardiac
Muscle Cells in Vitro .. ... e e e
J. L. GiesBRECHT, W. R. WiLsoN, anD R. P. HiLL. Radiobiological Studies of Cells in Multi-
cellular Spheroids Using a Sequential Trypsinization Technique .......................
DIETMAR W. SIEMANN AND KAREN KocHANsKI. Combinations of Radiation and Misonidazole
in a Murine Lung Tumor Model ... ..
ANNOUNCEMENT i1ttt ettt et e e e e e e et e e e e e e e e e et e

NUMBER 3, JUNE 1981

JOHN CLARK SUTHERLAND AND KATHLEEN PIETRUSZKA GRIFFIN. Absorption Spectrum
of DNA for Wavelengths Greater than 300 nm ............ ... ... . ... ... ..o,
BRENT BENSON AND LESTER ERICH. Free Radicals in Pyrimidines: ESR of vy-Irradiated
S-Cyclohexenyl-1, S-dimethyl Barbituric Acid ........ .. ... .. .. o i il
B. TiLQuiN, R. vAN ELMBT, C. BOMBAERT, AND P. CLAES. Unsaturated Heavy Products from
v Irradiation of Solid Forms of 2,3-Dimethylbutane. I1. Radical Contribution............
A. P. HANDEL AND W. W. Nawar. Radiolytic Compounds from Mono-, Di-, and Tri-
ACYIZIYCEIOIS .t
A. P. HANDEL AND W. W, NawaRr. Radiolysis of Saturated Phospholipids .................
STEVEN A. LEADON AND JoHN F. WaRrD. The Effect of y-Irradiated DNA on the Activity
Of DNA POIYMETase .. ..ottt e
J. LESLIE REDPATH, EILEEN ZABILANSKY, AND MARTIN CoLMAN. Radiation, Adriamycin,
and Skin Reactions: Effects of Radiation and Drug Fractionation, Hyperthermia, and
TetraCyCliMe . . . oottt
MARY ANN STEVENSON, KENNETH W. MINTON, AND GEORGE M. HaHN. Survival and
Concanavalin-A-Induced Capping in CHO Fibroblasts after Exposure to Hyperthermia,
Ethanol, and X Irradiation . . ... .t e
NORIKO MOTOHASHI, ITSUHIKO MORI, YUKIO SUGIURA, AND HisasHi TANAKA. Modification
of y-lrradiation-Induced Change in Myoglobin by a-Mercaptopropionylglycine and Its
Related Compounds and the Formation of Sulfmyoglobin .............................
RaLPH J. SMiaLowicz, J. S. ArLi, Ezra BERMAN, STEVE J. BuURrsiaN, JaMEs B. KiINN,
CHARLES G. LipDDLE, LAWRENCE W. REITER, AND CLAUDE M. WEIL. Chronic Exposure
of Rats to 100-MHz (CW) Radiofrequency Radiation: Assessment of Biological Effects......
BARBARA C. MILLAR, ORAZIO SAPORA, E. MARTIN FIELDEN, AND PAMELA S. LOVEROCK.
The Application of Rapid-Lysis Techniques in Radiobiology. 1V. The Effect of Glycerol
and DMSO on Chinese Hamster Cell Survival and DNA Single-Strand Break Pro-
AUCHION .« ottt
OTT1O0 G. RAABE, STEVEN A. BoOk, NORRIS J. PARKS, CLARENCE E. CHRISP, AND MARVIN
GoLDMAN. Lifetime Studies of ***Ra and *'Sr Toxicity in Beagles— A Status Report.......
LAWRENCE S. GoLDsTEIN, T. L. PHiLLips, K. K. Fu, G. Y. Ross, aND L. J. KANE. Biological
Effects of Accelerated Heavy lons. 1. Single Doses in Normal Tissue, Tumors, and
Cells in Vilro ... ..o e e e
LAWRENCE S. GoLDSTEIN, T. L. PHILLIPS, AND G. Y. Ross. Biological Effects of Accelerated
Heavy lons. 11. Fractionated Irradiation of Intestinal Crypt Cells ......................

287

294
311

341
358
368

387
398

399
411
419

428
437
445
459
467
479
488

506

515



JouN F. THOMSON, FRANK S. WiILLIAMSON, DouGLAS GRAHN, AND E. JOHN AINSWORTH.
Life Shortening in Mice Exposed to Fission Neutrons and y Rays. I. Single and Short-
Term Fractionated EXPOSUIES ... ..ottt i i

JonN F. THoMSsON, FRANK S. WILLIAMSON, DouGLAS GRAHN, AND E. JOHN AINSWORTH.
Life Shortening in Mice Exposed to Fission Neutrons and y Rays. II. Duration-of-Life
and Long-Term Fractionated EXpOSUTeS .. ........oiiuiiii i

MARY J. ORTNER, MICHAEL J. GALVIN, AND DoNALD I. McREE. Studies on Acute in Vivo
Exposure of Rats to 2450-MHz Microwave Radiation. 1. Mast Cells and Basophils ......

CORRESPONDENCE

P. V. HARIHARAN, S. ELEcZKo, B. P. SMITH, AND M. C. PATERSON. Normal Rejoining

of DNA Strand Breaks in Ataxia Telangiectasia Fibroblast Lines after Low X-Ray

EXPOSUIE ...t e

AUTHOR INDEX FOR VOLUME 86 .. ...ttt it

The Subject Index for Volume 86 will appear in the December 1981 issue as part of a
cumulative index for the year 1981.

559

573

580

589
598



RADIATION RESEARCH 86, 264-276 (1981)

Proximity Functions for General Right Cylinders'
A. M. KELLERER

Institut fiir Medizinische Strahlenkunde der Universitat Wiirzburg,
Versbacher Str.5, 8700 Wiirzburg, Federal Republic of Germany

KELLERER, A. M. Proximity Functions for General Right Cylinders. Radiat. Res. 86,
264-276 (1981).

Distributions of distances between pairs of points within geometrical objects, or the
closely related proximity functions and geometric reduction factors, have applications to
dosimetric and microdosimetric calculations. For convex bodies these functions are linked
to the chord-length distributions that result from random intersections by straight lines.
A synopsis of the most important relations is given. The proximity functions and related
functions are derived for right cylinders with arbitrary cross sections. The solution utilizes
the fact that the squares of the distances between two random points are sums of independ-
ently distributed squares of distances parallel and perpendicular to the axis of the cylinder.
Analogous formulas are derived for the proximity functions or geometric reduction factors
for a cylinder relative to a point. This requires only a minor modification of the solution.

1. INTRODUCTION

The distributions of distance between pairs of points within geometrical objects
were first utilized by Berger (/) in dosimetric computations. These point-pair
distributions have broad applicability in calculations of absorbed dose from radio-
nuclides [see (2—11)]; they are also relevant to microdosimetry (/2 -/4). Analytical
expressions can be given for configurations such as spheres, slabs, or spherical
shells. A solution for cylinders that contains one quadrature without singularities
is derived in the present article. As in an earlier article dealing with chord-length
distributions (/5), the solution will be obtained for cylinders with arbitrary cross
section; the formula for circular cylinders results as a special case.

The result is applicable to calculations of absorbed doses with cylindrical sources
or receptors. Because of the utilization of cylindrical detectors the solution is also
relevant to microdosimetry. The accompanying article (/6) uses the results of the
present study for an assessment of the degree of equivalence achievable between
spherical and cylindrical microdosimetric detectors.

The distance distribution of a geometrical object is essentially equivalent to two
other concepts, the proximity function and the geometric reduction factor. The
interrelations between the three concepts are given in Section 2.1; Sections 2.2
and 2.3 deal with the connection to the chord-length distributions that result
when the geometrical body is randomly intercepted by straight lines. Readers
interested only in the solution for cylinders may first ignore Sections 2.2 and 2.3,
but may consult them for equations required in practical applications.

' Work supported by Euratom Contract 208-76-7 BIO D.

264
0033-7587/81/050264-13$02.00/0
Copyright © 1981 by Academic Press, Inc.
All rights of reproduction in any form reserved.



PROXIMITY FUNCTIONS FOR CYLINDERS 265

Fic. 1. Diagram illustrating the definition of the proximity function of a site, S. P is a random point
in S. The integral proximity function, S(x), equals the expected volume represented by the shaded
region: the differential proximity function, s(x), equals the expected surface indicated by the circular
line segment B and the geometric reduction factor, U(x), equals the ratio of B to the total surface of
the sphere.

For brevity, various considerations in this article will refer to only one of the
related concepts, for example, the proximity function. It should be realized that
reference could equally be made to the other concepts.

2. PROXIMITY FUNCTIONS AND SIMILAR CONCEPTS AND THEIR RELATIONS
TO THE CHORD-LENGTH DISTRIBUTIONS

2.1 Proximity Functions, Distance Distribution, and Geometric Reduction Factor

The integral proximity function, S(x), of a region § is equal to the expected
volume of the region that is contained in a sphere of radius x centered at a random
point of §. The differential proximity function s(x) is the derivative of S(x), i.e.,
s(x)dx is the expected volume of § contained in a spherical shell of radius x and
thickness dx that is centered at a random point of S. These notions are indicated
schematically in Fig. 1.

Dividing s(x) by the volume, V, of § one obtains, as can be shown (/2), the
density of distances between pairs of random points in S (see Fig. 1). Berger (/)
had earlier termed this the ‘‘pair distance distribution,’” p(x):

p(x) = s(x)/V. (1)

The proximity functions or distance distributions can also be defined for surfaces
or linear structures in three-dimensional space, R;. Volume is then replaced by
surface or length. Since such structures may be contained in one- or two-dimen-
sional linear subspaces the case of general dimensionality is of interest. The sub-
sequent formulas in this section will therefore apply to arbitrary dimensions; where
this is not the case separate relations will be quoted for three-dimensional space,
R, and two-dimensional space, R,. V and S designate volume and surface in
R3, and A and C designate area and circumference in R,.

The function p(x) has the advantage that it is a properly normalized probability
distribution; the nonnormalized function, s(x), on the other hand, is more generally
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Fi1G. 2. Diagram indicating the nature of u-, I-, and i-randomnesses, and of point-pair randomness.

applicable, because it exists also for unbounded structures, such as infinite lines
or areas or infinite cylinders.

At small values of x the proximity function of a volume goes toward 47 x? and
that of an area toward 27 x. A related quantity that converges toward 1 atx = O can
be more practical in numerical applications; it will be used interchangeably with
s(x) or p(x):

U(x) = s(x)/4nx? = p(x)V/4dnx? (in R;)
= s(x)2ax = p(x)AR27x (in R,).

This quantity has been termed the geometric reduction factor by Berger (/), and
it is frequently used in dose calculations for internal emitters.? If a spherical
shell of radius x is centered at a random point of S, then U(x) is equal to the
average fraction of this shell that lies within S (see Fig. 1).

(2

2.2 Chord-Length Distributions

Chord-length distributions result when geometric configurations are randomly
intercepted by straight lines. There are different modes of randomness that lead
to different distributions of chord length (15, 17, 18). Three important types that are
related to each other and are also linked to the proximity functions are indicated
in Fig. 2.

The condition where a site S is exposed to a uniform, isotropic fluence of straight
infinite random lines has been termed w-randomness (/7). A second condition,
I-randomness (interior radiator randomness), results if random points are chosen
within S and straight lines are laid through these points with random orientation
(17). i-randomness results from the same condition if rays originate from the ran-
dom points (/5). The distribution p(x) of distance between two random points in
S is indicated in the last panel of Fig. 2.

The probability densities of the intercepts, x, for the different types of random-
ness are designated by f.(x), fi(x), and fi(x). The sum distributions—for con-
venience summed from the right—are designated by F,(x), Fi(x), and F,(x). The
mean values are designated by x,, x,, and x;. For example,

* The quantity is commonly called average geometric reduction factor ¥,(x), and a related concept
(see Section 4) is called geometric reduction factor ¥(x). A different symbol, U(x) is chosen here to
avoid confusion with energy fluence (/9).
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F.(x) = rfu(s)ds and X, = r xfu(x)dx = r F.(x)dx. 3)

0 0

The next section is a condensed summary of essential interrelations between
the different functions.
2.3 Relations between the Proximity Function and the Chord-Length Distributions

Kingman (/8) has given the important relation between the chord-length dis-
tributions for I- and u-randomnesses:

filx) = xfu(x)x,. 4)
A somewhat more complicated relation holds for i-randomness (/5):
filx) = Fu(x)/xy. (5

Finally one obtains for convex sites:

©

U(x) = Fi(x) = J F.(s)ds/x,. (6)
x

The relation holds because a random shift x of a random point in a convex body §
will lead with probability F;(x) to a point still in S. In R; this probability is equal
to the fraction, U(x), of a spherical surface of radius x that is contained in S, if the
shell is centered at P. In R, an analogous argument applies.

The separate concepts Fi(x) and U(x) are required, because Fi(x) and U(x)
differ for nonconvex structures.

By using Eqs. (4-6) one can also relate the chord-length densities to the deriva-
tives of the geometric reduction factor of convex sites:

—U'(x) =fi(x)  [-U'(0) = fi(0) = 1/, (see Eq. (5)]; @)
U'(x) = fulx)/Xu = fi0)x, ®)

where the mean chord length, t,, is given by the Cauchy theorem that applies
to convex sites [see (/8)]:
X, =4V/S (in Ry)

mwA/IC (in Ry).

&)

From Eqgs. (4-6) one obtains by partial integration the relations between the
moments (n =0,1,2...):
X2 (n + 1)(n + DF, =X (n + D+ 2) = n + 1) = J x"U(x)dx (10)

0

= x}72V /47 (in Ry)

= XA 27 (in R,)
The indices w, I, i, and p refer to the densities f,(x), fi(x), fi(x), and p(x). For
R; and n = 0 to 4 these important relations are listed explicitly in Section 3 [see
Egs. (17-21)].

(11)
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FiG. 3. Diagram illustrating the computation of the distribution of distances, x, between two random
points in a cylinder in terms of the independent random variables y and z.

Although it is of no direct importance in the present context, one may note the
striking fact that the third moment for I- or i-randomness is independent of the
shape of a convex body in Rj:

X} = 4x} = 3V/x, (12)

while an analogous relation holds in R,:

xZ =3x2 = 3A/m. (13)

This concludes the general considerations. The subsequent section gives solu-
tions for cylinders.

3. PROXIMITY FUNCTIONS FOR CYLINDERS

A formula requiring a numerical integration was derived previously (15, 20) for
the chord-length distributions F,(x) of general cylinders. By a further integration
one could, according to Eq. (6), obtain the geometric reduction factor or the
proximity function. A disadvantage of this procedure is that the integrals contain
various singularities. The functions s(x) or U(x) are, however, considerably
simpler than the complicated chord-length distributions for u-randomness. In fact,
there is as indicated in Fig. 3 a direct solution that constructs the distribution of
point-pair distances, x, for the cylinder from the distribution of distances, y, per-
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pendicular to the axis of the cylinder (horizontal distances) and the distribution
of distances, z, in the direction of the axis (vertical distances). The method utilizes
the fact that x? is the sum of y? and z2, and the horizontal and vertical distances y
and z are independent random variables.

The formal derivation is given separately in the Appendix. One obtains the
following equation for the proximity function of a right cylinder of height # and
with arbitrary cross section:

2, L 2 \s((x? — z2)12) ‘
e

s(x) = 2xJ dz: (14)

2 (X2 — 22)1/2

with
z, = (Max (0, x* — d?))'?, z, = Min (x, h), x = (h? + d*»)'%,  (15)

where s.(y) is the proximity function of the cross section of the cylinder, and d is
the diameter (i.e., maximum width) of the cross section.

The equation in this general form is the essential result of this article. To use
the result for complicated cross sections one needs to derive s.(¥) numerically;
this may require separate integrations or Monte Carlo methods.

For a circle and a rectangle analytical expressions of s.(y) are listed in the
Appendix. For a circular cylinder of diameter ¢ one obtains with Eq. (A.6)

s(x) = 8x r

2

(1 - %)[cos“ ((x* = 22"/ d)

— ((x? = 22(d? — (x* = 2))"?*/d?)dz. (16)

Corresponding equations hold for the pair-distance density, p(x) = 4s(x)/(hd?*m),
or the quantity U(x) = s(x)/(4mx?).

The integrals in Eq. (14) or (16) are readily evaluated since they contain no
singularities. Figure 4 represents solutions U(x) for various values of the elonga-
tion, A/d, of the cylinder. The function U(x) is plotted instead of s(x) because this
permits higher accuracy at small values of x.

Equations (10) and (11) for the moments can be used to check the numerical
accuracy of the results [see Eqgs. (19) and (22)] and to derive the mean values i;,
X;,and ¢, [see Egs. (17) and (20)]. These mean values are plotted in Fig. 5 together
with the mean chord length for u-randomness, ¥, = dh/(d/2 + h) = —1/U'(0).

Separately listed forn = 0 to 4, and with ¢ = V/4x, the relations from Egs. (10)
and (11) have the form:

X o= 52 = xL2x,, (17)

J U(x)dx = (?
J Uy = ot = B2 =56 = X6, (18)

[sz(.\')dx =c¢ = 3/3 = X312 = xL/12x,, (19)
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F1G. 4. The geometrical reduction factors, U(x), for right circular cylinders of elongations 1/16, 1/8,
174, 1/2, 1/(2)'3, 1, 22, 2, 4, 8, and 16. The larger axis is taken to be of unit length, and the ratio of the
larger to the smaller axis is given as parameter with some of the functions. The differential proximity
function s(x) is equal to 47wx2U(x).

J x3U(x)dx = cx, = xi/4 = x1/20 = x3/20x,,, (20)
j x*U(x)dx = cx3 = x3/5 = x}/30 = x8/30x, (1)
= c(d¥4 + h¥/6). (22)

The integrals run from 0 to the maximum value of x. Equations (17) to (21) hold
generally for convex bodies in R;. Equation (22) is restricted to circular cylinders;
it is based on the fact that x2 is the sum of the mean squared distance, d%/4, for
point pairs inside a circle and the mean squared distance, 42/6, for point pairs on
a line segment.
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FiG. 5. Mean chord length, x,, for u-randomness, mean chord length, %;, for i-randomness, and
mean distance, x,, between two random points for circular cylinders of various elongations. The
values are given relative to the length of the smaller axis. The mean chord length, x,, for I-randomness
is equal to 2x; and is therefore not plotted.

In certain applications it is practical to utilize the limiting form of the solution
for very long and for very flat cylinders. For long cylinders (A > d) and for
moderate values of x one can use the limiting form of Eq. (16) for infinite height;
for large values of x one can disregard the radial extension of the cylinder. With
these two approximations Eq. (16) reduces to

x

s(x) = 8x J [cos™! ((x% = zH)V¥d)

- ((x% = 2)(d? — (x2 — 2))?*/d¥dz, for x < h
= d*m(1 = x/h)2 for x >d, (23)
with the limit values
X, =d,; X = 0.662d;  x, = h/3. 24)

For flat cylinders (& < d) and for moderate values of x one can use formulas for the
infinite slab; for large x one can disregard the vertical extension and use, with
inclusion of the factor 4, the formula for the disk [see Eq. (A.6)]. This leads to

s(x) = 4mx*3(1 — x/2h) for x < h
= 2mwhx for h<x<d 25)
= 4h)c(cos'l (i) — i(af2 — xz)"z) for h <x <d,
d d?

with the limit values
Xy = 2h; X = (In (d/h) + 0.3069)-h/2 (see (20));
X, = 64d/457 = 0.4527d. (26)

The solution for a right cylinder with square cross section, i.e., a rectangular
parallelepiped, is obtained by inserting Eq. (A.7) into Eq. (14). This leads to a
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Fi1G. 6. The geometrical reduction factors, U(x), for regular parallelepipeds with two sides equal tod
and one side equal to 4. Curves are given for elongations h/d = 1/16, 1/8, 1/4, 1/2, 1/(2)'?,1,2'2,2,4, 8,
and 16. The larger side is taken to be of unit length. The ratio of the larger to the smaller side is given
as parameter with some of the functions. The differential proximity function, s(x),is equal to 47w x?U(x).

more complicated expression than Eq. (16), but the integration is also straight-
forward without singularities. Figure 6 gives the resulting functions U(x).

4. PROXIMITY FUNCTIONS OF A CYLINDER RELATIVE TO A POINT

4.1 Generalized Definition of the Proximity Function and Related Concepts

The pair distance distribution, p(x), and the proximity function, s(x), relate to
the distances between pairs of points picked at random in the specified region.
Berger previously pointed out (/) that an entirely similar procedure, using a pair
distribution function, can also be applied in considerations of the transfer of energy
from a source region to any other region in the medium. This notion is closely
related to concepts such as the absorbed energy fraction that is used in dose cal-
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culations for internal emitters (/—//). One can define a proximity function of a
region S (the source region) relative to a region R (the receptor region). The integral
proximity function Sks(x) of S relative to R is the expected volume of S that is
contained within a distance up to x from a random point in R. The differential
proximity function sz¢(x) is the derivative of Sgg(x).

The proximity function sz¢(x) is equal to the pair-distance distribution pg(x)
for random points picked in R and S, multiplied by the volume V of the source
region:

Srs(x) = Vg prs(x) = Vs/Vg-ssp(x). (27

The nonnormalized function is required because it is applicable also to unbounded
source regions.
It is again practical to introduce the geometrical reduction factor

Urs(x) = sps(x)/dmx? = Vg/Vg-Ugp(x). (28)

U rs(x) is the probability that a random displacement of magnitude x from a random
point in R leads to a point in §. This is equal to the expected fraction of a
spherical surface of radius x that is contained in §, if the sphere is centered at a
random point of R.

4.2 Solutions for the Cylinder

Of special importance for the calculation of absorbed dose in and around ex-
tended sources is the simple case where the receptor region is a single point R.
Various solutions for this case have been obtained by Berger (/), among them the
one for infinite cylinders. In the following, the solution for finite cylinders will be
given. The derivation requires only slight modifications of the solution utilized in
Section 3; it is also relegated to the Appendix.

For simplicity, the indices of the functions s,s(x) and Ugg(x) will be omitted in
the remainder of this section; it will be understood that the functions refer to the
cylindrical source region and to a point of specified location. For easier reference
s(x) can be called a point proximity function of S.

The position of the point R will (in addition to suitable horizontal coordinates)
be specified by its vertical distance b from the face of the cylinder and away from
the cylinder. To simplify the formulas only nonnegative values of b will be con-
sidered. For points between the two planes through the faces of the cylinder
(b < 0) the solution can evidently be expressed as the sum of two solutions
with b = 0.

As shown in the Appendix, one obtains the following point proximity function
for the right cylinder with arbitrary cross section and with height h:

2, sc((x2 _ 22)1/2)
S(X) =X f _—
2, (X2 _ Z2)1/2

dz, 29
with
z, = Max (b, (Max (0, x2 — y3))V?) and z, = Min (b + h, (x2 — y?)¥2) (30)

and
(O} + 69" <x < (b + A +yh™, (31)
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s.(y) is the point proximity function of the cross section of the cylinder relative
to the reference point, R; y, and y, are the minimum and the maximum of y.

In the special case of a circular cylinder of radius r one obtains with Eq. (A.9)
from the Appendix and with the distance a from the axis of the cylinder

“cos! (Max [ -1 oZta - dz (32)
’ 2a(x? — z2)M2 ' -

Max (0,a —r)and y, = a + r.
0; in this case one obtains from Eq. (29),

2.

s(x) = 2x J
Equations (30) and (31) hold with y,

The solution does not apply for a
with s.(y) = 27y fory = r:

Il

s(x) = 2mx(z, — z,), a<x<(a+ h?+r)hv 33)

The geometric reduction factor, U(x) = s(x)/4mx?, commonly designated by
W(x), has previously been given for the special case of infinite circular cylinders (/).

APPENDIX: DERIVATION OF THE SOLUTION FOR RIGHT CYLINDERS
1. Density of x = (y2 + z3)'V2 from Independent Densities of y and z

Let x be the distance between two random points in the cylinder, and y and z the
horizontal and vertical distances. Then y and z are independently distributed,
and x2 = y? + z2,

As a first step a general expression for the density p(x) as a function of the
densities p,(z) and p,(y) of ¥y and z will be derived. Insertion of actual expressions
for p,(z) and p,(y) will be a second step.

To make the derivation more transparent, it is helpful to introduce separate
symbols, X = x2, Y = y2, and Z = z?, for the squares of the random variables and
also separate symbols, 7(X), 7,(Z), and m,(Y), for the densities of these squares.
Because of the additivity, X = Y + Z, and the independence of Y and Z one has
the familiar convolution relation

RY
7(X) = J (X — Z)w(Z)dZ. (A.1)
0
The relation between the density of the random variable x and the density of
its square X is

dx
X) = p(x) — = p(x)2x; (A.2)
m(X) = p(x) X p(x)
analogous relations hold for 7,(Z) and m,(Y).
By inserting these relations and dZ = 2zdz into Eq. (A.1) one obtains

x 2 _ S2)1/2
pe((x* — 29 pia)

p(x)2x = L 2 e 5 (A.3)
and therefore
x 2 __ S2y1/2
p(x) = "'J pa((x ‘ 2)‘ )‘pl(z)a,Z (A4)
0 (XZ — 22)1/2
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2. Proximity Function for the Cylinder
One readily obtains the distance distribution for a line segment of length A:
pi(z) = 2(1 = z/h)/h. (A.5)

By inserting this into Eq. (A.4) and switching from p(x) and p,(y) to the proximity
functions one obtains the general solution, Eq. (14).
The proximity function for a circular surface of diameter d is (/7)

[ x X
s(x) = 4x(cos ' (7) - S x2)1f2) . x=d. (A.6)
This together with Eq. (14) leads to the solution, Eq. (16), for circular cylinders.

The proximity function for a square of side length d is somewhat more compli-
cated [see also (/8) for the general case of a rectangle]:

x2  4x
- a T x=4
s(x) = 2x (A.7)
2 1/2 2
w—2—4cos-l(i)+4("_—1) X ds=x=2mg
X d? d?

The formula for a regular parallelepiped is therefore not given in explicit form.
However, the numerical integration of Eq. (14) with Eq. (A.7) is readily per-
formed and contains no singularities; the solutions are given in Fig. 6.

3. Solution for a Cylinder Relative to a Point

With the coordinate b (=0), as defined in Section 4, one obtains the distribution
of vertical distances from the point R to the cylinder:

piz)=1Uh for b=z=b+h. (A.8)

By inserting this into Eq. (A.4) and switching to the point proximity functions,
one obtains the solution, Eq. (29), for the general cylinder.

For a circular cross section with radius r and for the distance a of the point
from the center one obtains

y2+a2_r2

s.(y) = 2y cos™! (Max (—1, )) ;Max(a —r,0)<=y=a+r.(A9

2ya
By inserting this into Eq. (29) one obtains the solution, Eq. (32), for the circular
cylinder.

RECEIVED: April 29, 1980; REVISED: November 5, 1980
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