Mitochondrial Regulation of the 26S Proteasome

Graphical Abstract

Highlights
- Respiratory dysfunction impairs 26S proteasome assembly and activity
- Aspartate deficiency inhibits protein synthesis and 26S proteasome activity via mTORC1
- Aspartate restores 26S activity via upregulation of proteasome assembly factors
- Addition of pyruvate overcomes resistance to bortezomib in respiration-deficient cells

Authors
Thomas Meul, Korbinian Berschneider, Sabine Schmitt, ..., Stefanie M. Hauck, Hans Zischka, Silke Meiners

Correspondence
silke.meiners@helmholtz-muenchen.de

In Brief
Meul et al. demonstrate reversible regulation of 26S proteasome assembly and activity by metabolic reprogramming of the TCA cycle upon impaired respiratory function. Supplementation with aspartate or pyruvate restores 26S proteasome activity via mTORC1-mediated transcriptional activation of defined proteasome assembly factors.
SUMMARY

The proteasome is the main proteolytic system for targeted protein degradation in the cell and is fine-tuned according to cellular needs. Here, we demonstrate that mitochondrial dysfunction and concomitant metabolic reprogramming of the tricarboxylic acid (TCA) cycle reduce the assembly and activity of the 26S proteasome. Both mitochondrial mutations in respiratory complex I and treatment with the anti-diabetic drug metformin impair 26S proteasome activity. Defective 26S assembly is reversible and can be overcome by supplementation of aspartate or pyruvate. This metabolic regulation of 26S activity involves specific regulation of proteasome assembly factors via the mTORC1 pathway. Of note, reducing 26S activity by metformin confers increased resistance toward the proteasome inhibitor bortezomib, which is reversible upon pyruvate supplementation. Our study uncovers unexpected consequences of defective mitochondrial metabolism for proteasomal protein degradation in the cell, which has important pathophysiological and therapeutic implications.

INTRODUCTION

The ubiquitin–proteasome system is a central part of cellular protein homeostasis. It recycles amino acids for protein synthesis, maintains protein quality control, and controls the half-life of essential regulators of cell function (Finley, 2009; Fredrickson and Gardner, 2012; Vabulas and Hartl, 2005). Ubiquitin-dependent protein degradation is carried out by 26S proteasome complexes (Ciechanover, 2015). The 26S proteasome consists of a central catalytic core—the 20S proteasome—with one or two 19S regulators attached to the ends of the 20S forming single- or double-capped 26S proteasome complexes (Bard et al., 2018). While the 20S proteasome core contains the three proteolytic sites with chymotrypsin-, caspase-, and trypsin-like activities for protein hydrolysis, the 19S regulator mediates ATP-dependent binding and unfolding of ubiquitinated substrates as well as recycling of ubiquitin moieties (Bard et al., 2018).

Mitochondria are the powerhouses of the cell, providing energy and redox equivalents via their respiratory chain (Spinelli and Haigis, 2018). Besides ATP production via the respiratory chain, mitochondria play key metabolic functions in the biosynthesis of nucleotides, lipids, and amino acids by generating essential intermediates via the TCA (tricarboxylic acid) cycle (Ahn and Metallo, 2015). Dysfunction of the respiratory chain
results in defective ATP production and metabolic reprogramming of the cell due to imbalanced redox equivalents (Birsoy et al., 2015; Sullivan et al., 2015, 2016).

Mitochondrial function is coupled to the ubiquitin-proteasome system (D’Amico et al., 2017; Livnat-Levanon and Glickman, 2011; Segref et al., 2014). Proteins of the inner and outer mitochondrial membrane are degraded in a ubiquitin-dependent manner by the 26S proteasome (Karbowski and Youle, 2011; Lavie et al., 2018). Accumulation of misfolded or mistargeted mitochondrial proteins results in the adaptive activation of the ubiquitin-proteasome system to maintain mitochondrial and cellular proteostasis (Munch and Harper, 2016; Suhm et al., 2018; Wang and Chen, 2015; Wrobel et al., 2015). Conversely, 26S proteasome activity is reduced by defective ATP production after acute pharmacological inhibition of respiratory chain complexes (Höglinger et al., 2003) and 26S proteasome complexes disassemble upon excessive production of mitochondrial reactive oxygen species (ROS; Chou et al., 2010; Livnat-Levanon et al., 2014; Segref et al., 2014). On the other hand, defective proteasome function is compensated by adaptations of the mitochondrial metabolism (Tsvetkov et al., 2019).

We here demonstrate reversible fine-tuning of 26S proteasome activity by metabolic reprogramming of the cell. Specifically, we show that defective respiratory complex I function impairs the assembly of the 26S proteasome, which can be alleviated upon addition of aspartate or pyruvate. Assembly of 26S proteasome complexes depends on aspartate-mediated regulation of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) pathway and subsequent transcriptional upregulation of specific proteasome assembly factors. Thus, our study uncovers a fundamental cell biological mechanism of adjusting protein degradation by the proteasome to the metabolic program of the cell, which has pathophysiological but also therapeutic consequences.

RESULTS

Respiratory Chain Dysfunction Reduces 26S Proteasome Activity and Assembly

We set out to study metabolic regulation of proteasome activity in a model system of genetically impaired respiratory function without oxidative stress using mouse embryonic fibroblasts (MEFs) of DNA mutator mice. These cells express a proof-reading-deficient mutant of the mitochondrial DNA polymerase \(\gamma \) and accumulate random point mutations in their mitochondrial DNA (mtDNA), resulting in almost complete loss of respiratory chain activity (Figures S1A and S1B). While mutant cells grew slightly but not significantly increased (Figure 1D). The total amount of 20S complexes was marginally decreased in mutator compared to WT cells (Figure S1F). This coincided with reduced levels of the 20S assembly factor Pom120 in mutator cells (Figure S1G).

26S proteasome activity was, however, not rescued by NAC treatment (Figure S1K). These data indicate that reduced formation of 26S proteasome complexes in mutator cells does not involve ROS-mediated disassembly but rather reduced assembly of 26S proteasome complexes. We also did not observe any signs of protein stress in our proteomic comparison of WT and mutator cells (Tables S2 and S8). Reduced activity of the 26S proteasome did not alter the turnover of ubiquitinated proteins in mutant cells, as levels of K48 polyubiquitinated proteins were similar to WT cells (Figure S1L). These findings suggest that reduced assembly of 26S proteasome complexes is part of an adaptive proteostatic cell response to mitochondrial dysfunction.

Respiratory Chain Dysfunction Results in Aspartate Deficiency

To elucidate the molecular mechanism involved in reduced 26S proteasome function in cells with mitochondrial dysfunction, we investigated the nature of mitochondrial alterations in mutator cells in detail. Cytochrome c staining revealed that neither the mitochondrial network nor mitochondria numbers were substantially altered in mutator compared to WT cells (Figure 2A, upper panel). We further purified intact mitochondria according to our recently developed protocol (Schmitt et al., 2015) and as
schematically depicted in Figure S2A. Mitochondria of mutator cells were structurally intact, with only slight alterations in mitochondrial cristae structures, as shown by electron microscopy of both cellular and isolated mitochondria (Figures 2A, lower panel and S2B). To confirm that the number of mitochondria is similar in WT and mutator cells, the proportion of mitochondrial volume was quantified as described by Hacker and Llucocq (2014) (Figure S2C). Proteomic analysis of isolated mitochondria from WT and mutator cells identified 714 mitochondrial proteins according to MitoCarta 2.0 (Calvo et al., 2016; Table S3). More than 90% of these mitochondrial proteins were not regulated more than twofold. Using enrichment analysis on UniProt keywords and gene-ontology terms, we observed severe downregulation of respiratory chain proteins (Figure 2B; Tables S3 and S4). These mapped mainly to complex I and complex IV, as confirmed by immunoblot analysis (Figure S2D). Complex I deficiency and the resulting lack of electron transfer resulted in impaired oxidation of NADH to NAD⁺ and pronounced accumulation of NADH in mutator cells (Figure 2C). Elevated NADH levels inhibit key enzymes of the TCA cycle (Chandel, 2015a). Together with the lack of NAD⁺ electron acceptors, this hampers production of TCA cycle intermediates that are required for the biosynthesis of macromolecules, such as amino acids (Figure 2D; Chandel, 2015b; Sullivan et al., 2015). Metabolomic quantification of amino acid levels revealed that the amount of aspartate was significantly decreased in mutator cells, whereas overall levels of amino acids were not altered (Figures 2E and S2E; Table S5). As aspartate is not supplemented in cell culture medium (Dulbecco and Freeman, 1959), cells strictly depend on the endogenous biosynthesis of aspartate for subsequent generation of amino acids, purines, and pyrimidines (Birsoy et al., 2015; Fu and Danial, 2018; Sullivan et al., 2015). Our analysis thus identifies deficiency of complex I, concomitant loss of electron acceptors, and reduced levels of aspartate as major features of metabolic reprogramming in mutator cells.

Supplementation of Aspartate Activates 26S Proteasome Activity
We next tested whether the observed aspartate deficiency in mutator cells contributes to the impairment of 26S proteasome activity. Of note, aspartate supplementation for 72 h significantly...
increased the activity of the proteasome in mutator cells (Figure 3A). Aspartate treatment specifically activated the assembly and activity of mainly double-capped 26S proteasomes (Figure 3B). Proteasome activation was first evident after 24 h of aspartate treatment (Figure S3A). Aspartate did not affect proteasome function in WT cells (Figure S3B). Pyruvate—which serves as an electron acceptor at conditions of redox imbalance (Sullivan et al., 2015)—also clearly increased single- and double-capped 26S proteasome assembly (Figure 3C), but did not affect proteasome activity in WT cells (Figure S3C).
Aspartate Supplementation Induces Assembly of 26S Proteasomes

To investigate the underlying mechanism for metabolic activation of 26S proteasome assembly, we first analyzed whether aspartate supplementation affects expression of proteasome subunits. Overall expression of proteasomal subunits was not altered as determined by western blotting for 20S alpha and the beta 5 subunits (Figure 4A). In contrast, we noticed specific aspartate-mediated upregulation of several 26S proteasome assembly factors, i.e., the assembly chaperones Rpn4 and p28 and the 19S subunit Rpn6, while S5b was not regulated by aspartate (Figure 4A). Aspartate induced RNA expression of the respective assembly factors (Psmd9 for Rpn4, Psmd10 for p28, and Psmd11 for Rpn6) already after 6 h (Figure 4B). Silencing of p28 but not Rpn4 counteracted assembly of 26S proteasomes upon supplementation with aspartate in mutator cells as demonstrated by native gel and immunoblotting analysis (Figure 4C).

Depletion of p28 in the absence of aspartate treatment did not alter 26S proteasome assembly (Figure 4D). Partial silencing of Rpn6 similarly neutralized aspartate-induced 26S assembly and activation (Figures 4, C and D). While Rpn4 and p28 act as 19S regulatory particle assembly-chaperones (RACs; Kaneko et al., 2009), Rpn6 is an integral part of the 19S regulator and serves as a molecular clamp that stabilizes the interaction with the 20S (Pathare et al., 2012). Accordingly, full depletion of Rpn6 is detrimental for the cell, but an only minor increase in its expression level promotes assembly of 26S proteasome complexes (Semren et al., 2015; Vilchez et al., 2012), whereas partial depletion counteracts 26S assembly (Semren et al., 2015). Of note, the same assembly factors were downregulated in mutator compared to WT cells, while S5b—which is also known to inhibit 26S assembly (Levin et al., 2018; Shim et al., 2012)—was upregulated (Figure S4). Our data thus demonstrate that metabolic regulation of 26S assembly factors is a key determinant in regulating the adaptive assembly of 26S proteasome complexes at conditions of mitochondrial dysfunction.

Aspartate Activates Multiple Cellular Signaling Pathways, Including mTOR Signaling

We further dissected the mechanism by which aspartate activates 26S proteasome assembly in an unbiased phosphoproteome screen. Mutator cells were treated for 4 h with or without aspartate. Phosphorylated peptides were enriched and identified...
Cell Reports
Article

A

B

C

D

(legend on next page)
Representative western blot analysis of 20S (Figure 4A; Table S7). Among these were several cell-cycle-related kinases such as CDK1, Aurora A, GSK3b, ERK1, ERK2, and CDK5 besides other growth-factor, cell-cycle, and metabolic-signaling kinases (Figure 4A). This observation is well in line with the essential function of aspartate for proliferation (Birsoy et al., 2015; Sullivan et al., 2015) and aspartate-mediated induction of proliferation in mutant cells (Figure S5C). Other most predominantly activated kinases were the p70 ribosomal S6 kinase and MAPKAP1, MAPKAP2, and AKT kinases, which are all involved in the activation of protein synthesis via the mTOR pathway (Saxton and Sabatini, 2017). Activation of the mTOR pathway by aspartate was confirmed by enhanced phosphorylation of the p70 S6 kinase and the S6 ribosomal protein in western blots (Figure 5B). In accordance with the activation of mTOR signaling, aspartate treatment for 72 h increased protein synthesis in mutant cells (Figure 5C). Very similar mTOR signaling and protein synthesis were found to be diminished in mutator compared to WT cells (Figures S5D and S5E). Low doses of rapamycin (0.5 nM) effectively counteracted aspartate-induced activation of mTORC1 signaling (Figure 5F). These data demonstrate a previously unrecognized regulation of protein synthesis by aspartate via the mTORC1 complex. Importantly, mTOR inhibition by rapamycin effectively prevented aspartate-induced upregulation of the proteasome assembly factors p28 and Rpn6 (Figure 5D) and activation of 26S proteasome assembly (Figure 5E). Rapamycin did not affect, however, proteasome activity and assembly in untreated mutator cells (Figure S5G). Similar effects were observed upon silencing of raptor, a specific component of the mTORC1 complex (Saxton and Sabatini, 2017; Figures S5H and S5I). These data demonstrate that aspartate activates the mTORC1 pathway, which —by a currently unknown pathway— induces the transcriptional activation of specific proteasome assembly factors to promote assembly of 26S proteasome complexes.

Defective Complex I Function Drives Metabolic Adaptation of the Proteasome in Human Cells

Our data obtained with the mutator cells strongly indicate that the defective electron transfer at complex I is the major driver for the observed metabolic regulation of 26S proteasome function. We thus tested whether the proteasome is metabolically regulated in cells with defined genetic complex I dysfunction. Skin fibroblasts were obtained from a patient with a hereditary mutation in the ND5 subunit of respiratory complex I (Kremer et al., 2017). These cells showed significantly diminished proteasome activity (Figure 6A) that we could attribute to reduced assembly and activity of 26S proteasome complexes (Figure 6B). Supplementation with aspartate activated assembly and activity of 26S proteasome complexes in ND5 mutant cells in a manner very similar to our results obtained with the mutator cells (Figure 6C). In a second approach, we applied pharmacological inhibition of complex I. For that, we used metformin—a well-known anti-diabetic drug that inhibits complex I activity in the absence of ROS production (Sullivan et al., 2015). Of note, metformin treatment of primary healthy human skin fibroblasts for 72 h significantly inhibited the assembly and activity of 26S proteasome complexes. This effect was fully restored by supplementation of either aspartate or pyruvate (Figure 6D). Similarly, metformin effectively inhibited 26S proteasome assembly in primary human lung fibroblasts, which was alleviated by treatment with aspartate or pyruvate (Figure 6E). Very similar results were obtained with WT MEFs (Figure S6). Our results thus reveal a reversible adjustment of 26S proteasome activity by aspartate or pyruvate under conditions of respiratory complex I dysfunction. They unravel a previously unknown cellular consequence of respiratory chain dysfunction for proteasomal protein degradation. Moreover, our findings suggest that metabolic inhibition of proteasome function can be alleviated by treatment with aspartate or pyruvate, which may have therapeutic implications.

Respiratory Chain Dysfunction Confers Resistance to the Proteasome Inhibitor Bortezomib

To investigate the physiological relevance of reduced 26S proteasome activity and assembly in cells with respiratory...
Figure 5. Aspartate Activates Multiple Cellular Signaling Pathways, Including mTOR Signaling

(A) Enrichment analysis of phosphoproteomics data for kinases predicted to be activated upon aspartate treatment using Fisher exact test (FDR > 0.02).

(B) Analysis of mTORC1 signaling after treatment with 10-mM aspartate for 48 h in Mut cells. Representative western blots of total and phosphorylated levels of p70 S6 kinase and S6 ribosomal protein (Rps6). β-actin served as a loading control. Bar graphs show β-actin-normalized phosphoprotein levels related to β-actin-normalized total levels of the respective protein in Mut cell lines (n = 4; mean ± SEM). Significance was determined using Student’s unpaired t test.

(C) Cellular protein synthesis rate was determined using the puromycin analog OPP (O-propargyl-puromycin). Representative fluorescence images of nascent protein synthesis (red signal) and nucleic staining (blue signal) after supplementation of Mut cells (n = 4) with 10-mM aspartate for 48 h are shown. Mut controls were cultured for 48 h in normal medium containing no aspartate. Quantification of protein synthesis (mean fluorescent intensity [MFI] of red signal) reveals differences in protein synthesis between the individual Mut cell lines with and without aspartate supplementation. Scale bar: 100 μm. Statistical test: Student’s paired t test.

(D) Analysis of 26S proteasome assembly factor expression upon treatment with 0.5-nM rapamycin and 10-mM aspartate for 72 h in one Mut cell line. β-actin was used as a loading control. Bar graphs show fold change of aspartate and rapamycin co-treatment over aspartate-treated control. Significance was determined using a one-sample Student’s t test.

(E) Representative native gel analysis of active proteasome complexes and quantification thereof in cell lysates from one Mut cell line upon treatment with 0.5-nM rapamycin and 10-mM aspartate for 72 h with CT-L substrate overlay assay and immunoblotting for 20S α1-7. Densitometric analysis shows mean ± SEM of fold change of aspartate and rapamycin co-treatment over aspartate-treated control from three independent experiments. Significance was determined using a one-sample Student’s t test.

See also Figure S5.
dysfunction, we tested the cellular response toward proteasome inhibition in mutator cells. WT and mutator cells were treated with increasing doses of the USA Food and Drug Administration (FDA)-approved proteasome inhibitor bortezomib, and cell viability was monitored. Of note, cells with mitochondrial dysfunction showed higher resistance toward bortezomib-induced cell death (Figures 7A and S7A). Annexin V/propidium iodide (PI) staining confirmed reduced apoptotic cell death in mutator compared to WT cells with toxic doses of bortezomib (25 nM; Figures S7/B and S7C). This protective effect was specific for proteasome inhibition and not observed when cells were exposed to increasing concentrations of H$_2$O$_2$ (Figure S7D). We next analyzed if the resistance toward bortezomib in mutator MEFs can be reversed by supplementation of pyruvate. Supplementation of mutant cells with 1-mM pyruvate for 24 h followed by treatment with increasing concentrations of bortezomib restored sensitivity toward proteasome inhibition, as shown by significantly reduced cell viability compared to non-pyruvate-treated mutator cells (Figure 7B). To analyze whether bortezomib resistance can be induced by respiratory complex I dysfunction, WT cells were pretreated with 5-mM metformin for 24 h and subsequently treated with increasing doses of bortezomib. Notably, metformin pretreatment significantly increased resistance toward bortezomib (Figure 7C). This effect was fully reversible when cells were pretreated with a combination of metformin and pyruvate (Figure 7D). From these data, we conclude that mitochondrial dysfunction contributes to the resistance toward proteasome inhibition possibly due to reduced activity of the 26S proteasome, as recently shown for bortezomib-resistant tumor cells (Acosta-Alvear et al., 2015; Tsvetkov et al., 2015, 2017).

DISCUSSION

In this study, we demonstrate that respiratory complex I dysfunction inhibits the activity of the ubiquitin-proteasome system by metabolic reprogramming. Impairment of 26S assembly is observed upon chronic impairment of mitochondrial function such as in mutator cells and ND5 mutant patient cells, and also upon acute inhibition of complex I by metformin in the absence of oxidative stress. Importantly, inhibition can be fully reversed by supplementation of aspartate or pyruvate, thus demonstrating adaptive metabolic fine-tuning of 26S proteasome function, which may have therapeutic implications.

It is well established that the 26S proteasome can be upregulated via concerted transcriptional induction of proteasomal gene expression under conditions of increased protein hydrolysis, protein stress, cell growth, and p53 signaling (Meiners et al., 2003; Sha and Goldberg, 2014; Walerych et al., 2016; Zhang et al., 2014). However, transcriptional regulation of proteasome function is not suitable for rapid and reversible adaptation to cellular needs (Meiners et al., 2014; Rousseau and Bertolotti, 2018). Rapid adjustment of 26S proteasome activity to growth signals can be achieved by post-translational modifications of 19S or 20S subunits as, e.g., elegantly shown for the 19S subunits Rpt3 (Guo et al., 2016; VerPlank and Goldberg, 2017) and Rpn1 (Liu et al., 2020). In addition, assembly chaperones regulate the formation of 26S proteasome complexes from the 20S catalytic core and 19S regulatory particles, thus allowing timely adjustment of 26S proteasome activity to cellular demands (Kaneko et al., 2009; Rousseau and Bertolotti, 2018). The RACs S5b, Rpn4, and p28 were found to be rapidly induced via extracellular regulated kinase (ERK) 5 by inhibition of the mTOR pathway (Rousseau and Bertolotti, 2016). Similarly, phosphorylation of the constitutive 19S subunit Rpn6 by protein kinase A promoted assembly of 26S complexes upon acute mTOR inhibition (Lokirreddy et al., 2015; VerPlank et al., 2019). Such activation of 26S proteasome function under conditions of mTOR inhibition parallels that of autophagy induction to ensure cellular amino acids supply (Saxton and Sabatini, 2017). In contrast to these data, the Manning lab demonstrated concerted activation of proteasome expression upon sustained inhibition of the mTOR signaling pathway (Zhang et al., 2014). This effect involved concerted transcriptional upregulation of proteasomal gene expression via the transcription factor Nrf1, a well-known regulator of proteasomal gene expression (Sha and Goldberg, 2014; Steffen et al., 2010). We here demonstrate a different type of regulation of proteasome assembly via the mTORC1 complex: activation of the mTOR pathway by aspartate induced...
transcriptional upregulation of only 26S assembly factors, i.e., Rpn4, p28, and Rpn6, but did not activate gene expression of other 20S or other 19S subunits. This selective transcriptional activation makes it highly unlikely that Nrf1 is involved in this process (Zhang et al., 2014). Our phosphoproteomics analysis also excluded altered phosphorylation of Rpn6 and regulation of ERK5 to be involved in this process. Importantly, the two assembly factors p28 and Rpn6 were required for the induction of 26S proteasome assembly by supplementation of aspartate. We also demonstrate that this regulation is reversible as aspartate or pyruvate supplementation was sufficient to restore defective 26S proteasome assembly upon metformin treatment. Nucleoside addition, however, did not rescue proteasome assembly. These data suggest that nucleotide deficiency is not rate limiting but rather the apparent lack of electron acceptors. The adaptive nature of this regulation is also supported by the fact that the mutator cells do not display any signs of protein stress such as accumulation of polyubiquitinated proteins or folding chaperones at conditions of reduced 26S proteasome activity. Of note, reversible adjustment of 26S proteasome assembly was also evident in other cell types, i.e., MEFs and primary human skin or lung fibroblasts, indicating a robust and conserved mechanism of metabolic fine-tuning of proteasome function. These findings add an important aspect of proteasome regulation and fine-tuning of proteasome activity and also ribosome function according to cellular needs (Emmott et al., 2019; Meiners et al., 2014; Rousseau and Bertolotti, 2018; Wang et al., 2020).

The specific nature of how aspartate activates the mTORC1 complex is currently unknown. Our phosphoproteomics analysis revealed that aspartate activated the p70 ribosomal S6 kinase, MAPKAP1, MAPKAP2, and AKT kinases after 4 h of aspartate treatment, raising the possibility of direct aspartate sensing by the mTORC1 complex. However, as kinases also involved in growth-factor, cell-cycle, and metabolic signaling were activated, we cannot exclude other regulatory mechanisms such as, for example, tRNA uncharging, nucleotide limitation, AMP-activated protein kinase (AMPK) pathway activation, or an altered NAD/NADH ratio to be involved in aspartate-mediated regulation of the mTOR pathway.

Our findings establish a fundamental and previously unrecognized interaction between mitochondrial function and the ubiquitin-proteasome system. Specifically, impaired activity of respiratory complex I and subsequent reprogramming of the TCA cycle with deficiency of aspartate and electron acceptors results in reduced 26S proteasome activity. This interaction is of significant relevance to aging and disease: both aging and diseases of proteostasis imbalance such as neurodegenerative and cardiac diseases are characterized by respiratory chain dysfunction and impaired proteasome activity (Ciechanover and Brundin, 2003; Drews and Taegtmeyer, 2014; Karamanlidis et al., 2013; Kauppila et al., 2017; López-Otin et al., 2013; Schapira et al., 1989). It is tempting to speculate that glycolytic reprogramming of tumor cells might contribute to diminished protein synthesis and 26S proteasome activity to confer resistance toward proteasome inhibitor treatment. Impaired 26S activity has previously been established as a prominent feature of proteasome inhibitor resistance (Acosta-Alvear et al., 2015; Tsvetkov et al., 2015, 2017). In accordance, the mutator cells with their reduced protein synthesis and 26S proteasome function were more resistant toward bortezomib treatment. Pyruvate supplementation, which activates 26S proteasome activity, restored sensitivity to bortezomib treatment. Similarly, metformin treatment reversibly induced resistance toward bortezomib in respiration-deficient cells, which was fully reversed by pyruvate co-treatment. These data strongly support the recent findings by Tsvetkov et al. (2017, 2019) that proteasome and mitochondrial function are closely linked with proteasome inhibitor resistance. Activating 26S proteasome assembly and activity by supplementation of aspartate or pyruvate might provide a therapeutic concept to
counteract imbalanced proteostasis in disease and upon drug treatment.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead Contact
 - Materials Availability
 - Data and Code Availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Cell culture
- **METHOD DETAILS**
 - Protein extraction
 - Proteasome activity assays
 - Western blot analysis
 - Native gel analysis
 - Primer sequences for qRT-PCR
 - Quantitative real-time RT-PCR
 - Measurement of ATP levels
 - Analysis of reactive oxygen species (ROS) in cells
 - Cellular oxygen consumption
 - Mitochondrial cytochrome c staining
 - Isolation of mitochondria
 - Electron microscopy
 - Measurement of cellular NADH levels
 - Metabolomic analysis
 - Aspartate and pyruvate supplementation
 - Metformin treatment
 - Lysate preparation for phosphoproteome analysis
 - Phosphopeptide enrichment
 - StageTip desalting of phosphopeptides
 - Bioinformatic analysis of phosphoproteomics data
 - Filter-aided sample preparation for proteomic analysis
 - Proteomic analysis
 - Progenesis QI for label-free quantification
 - Mitomycin analysis
 - Bioinformatic analysis of proteomics data
 - Cell proliferation assay
 - Protein synthesis assay (WT versus mutator MEFs)
 - Protein synthesis assay (aspartate treatment of mutator MEFs)
 - siRNA mediated mRNA silencing
 - Rapamycin and aspartate cotreatment of mutator cells
 - Bulk m RNA sequencing
 - Cotreatment of bortezomib and pyruvate/metformin
 - Cell viability assay (MTT)
 - Live/dead staining with annexin V/PI
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2020.108059.

ACKNOWLEDGMENTS

T.M. and K.B. were supported by the CPC/Helmholtz Graduate School program “Lung Biology and Disease.” F.P. was supported by the Munich Center for Systems Neurology (SyNergy EXC 2145/ID 390857198) and The Bert L & N Kuggie Vallee Foundation. H.P. was supported by German Federal Ministry of Education through a grant to the German Network for Mitochondrial Disorders (01GM1906) and the E-Rare project GENOMIT (01GM1603 and 01GM1207). We are grateful for the support by Jennifer Wettemarshausen, and for the excellent technical assistance of Carola Eberhagen. We are also very grateful for the support in the RNA sequencing data upload by Messhal Ansari.

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: April 8, 2020
Revised: June 18, 2020
Accepted: July 31, 2020
Published August 25, 2020

REFERENCES

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse monoclonal anti-α1-7</td>
<td>Abcam</td>
<td>Cat#ab22674; RRID:AB_2171376</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-Rpn6</td>
<td>Novus</td>
<td>Cat#NBP1-46191; RRID:AB_10009423</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-Rpn4</td>
<td>Abcam</td>
<td>Cat#ab103408; RRID:AB_10861889</td>
</tr>
<tr>
<td>Rabbit monoclonal anti-p28</td>
<td>Abcam</td>
<td>Cat#ab182576; RRID:AB_2687444</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-phospho p70 S6 kinase</td>
<td>Cell Signaling</td>
<td>Cat#9208; RRID:AB_330990</td>
</tr>
<tr>
<td>Rabbit monoclonal Anti-phospho S6 ribosomal protein</td>
<td>Cell Signaling</td>
<td>Cat#4858; RRID:AB_916156</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartate</td>
<td>Sigma Aldrich</td>
<td>A7219; CAS: 56-84-8</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>ApplChem</td>
<td>A4859; CAS: 113-24-6</td>
</tr>
<tr>
<td>Rapamycin</td>
<td>Sigma Aldrich</td>
<td>553210; CAS: 53123-88-9</td>
</tr>
<tr>
<td>Metformin hydrochloride</td>
<td>Sigma Aldrich</td>
<td>PHR1084; CAS:1115-70-4</td>
</tr>
<tr>
<td>Thiazolyl Blue Tetrazolium Bromide (MTT)</td>
<td>Sigma Aldrich</td>
<td>M5655; CAS: 298-93-1</td>
</tr>
<tr>
<td>Velacade® (Bortezomib) 3.5 mg Single Use Vial for Injection</td>
<td>MILLENIUM Pharmaceuticals</td>
<td>N/A</td>
</tr>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAD/NADH Glo™ assay</td>
<td>Promega</td>
<td>G9071</td>
</tr>
<tr>
<td>CellTiter Glo™ ATP assay</td>
<td>Promega</td>
<td>G9241</td>
</tr>
<tr>
<td>Proteasome Glo™ assay (Chymotrypsin-like)</td>
<td>Promega</td>
<td>G8621</td>
</tr>
<tr>
<td>Proteasome Glo™ assay (Trypsin-like)</td>
<td>Promega</td>
<td>G8631</td>
</tr>
<tr>
<td>Proteasome Glo™ assay (Caspase-like)</td>
<td>Promega</td>
<td>G8641</td>
</tr>
<tr>
<td>Click-iT Plus OPP Protein Synthesis Assay Kit</td>
<td>Life Technologies</td>
<td>C10456</td>
</tr>
<tr>
<td>Deposited Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteomics Data from WT/mutator MEFs</td>
<td>This paper</td>
<td>Pride: PXD019695</td>
</tr>
<tr>
<td>Proteomics Data from WT/mutator mitochondria</td>
<td>This paper</td>
<td>Pride: PXD019695</td>
</tr>
<tr>
<td>Phosphoproteomics Data from mutator MEFs</td>
<td>This paper</td>
<td>Pride: PXD019697</td>
</tr>
<tr>
<td>Metabolomics Data from WT/mutator MEFs</td>
<td>This paper</td>
<td>BioStudies: S-BBST444</td>
</tr>
<tr>
<td>RNA sequencing data from WT/mutator MEFs</td>
<td>This paper</td>
<td>GEO: GSE153983</td>
</tr>
<tr>
<td>Experimental Models: Cell Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT/mutator mouse embryonic fibroblasts (MEFs) IDs: WT: 56, 59, 69; Mutator: 49, 50, 53, 68</td>
<td>Laboratory of Aleksandra Trifunovic</td>
<td>N/A</td>
</tr>
<tr>
<td>Primary human NDS skin fibroblasts</td>
<td>Laboratory of Holger Prokisch</td>
<td>ID: 67333</td>
</tr>
<tr>
<td>Primary human lung fibroblasts</td>
<td>Laboratory of Andreas Günther</td>
<td>ID: 409Sp</td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer for RT-qPCR; see table Primer sequences for qRT-PCR</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>siRNAs for silencing experiments, see siRNA Mediated Gene Silencing</td>
<td>This paper</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(Continued on next page)
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Silke Meiners (silke.meiners@helmholtz-muenchen.de).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Data deposition: The mass spectrometry data of this study have been deposited in the ProteomeXchange Consortium at https://proteomecentral.proteomexchange.org/cgi/GetDataset using the dataset identifier PXD019695 (proteomics data), PXD019697 (phospho-proteomics data). Metabolomics data have been deposited at BioStudies (Identifier: S-BSST444). RNA sequencing data have been deposited at GEO https://www.ncbi.nlm.nih.gov/geo/ (Identifier: GSE153983).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
Mouse embryonic fibroblasts from mtDNA mutator mice were generated as previously described (Kukat et al., 2014). Wild-type (WT) and mutator MEFs were cultured in DMEM High Glucose (4.5 g/l) medium (without Sodium pyruvate and L-glutamine) (ThermoFisher Scientific, Rockford, USA) supplemented with 10% (v/v) fetal bovine serum (FBS) (Biochrome), 100 U/mL penicillin/streptomycin (GIBCO, Thermo Fisher Scientific) and 4 mM L-glutamine (Thermo Fisher Scientific) at 37°C and 5% CO₂. MEFs isolated from four individual mtDNA mutator and three individual WT mice were used as different biological replicates (Trifunovic et al., 2005). The different cell lines have the following identifiers and genders: WT: 56 (female), 59 (male), 69 (male); Mutator: 49 (female), 50 (female), 53 (female), 68 (male). Primary skin fibroblasts were obtained from Holger Prokisch (Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany). Skin fibroblasts derived from a healthy donor and from a patient with a mutation in the ND5 gene, which encodes for a mitochondrial complex I subunit. Further information about the donors are not available. Skin fibroblasts were cultured in DMEM High Glucose (4.5 g/l) medium (without sodium pyruvate and L-glutamine) (ThermoFisher Scientific, Rockford, USA) supplemented with 10% FBS, 100 U/mL penicillin/streptomycin, 4 mM L-glutamine (Thermo Fisher Scientific) and 200 μM uridine (Sigma) at 37°C and 5% CO₂. Cells were grown to approx. 70% confluency before passing them into new flasks or using them for experiments. Primary human lung fibroblasts (ID: 409Sp; Male, 51 years, peripheral normal lung tissue, organ donor) were cultured in DEMEM High Glucose (4.5 g/l) medium (without sodium pyruvate and L-glutamine) (ThermoFisher Scientific, Rockford, USA) supplemented with 10% FBS, 100 U/mL penicillin/streptomycin, 4 mM glutamine (ThermoFisher), 2 ng/ml β-FGF (ThermoFisher), 0.5 ng/ml EGF (Sigma-Aldrich) and 5 μg/ml insulin (ThermoFisher).

METHOD DETAILS

Protein extraction
To preserve proteasome activity native protein lysates were prepared. Cell pellets were resuspended in TSDG buffer (10 mM Tris/ HCl, 25 mM KCl, 1.1 mM MgCl₂, 0.1 mM EDTA, 1 mM DTT, 1 mM NaN₃, 10% glycerol, pH 7) containing complete protease inhibitor (Roche Diagnostics, Basel, Switzerland) and phosphatase inhibitor (PhosStop, Roche Diagnostics). Cell suspensions were subjected to seven cycles of freezing in liquid nitrogen and thawing at room temperature. Cell debris was removed by centrifugation and protein concentration in the supernatant was assessed using the Pierce BCA protein assay (ThermoFisher Scientific).

Proteasome activity assays
In order to determine the activity of the three 20S proteasome active sites namely chymotrypsin-like (CT-L), caspase-like (C-L) and trypsin-like (T-L) the Proteasome-Glo Assay (Promega, Fitchburg, USA) was applied according to the manufacturer’s instructions.
Here, 1 µg protein (TSDG lysates) per sample was first diluted with TSDG buffer to obtain equal volumes of TSDG buffer in each sample and then adjusted to a final volume of 20 µL with water. The prepared dilutions were transferred to white flat bottom 96-well plates and mixed with 20 µL of the respective active site specific substrate Suc-LLVY-aminoluciferin (CT-L specific), Z-nLpLD-aminoluciferin (C-L specific) and Z-LRR-aminoluciferin (T-L specific). The different peptide substrates are cleaved by the respective proteasome active site and the released aminoluciferin serves as a substrate for the luciferase contained in the reaction buffer to generate a luminescent signal. This light signal was measured every 5 min for 1 h during the reaction in a Tristar LB 941 plate reader (Berthold Technologies, Bad Wildbad, Germany). For each substrate the samples were measured in technical triplicates.

Western blot analysis

For western blot analysis, 15 µg of protein lysates were mixed with 6x Laemmli buffer (300 mM Tris, 50% Glycerol, 6% SDS, 0.01% Bromphenol blue, 600 mM DTT) and incubated at 95 °C for 5 min. After the incubation, samples were subjected to electrophoresis on 10 - 15% SDS-PAGE gels and blotted onto polyvinylidene difluoride (PVDF) membranes. Electrophoretic separation was performed at 90 – 130 V at room temperature and transfer to PVDF membranes was performed at 250 mA for 90 min at 4 °C. Membranes were blocked using Rotiblock (Roth, Karlsruhe, Germany) and treated with primary antibodies overnight at 4 °C and subsequently with secondary antibodies (1:40.000) for 1 h at room temperature. Antibodies used were: Anti-α1-7 (1:1000, Abcam Cat# ab22674, RRID:AB_2171376), Anti-Rpn6 (1:1000, Novus Cat# NBP1-46191, RRID:AB_10009423), Anti-β5 (1:1000, Abcam Cat# ab90867, RRID:AB_10675505), Anti-Rpt5 (1:1000, Abcam Cat# A303-538A, RRID:AB_10953858), Rpn8 (1:1000, Abcam Cat# ab11436, RRID:AB_298041), Anti-SSb (1:1.000, Abcam Cat# ab137733), Anti-Rpn4 (1:1.000, Abcam Cat# ab103408, RRID:AB_10861889), Anti-p28 (1:1.000, Abcam Cat# ab182576, RRID:AB_2687444), Anti-S6 kinase (1:2.000, Cell Signaling Technology Cat# 2708, RRID:AB_299072), Anti-phospho p70 S6 kinase (1:2.000, Cell Signaling Technology Cat# 9208, RRID:AB_330990), Anti-S6 ribosomal protein (1:2.000, Cell Signaling Technology Cat# 2317, RRID:AB_2238583), Anti-phospho S6 ribosomal protein (1:2.000, Cell Signaling Technology Cat# 4858, RRID:AB_916156), Anti-Raptor (Cell Signaling Technology Cat# 2280, RRID:AB_561245), Anti-K48-UBiqutin (1:3.000, Millipore Cat# 05-1307, RRID:AB_1587578), HRP-conjugated anti-β-Actin (1:40.000, Sigma-Aldrich Cat# A3854, RRID:AB_262011), HRP-conjugated anti-GAPDH (1:20.000, Cell Signaling Technology Cat# 5014, RRID:AB_10693448), Anti-OxPhos Rodent WB Antibody Cocktail Cat# 45-8099, RRID:AB_2533835), Anti-mouse IgG HRP-linked (1:40.000, Sigma-Aldrich Cat# A3854, RRID:AB_262011), HRP-conjugated anti-GAPDH (1:20.000, Cell Signaling Technology Cat# 5014, RRID:AB_10693448), Anti-OxPhos Rodent WB Antibody Cocktail Cat# 45-8099, RRID:AB_2533835), Anti-mouse IgG HRP-linked (1:40.000, Cell Signaling Technology Cat# 7076, RRID:AB_330924), Anti-rabbit IgG HRP-linked (1:40.000, Cell Signaling Technology Cat# 7074, RRID:AB_2099233).

Native gel analysis

15 µg protein of TSDG lysates were diluted with TSDG buffer to the highest sample volume. The diluted lysates were mixed with 5x native loading buffer (250 mM Tris, 50% Glycerol, 0.01% Bromphenol blue) and were loaded onto commercially available 3%–8% gradient NuPAGE Novex Tris-acetate gels (Life Technologies, Darmstadt, Germany). Native proteasome complexes were separated at 150 V for 4 h at 4 °C. After native gel electrophoresis the CT-L activity of the separated native proteasome complexes was determined by an in-gel substrate overlay proteasome activity assay. For this purpose gels were incubated for 30 min at 37 °C in a buffer containing 50 mM Tris, 1 mM ATP, 10 mM MgCl2, 1 mM DTT and 0.05 mM Suc-LLVY-AMC (Bachem, Bubendorf, Switzerland). Fluorescence generated by the CT-L specific cleavage of the fluorogenic Suc-LLVY-AMC peptide substrate in the active proteasome was detected within the gel at an excitation wavelength of 380 nm and emission wavelength of 460 nm using the ChemiDoc XRS+ system (BioRad, Hercules, USA). Finally, the gels were incubated for 15 min in a solubilization buffer (66 mM Na2CO3, 2% SDS, 1.5% β-mercaptoethanol) at room temperature in order to facilitate the subsequent blotting of the proteins using the previously described western blot technique.

Primer sequences for qRT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer (5'-3')</th>
<th>Reverse Primer (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psma3</td>
<td>agatgtgtttgttctgggg</td>
<td>aacgacatctgccacaa</td>
</tr>
<tr>
<td>Psmb5</td>
<td>TCACTGATGGTGCTGAGCCTG</td>
<td>CCATGCTGCTCAGGATCATAT</td>
</tr>
<tr>
<td>Psmb6</td>
<td>CAGAACACACACCCTGGTCCT</td>
<td>CCGTGCATCCAAGACATC</td>
</tr>
<tr>
<td>Psmb7</td>
<td>TCCTGCTGGGGTGCTGTATAAG</td>
<td>TCCAGCACCACACAATAA</td>
</tr>
<tr>
<td>Psmc3</td>
<td>GTGAAGGCCATGGAGTTA</td>
<td>GTTGATCCAGCCATTTCA</td>
</tr>
<tr>
<td>Psmd11</td>
<td>GTCCTACACCCCAAGAAGATTG</td>
<td>AGCTTGACACAGCATT</td>
</tr>
<tr>
<td>Psmd5</td>
<td>TCGAGCACCTCCAGGCTTTT</td>
<td>TCCAGCTCCTGGAGACATT</td>
</tr>
<tr>
<td>Psmd9</td>
<td>TAGAAGCGCAGATCAAAGGCC</td>
<td>TTTCAGCACTCCAGGCTTT</td>
</tr>
<tr>
<td>Psmid10</td>
<td>TTGAAGGAGGGCATTGTTTG</td>
<td>GACGACACCCCTGGCATC</td>
</tr>
<tr>
<td>L19 Rpl19 (housekeeper)</td>
<td>TGATCCCCAGGTTGAGGG</td>
<td>GCCTGCTCCTGGTTGCTTAG</td>
</tr>
</tbody>
</table>
Quantitative real-time RT-PCR
Total RNA isolation was performed by phenol/chloroform extraction using the Roti-Quick-Kit (Roth, Karlsruhe, Germany). 1 µg RNA per sample was transcribed into cDNA by M-MLV reverse transcriptase (Sigma Aldrich, Taukirkchen, Germany). The obtained cDNA was applied for quantitative RT-PCR with the SYBR Green LC480 System (Roche Diagnostic, Mannheim, Germany) using the respective forward and reverse primers for the genes of interest (Psma3, Psmb5, Psmb6, Psmb7, Psmc3, Psmd11, Psmd5, Psmd9, Psmd10) at a concentration of 2 pM. All samples were measured in technical duplicates.

Measurement of ATP levels
Cellular ATP levels were determined using the CellTiter-Glo assay kit (Promega, Madison, WI, USA). Cells were seeded in 6-well plates and cultured for 24 h. After the treatment cells were harvested with trypsin and 40,000 cells/well were transferred to a white flat bottom 96-well plate. CellTiter-Glo reagent was added and the luminescent signal was measured after 3 min at a time for 30 min in total in a Tristar LB 941 plate reader (Berthold Technologies).

Analysis of reactive oxygen species (ROS) in cells
Mitochondrial superoxide generation was analyzed using the MitoSOX® Red probe (Life Technologies) and overall cellular ROS generation was analyzed by H2DCFDA (ThermoFisher Scientific) fluorescence. For fluorescence analysis cells were seeded in 6-well plates and grown for 24 h. Cells were then stained for 30 minutes in medium containing 5 µM MitoSOX® Red or 25 µM H2DCFDA, respectively. Cells were washed with PBS, trypsinized, and resuspended in 500 µL FACS Buffer (PBS, 2% FBS, 20 µM EDTA). Samples were then analyzed by flow cytometry using a BD LSRII Flow Cytometer (BD Biosciences, Heidelberg, Germany) and mean fluorescence intensity was measured.

Cellular oxygen consumption
Oxygen consumption in mtDNA mutator MEFs was measured using a Seahorse XF analyzer (Seahorse Biosciences) and oxygen consumption values were normalized to cell number as assessed by the CyQuant assay kit (Life technologies) (Haack et al., 2012). Oxygen consumption was measured at basal conditions (basal respiration) after addition of 1 µM oligomycin (blocking proton backflow through complex V to measure proton leak), upon addition of 1 µM CCCP (uncoupling the respiratory chain to enable unlimited proton flow through the mitochondrial membrane to induce maximum respiration) and after addition of 2 µM rotenone/antimycin A (blocking complex I and III to inhibit mitochondrial respiration). Non-mitochondrial respiration was subtracted from all values.

Mitochondrial cytochrome c staining
To analyze the mitochondrial network in WT and mutator MEFs, cells were seeded on 15 mm glass coverslips and cultured to 50% confluency. Cells were then fixed on the coverslips using 4% paraformaldehyde for 10 min. Permeabilization was performed with 0.1% Triton-X in PBS for 15 min and unspecific binding sites were blocked with Roti-Immunoblock (Roth, Karlsruhe, Germany) for 1 h at room temperature. Cells were then incubated with anti-cytochrome c antibody (1:1,000, BD Bioscience, San Jose, CA, USA) for 2 h at room temperature. The secondary Alexa Fluor® (AF)-488-coupled antibody (1:750, Life Technologies) was added for 1 h at room temperature. After 2 washing steps in PBS cells were stained with 4'-6-Diamidin-2-phenylindol (DAPI) (Sigma-Aldrich) for 5 min. For confocal laser microscopy (Zeiss LSM710, Oberkochen, Germany) cells were mounted on microscopic slides using DAKO mounting medium.

Isolation of mitochondria
Mitochondria from cultured cells were isolated as previously described (Schmitt et al., 2013). Briefly, cells were resuspended in isolation buffer (300 mM sucrose, 5 mM TES, 200 mM EGTA, pH 7.2, without BSA) to a concentration of 5-7x10⁶ cells per ml and pumped 4 times through a clearance of 6 µm (flow rate 700 µl/min). The homogenate was centrifuged at 800 x g for 10 min. After 2 washing steps in isolation buffer without BSA (PBS, 2% FBS, 20 µM EDTA) the mitochondrial fraction was collected at the 24%/18% interphase and washed once in isolation buffer without BSA (9.000 x g, 10 min at 4°C). Mitochondria were collected at the 24%/18% interphase and washed once in isolation buffer without BSA (9.000 x g, 10 min at 4°C).

Electron microscopy
Electron microscopy of cells and tissue from isolated mitochondria was done as previously described (Zischka et al., 2008). Samples were fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.4 (Electron Microscopy Sciences, Hatfield, USA) for 24 h at minimum. Thereafter glutaraldehyde was removed and samples were washed three times with 0.1 M sodium cacodylate buffer, pH 7.4. Postfixation and prestaining was done for 45 to 60 min with 1% osmium tetroxide (10 mL 4% osmium tetroxide (Electron Microscopy Sciences, cat no. 19190, Hatfield, USA), 10 mL ddH2O, 10 mL 3.4% sodium chloride and 10 mL 4.46% potassium dichromate (pH adjusted to 7.2 with KOH (Sigma Aldrich)). Samples were washed three times with ddH2O and dehydrated with an ascending ethanol series (15 min with 30%, 50%, 70%, 90% and 96%, respectively and two times 10 min with 100%) and propylene oxide (two times 30 min, Serva Electrophoresis GmbH, Heidelberg, Germany). Subsequently, samples were embedded in Epon (8.61 M glycidether 100, (Serva Electrophoresis GmbH), 1.83 M methyladicanhydride (Serva Electrophoresis GmbH),
0.92M dodecenylsuccinic anhydride (Serva Electrophoresis GmbH), 5.53 mM 2,4,6-Tris(dimethylaminomethyl)phenol (Serva Electrophoresis GmbH)). Ultrathin sections were automatically stained with UranyLess EM Stain (Electron Microscopy Sciences) and 3% lead citrate (Leica, Wetzlar, Germany) using the contrasting system Leica EM AC20 (Leica, Wetzlar, Germany) and examined with a JEOL –1200 EXII transmission electron microscope at 80 kV (JEOL GmbH, Freising, Germany). Images were taken using a digital camera (KeenViewII, Olympus, Germany) and processed with the iTEM software package (anlySISFive; Olympus, Germany).

Measurement of cellular NADH levels

Cellular NADH levels in WT and mutator MEFs were determined using the NAD/NADH-Glo assay kit (Promega) according to the manufacturer's instructions. Cells were trypsinized and washed with PBS. 40 000 cells per sample (triplicates) dissolved in 50 μL PBS were transferred in a 96-well plate. Cell lysis was performed using 50 μL 0.2 M NaOH with 1% Dodecyltrimethylammonium bromide (DTAB). Cells were incubated at 60°C for 15 min to deplete NAD⁺ from the lysates. 50 μL 0.25 M Tris, 0.2 M HCl solution was added to the wells. 20 μL of each well were transferred into a white flat bottom 96-well plate and mixed with 20 μL NAD/NADH Glo detection reagent. Obtained luminescence was measured in a Tristar LB 941 plate reader.

Metabolomic analysis

Wild-type and mutator MEFs were seeded in 6 well plates for a final cell number of around 1x10⁶ cells after 24 h. 6 wells per cell line were used for metabolomics analysis and 6 additional wells were counted to determine the final cell number of each cell line. Cells were first washed twice with PBS and then overlaid with 300 μL dry ice cold methanol. Cells of each well were harvested by scraping and transferred into a 0.5 mL PP-Sarstedt Micro tube (Sarstedt AG & Co, Nürnberg, Germany) and frozen immediately on dry ice. Samples were stored at –80°C until metabolomics analysis. Targeted metabolomics analysis was performed at the Helmholtz Zentrum München, Institute of Experimental Genetics, Genome Analysis Center in Neuherberg, Germany. Metabolites were quantified using the AbsoluteIDQ™ Kit p180 (BIOCRATES Life Sciences AG, Innsbruck, Austria) and LC-ESI-MS/MS and FIA-ESI-MS/MS measurements as described previously (Zukunft et al., 2013). The method of AbsoluteIDQ™ p180 Kit has been proven to be in conformance with the EMEA-Guideline “Guideline on bioanalytical method validation (https://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/document/document_detail.jsp?webContentId=WC500109686%26mid=WC0b01ac058009a3dc), which implies proof of reproducibility within a given error range. To each sample, 80 mg glass beads were added. Samples were homogenized using a Precellys24 (PeqLab Biotechnology, Erlangen, Germany) at 4°C for two times over 25 s at 5500 rpm and centrifuged at 4°C and 10,000 x g for 5 min. 10 μL of the supernatants were directly applied to the assay.

Sample handling was performed by a Hamilton Microlab STAR™ robot (Hamilton Bonaduz AG, Bonaduz, Switzerland) and a Ultra-vap nitrogen evaporator (Porvair Sciences, Leatherhead, UK), beside standard laboratory equipment. Mass spectrometric analyses were done on an API 4.000 triple quadrupole system (Sciex Deutschland GmbH, Darmstadt, Germany) equipped with a 1200 Series HPLC (Agilent Technologies Deutschland GmbH, Böblingen, Germany) and a HTC PAL auto sampler (CTC Analytics, Zwingen, Switzerland) controlled by the software Analyst 1.6.2. Data evaluation for quantification of metabolite concentrations and quality assessment was performed with the software MultiQuant 3.0.1 (Sciex) and the MetIDQ software package, which is an integral part of the AbsoluteIDQ Kit. Metabolite concentrations were calculated using internal standards and reported in μM.

Aspartate and pyruvate supplementation

Aspartate medium was freshly prepared for each experiment. For this purpose 10 mM aspartate (Sigma Aldrich, Taufkirchen, Germany) was dissolved in DMEM High Glucose medium. To avoid effects on the cells through an acidification of the medium by aspartate, the pH of the medium was adjusted to 7.5 using 5 M NaOH. The medium was then sterile filtered with sterile, non-pyrogenic, hydrophilic filters (VWR) and 10% FCS was added. 1 mM pyruvate (Sigma Aldrich, Taufkirchen, Germany) was added to the medium. Pyruvate-supplemented medium was then sterile filtered and added to the cells.

Metformin treatment

An optimal non-toxic metformin (Sigma Aldrich) concentration was titrated for each cell line (WT MEFs: 5 mM, skin fibroblasts: 4 mM, lung fibroblasts: 4 mM). Metformin was then directly added to the respective aspartate- or pyruvate-containing medium. Cells were incubated with metformin for 72 h. Cell number and proteasome activity after 72 h were used as a read out.

Lysate preparation for phosphoproteome analysis (Humphrey et al., 2018)

Mutator cells (300,000 cells per well) were seeded in a 6 well plate the day before treatment. Cells were treated with 10 mM aspartate for 4 h. Pre-chilled (4°C) Sodium deoxycholate (SDC) lysis buffer (4% (w/v) SDC, 100 mM Tris -HCl pH 8.5) was added to the cells and scraped off. To inactivate endogenous proteases and phosphatases and ease lysis the lysates were heated to 95°C for 5 min. The lysates were homogenized at 4°C with the Bioruptor (Diagenode) (2 cycles at maximum output power). To determine the protein concentration BCA assays were performed and the lysates were diluted to identical protein concentrations of appropriate starting material in a final volume of 270 μL SDC lysis buffer. Reduction of caramidomethylate cysteine residues and disulphide bonds was performed by adding 30 μL of reduction/alkylation buffer in a ratio 1:10 to the lysates and incubation for 5 min, at 45°C and 1500 rpm. After lysates had been cooled down to RT, the enzymes lys-C (Wako) and trypsin (Sigma) were added (ratio of 1:100) and digestion was carried out overnight at 37°C with shaking (1500 rpm).
Phosphopeptide enrichment
C8 StageTips (Supelco) were prepared for each sample as described in the protocol by Rappsilber et al. (2007). Before adding 100 µL EP enrichment buffer (48% (vol/vol) Trifluoroacetic acid (TFA), 8 mM KH2PO4) to the samples (mix 1.500 rpm, 30 s), 400 µL isopropanol was added and mixed for 30 s, 1.500 rpm to prevent precipitation. The ratio of TiO2 beads to protein should be 12:1 (wt:wt). The beads were resuspended in EP loading buffer (6% (vol/vol) TFA/80% (vol/vol) acetonitrile (ACN)) at a concentration of 1 mg/µL and an aliquot of suspended beads was pipetted to the samples and the samples were shaken for 5 min, 40°C, 2.000 rpm. The beads were pelleted via centrifugation at 2.000 g for 1 min. The supernatant (the non-phosphopeptides) was discarded. The pellets were washed 4x with 1 mL EP wash buffer (5% (vol/vol) TFA/60% isopropanol (vol/vol)) by shaking at RT for 30 s, 2000 rpm. After each washing step the beads were pelleted (2.000 g, 1 min) and the supernatant was discarded. After the final washing step the beads were resuspended in 75 µL EP transfer buffer (0.1% TFA/60% (vol/vol) isopropanol) and transferred onto the top of a C8 StageTip. To ensure all beads were transferred from the vial another 75 mL EP transfer buffer were added to each sample and transferred to the C8 StageTip. The StageTips were then centrifuged at 1500 g for 8 min at RT to dryness using the adaptor for the StageTips. StageTips were washed with SDB-RPS wash buffer 1 (1% (vol/vol) TFA in isopropanol) and centrifuged until dryness at 1500 g, 8 min, RT. Next, one washing step with SDB-RPS wash buffer 2 (0.2% (vol/vol) TFA/5% (vol/vol) ACN) was performed. By addition of 60 µL SDB-RPS elution buffer (Add 20 µL of ammonia solution (NH4OH) to 4 mL of 60% (vol/vol) ACN) the phosphopeptides were eluted (1500 g, 5 min, RT) and collected into clean PCR strip tubes. Under vacuum at 45°C the samples were dried in an evaporative concentrator. Samples were resuspended in 7 µL MS loading buffer (0.1% TFA/2% (vol/vol) ACN) by incubation in a sonicating water bath on low power for 5 min. Afterward phosphopeptides were spun down at 2000 g for 1 min at RT. Detection of phosphopeptides via Mass spectrometry was performed according to the EasyPhos protocol.

StageTip desalting of phosphopeptides
SDB-RPS StageTips (Supelco) were prepared for each sample as described in the protocol by Rappsilber et al. (2007). 100 µL of SDB-RPS loading buffer (1% (vol/vol) TFA in isopropanol) were added to each sample and then transferred onto the top of a SDB-RPS StageTip. Centrifugation was carried out at 1500 g for 8 min, RT until dryness using the adaptor for the StageTips. StageTips were washed with SDB-RPS wash buffer 1 (1% (vol/vol) TFA in isopropanol) and centrifuged until dryness at 1500 g, 8 min, RT. Next, one washing step with SDB-RPS wash buffer 2 (0.2% (vol/vol) TFA/5% (vol/vol) ACN) was performed. By addition of 60 µL SDB-RPS elution buffer (Add 20 µL of ammonia solution (NH4OH) to 4 mL of 60% (vol/vol) ACN) the phosphopeptides were eluted (1500 g, 5 min, RT) and collected into clean PCR strip tubes. Under vacuum at 45°C the samples were dried in an evaporative concentrator. Samples were resuspended in 7 µL MS loading buffer (0.1% TFA/2% (vol/vol) ACN) by incubation in a sonicating water bath on low power for 5 min. Afterward phosphopeptides were spun down at 2000 g for 1 min at RT. Detection of phosphopeptides via Mass spectrometry was performed according to the EasyPhos protocol.

Bioinformatic analysis of phosphoproteomics data
The Phospho(STY)Sites.txt file of the MaxQuant output was used for analysis with Perseus (version 1.6.5.0). The table was filtered to retain only those sites that have a localization probability > 0.75. The data was log2 transformed and entries form reverse data base hits and potential contaminants were filtered out. Protein annotations were added and the data was filtered to have at least three out of four quantified values in either the WT or the mutator group. The data was normalized. Zero values were imputed with a normal distribution of artificial values generated at 1.6 standard deviations, subtracted from the mean, of the total intensity distribution of four quantified values in either the WT or the mutator group. To identify significantly regulated phosphosites a Student’s t test was performed (S0 = 1, FDR 0.1). Fisher exact test (FDR > 0.02) was used to find enriched kinase motifs in the regulated phosphosites. The fisher exact test determines if there are non-random associations between a categorical column and all terms in the other categorical columns.

Filter-aided sample preparation for proteomic analysis
Protein content was determined using the Pierce BCA protein assay (Thermo Scientific, Rockford, USA) and 10 µg RIPA protein lysate (50 mM Tris, 150 mM NaCl, 1% NP-40, 0.5% Sodium deoxycholate, 0.1% SDS) was subjected to tryptic digest using a modified filter-aided sample preparation (FASP) protocol (Grosche et al., 2016; Wiśniewski et al., 2009). Peptides were collected by centrifugation and acidified with 2 µl 100% trifluoroacetic acid prior to mass spectrometric analysis.

Proteomic analysis
For LC-MS/MS acquisition a QXactive HF mass spectrometer (ThermoFisher Scientific, Dreieich, Germany) coupled to a RSLC system (ThermoFisher Scientific) was used. Approx. 0.5 µg of peptides were automatically loaded to the HPLC system equipped with a nano trap column (300 µm inner diameter x 5 mm, packed with Acclaim PepMap100 C18, 5 µm, 100 Å; LC Packings, Sunnyvale, CA). After 5 min, peptides were eluted from the trap column and separated using reversed phase chromatography (Acquity UPLC M-Class HSS T3 Column, 1.8 µm, 75 µm x 250 mm, Waters, Milford, MA) by a nonlinear gradient of 0.1% formic acid in acetonitrile ranging from 3% to 41%. The high-resolution (60.000 full width at half-maximum) MS spectrum was acquired with a mass range from 300 to 1500 m/z with automatic gain control target set to 3 x 10^6 and a maximum of 50 ms injection time. From the MS prescan, the 10 most abundant peptide ions were selected for fragmentation (MSMS) if at least doubly charged, with a dynamic exclusion of 30 s. MSMS spectra were recorded at 15.000 resolution with automatic gain control target set to 1 x 10^5 and a maximum of 100 ms injection time. Normalized collision energy was set to 28 and all spectra were recorded in profile type.
Previously described by Sullivan et al. (2015): and 4 mL DMEM High Glucose medium containing 10 mM aspartate was added to the wells. Cells were then counted again at day 5 for each cell line to determine the starting cell number after cell seeding. For aspartate supplementation cells were washed with PBS 20,000 cells per cell line were seeded as triplicates in 6 well plates. After attachment of the cells overnight control wells were counted.

Cell proliferation assay

was performed with the DAVID Bioinformatic Resources 6.8.

the global distribution of the values for all proteins, which is reported as normalized enrichment score. Additional pathway analysis for every annotation term whether the corresponding numerical values have a preference to be systematically larger or smaller than Biological process (GO:BP), Molecular function (GO:MF) and Cellular Component (GO:CC) (Cox and Mann, 2012). In brief, it is tested for every annotation term whether the corresponding numerical values have a preference to be systematically larger or smaller than the global distribution of the values for all proteins, which is reported as normalized enrichment score. Additional pathway analysis was performed with the DAVID Bioinformatic Resources 6.8.

Cell proliferation assay

20,000 cells per cell line were seeded as triplicates in 6 well plates. After attachment of the cells overnight control wells were counted for each cell line to determine the starting cell number after cell seeding. For aspartate supplementation cells were washed with PBS and 4 mL DMEM High Glucose medium containing 10 mM aspartate was added to the wells. Cells were then counted again at day 5 of the experiment to determine the final cell number and doubling rates per day were calculated with the following formula as previously described by Sullivan et al. (2015): Proliferation Rate (Doublings per day) = log2 (Final cell count (day 5)/Initial cell count (day 1))/4 (days)

Protein synthesis assay (WT versus mutator MEFs)

Nascent protein synthesis was analyzed using the Click-iT Plus OPP Protein Synthesis Assay Kit (Life Technologies, Carlsbad, CA, USA). 6,000 cells/well were seeded in black clear-bottom 96 well plates and left over night to attach to the plate. Cells were then treated for 4 h with control medium or with medium containing 100 μM cycloheximide. After the treatment, medium was removed and cells were incubated with growth medium containing 20 μM Click-iT O-propargyl-puromycin (OPP) reagent for 30 min. Afterward, OPP-containing medium was removed, cells were washed with PBS and fixed with 4% PFA for 15 min. After fixation, cells were permeabilized in 0.5% Triton X-100 in PBS for 15 min, washed twice with PBS and stained by adding 50 μl Alexa Fluor® (AF)-647 picolyl azide-containing Click-iT Plus OPP reaction cocktail per well and incubating for 30 min. Afterward, cells were washed with PBS and nuclei were stained by incubation with HCS NuclearMask Blue Stain in PBS for 30 min. Cells were washed again twice with PBS and fluorescence was measured using the LSM710 fluorescence microscope (Zeiss, Oberkochen, Germany). Protein synthesis was measured as the mean intensity of the red signal and normalized to cell number assessed by the blue NuclearMask signal.

Protein synthesis assay (aspartate treatment of mutator MEFs)

20,000 cell per mutator MEF cell line (n = 4) were seeded on coverslips in 6 well plates. After overnight regeneration cells were treated with 10 mM aspartate supplemented in high glucose medium for 48 h. Cells were then treated for 4 h with control medium or with medium containing 100 μM cycloheximide. After the treatment, medium was removed and cells were incubated with growth medium containing EZClick™ O-propargyl-puromycin (OPP) reagent (Biovision, Milpitas, USA) for 30 min. Afterward, OPP-containing medium was removed, cells were washed with PBS and fixed with 4% PFA for 15 min. After fixation, cells were permeabilized in 0.5% Triton X-100 in PBS for 15 min, washed twice with PBS and stained by adding 500 μl EZClick™ fluorescence azide reaction cocktail for 30 min. Afterward, cells were washed with PBS and nuclei were stained by incubation with 4′,6-Diamidino-2-phenylindol (DAPI) (Sigma-Aldrich) in PBS for 30 min. Cells were washed again with PBS and mounted on object slides with DAKO mounting medium (DAKO, Hamburg, Germany). Fluorescence was measured using the LSM710 fluorescence microscope (Zeiss).

Gene annotation enrichment analysis was performed with the 1D annotation enrichment algorithm as previously described (Schiller et al., 2015). As gene annotations for significance tests, we used the Uniprot Keyword annotation as well as Gene Ontology terms Biological process (GO:BP), Molecular function (GO:MF) and Cellular Component (GO:CC) (Cox and Mann, 2012). In brief, it is tested for every annotation term whether the corresponding numerical values have a preference to be systematically larger or smaller than the global distribution of the values for all proteins, which is reported as normalized enrichment score. Additional pathway analysis was performed with the DAVID Bioinformatic Resources 6.8.

Mitochondrial assignment of proteins was assessed using the Mitominer software (Mitominer 4.0) (Smith and Robinson, 2016). Analysis was performed based on gene symbols.

Progenesis output tables were analyzed using the Perseus software suite (version 1.5.8.7) (Tyanova et al., 2016). Log2 transformed mass spectrometry intensity values were filtered to have at least three out of four quantified values in either the WT or the mutator group. Zero values were imputed with a normal distribution of artificial values generated at 1.6 standard deviations, subtracted from the mean, of the total intensity distribution and a width of 0.3 standard deviations. This places the imputed values at the lower limit of the intensity scale, which represents detection limit of the used instrumentation. For gene annotation enrichment analysis of the data from isolated mitochondria, we used 710 proteins that were confirmed to be true mitochondrial proteins based on the Mitominer software (see above).

Gene annotation enrichment analysis was performed with the 1D annotation enrichment algorithm as previously described (Schiller et al., 2015). As gene annotations for significance tests, we used the Uniprot Keyword annotation as well as Gene Ontology terms Biological process (GO:BP), Molecular function (GO:MF) and Cellular Component (GO:CC) (Cox and Mann, 2012). In brief, it is tested for every annotation term whether the corresponding numerical values have a preference to be systematically larger or smaller than the global distribution of the values for all proteins, which is reported as normalized enrichment score. Additional pathway analysis was performed with the DAVID Bioinformatic Resources 6.8.

Mitochondrial assignment of proteins was assessed using the Mitominer software (Mitominer 4.0) (Smith and Robinson, 2016). Analysis was performed based on gene symbols.
siRNA mediated mRNA silencing

We first determined the optimal siRNA concentrations for efficient knockdown of Rpn4, p28 and Raptor (10 nM), which did not affect cell viability and proliferation. As Rpn6 is an essential proteasome subunit, we performed only a partial knockdown of this subunit (0.3 nM), which did not affect cell growth. Reverse transfection of mutator MEFs was used to deliver siRNAs. Two different siRNAs and control siRNAs were used for each of the different targets (p28: s203895+s79154; Rpn6: s87416+s87415; Rpn4: s84561+s84562, Control siRNA Negative Control #1+#2, Ambion, Thermo Fisher Scientific). Raptor knockdown was performed with one Raptor siRNA (s92713) and Control siRNA Negative Control #1. siRNAs were first incubated with Opti-MEM for 5 min at RT and 5 μL of transfection reagent (RNAiMax, Thermo Fisher Scientific) was applied per 6 well. siRNAs were incubated with transfection reagent for further 20 min at RT. Cells were harvested in antibiotic-free medium, counted, and plated in 6 well plates. 20,000 cells per well were plated for 72 h aspartate treatment and 100,000 cells per well for 48 h of silencing without aspartate. Opti-MEM containing siRNAs and transfection reagents was added to the cells. The next morning medium was changed either with normal DMEM High glucose medium or medium containing 10 mM aspartate. Silencing efficiency was confirmed via immunoblotting of the respective proteins.

Rapamycin and aspartate cotreatment of mutator cells

Optimal concentration for rapamycin was first determined for mutator cells by assaying phosphorylation of p70 S6 kinase. At a concentration of 0.5 nM mTORC1 was specifically inhibited while mTORC2 was not affected (no decrease in the phosphorylation of Akt). Mutator cells were seeded the day before the treatment. 40,000 cells per well were used per 6 well. After overnight attachment cells were treated with 4 mL of medium containing 10 mM aspartate and 0.5 nM rapamycin for 72 h. Efficiency of mTOR inhibition was confirmed by reduced phosphorylation of p70 S6 kinase.

Bulk mRNA sequencing

300,000 cells from one representative WT and mutator MEF cell line were seeded in 6 well plates. Cells for 5 technical replicates per cell line were plated. After 48 h cells were harvested.

Strand-specific, polyA-enriched RNA sequencing was performed as described earlier (Haack et al., 2013). Briefly, RNA was isolated from whole-cell lysates using the Total RNA kit (Peglab, VWR) and RNA integrity number (RIN) was determined with the Agilent 2100 BioAnalyzer (RNA 6.000 Nano Kit, Agilent). For library preparation, 1 μg of RNA was poly(A) selected, fragmented, and reverse transcribed with the Elute, Prime, Fragment Mix (Illumina). A-tailing, adaptor ligation, and library enrichment were performed as described in the TruSeq Stranded mRNA Sample Prep Guide (Illumina). RNA libraries were assessed for quality and quantity with the Agilent 2100 BioAnalyzer and the Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies). RNA libraries were sequenced as 150 bp paired-end runs on an Illumina HiSeq4000 platform. The STAR aligner (v 2.4.2a) with modified parameter settings (–two-pass-Mode = Basic) was used for split-read alignment against the human genome assembly hg19 (GRCh37) and UCSC known gene annotation. To quantify the number of reads mapping to annotated genes we used HTseq-count (v0.6.0) (Anders et al., 2015). FPKM (Fragments Per Kilobase of transcript per Million fragments mapped) values were calculated using custom scripts. Normalized dataset was analyzed using the Peruse Software as described in the proteomics section.

Cotreatment of bortezomib and pyruvate/metformin

40,000 WT MEFs/well or 50,000 mutator MEFs/well were seeded into 24-well plates. The next day, medium was exchanged with 1 mL of medium containing 1 mM pyruvate, 5 mM metformin or a combination of both. Cells were incubated for 24 h. Following, Bortezomib (stock concentration: 2.6 mM, dissolved in water) was added to the wells in different concentrations as indicated in the respective figure. Cells were then incubated for further 48 h, harvested and analyzed.

Cell viability assay (MTT)

Cellular viability was measured using the 2,5-diphenyltetrazolium bromide (MTT) assay. 40,000 WT MEFs/well or 50,000/well mutator MEFs were seeded into 24-well plates. Cells were grown for 24 h and medium was exchanged to 1 mL treatment or control medium as indicated in the figures. After treatment, 200 μL of freshly prepared thiazolyl blue tetrazolium bromide solution (5 mg/ml in PBS) (Sigma-Aldrich, St. Louis, MO) was added to each well and cells were incubated for 30 min at 37°C. The supernatant was aspirated, and blue crystals were dissolved in isopropanol + 0.1% Triton X-100. 200 μl of the colored solution were transferred in a 96-well plate. Each sample was measured in duplicates. Absorbance was measured at 570 nm using a Tristar LB 941 plate reader.

Live/dead staining with annexin V/PI

Induction of apoptosis or necrosis was analyzed by staining cells with an Annexin V antibody and Propidium iodide (PI). Cells were seeded into 6-well plates and grown for 24 h. Cells were then treated with Bortezomib for 24 h. After the treatment, cells were trypsinized, washed twice with PBS and resuspended in 100 μl Annexin V binding buffer, 5 μl anti-Annexin V-FITC (BD Biosciences, San Jose, CA) and 10 μl PI staining solution were added and cells were incubated for 15 min at room temperature in the dark. After the incubation time, 400 μl Annexin V binding buffer were added and sample fluorescence was measured by flow cytometry analysis using the Becton Dickinson LSRII and analyzed using FlowJo software (version 7.6.5).
QUANTIFICATION AND STATISTICAL ANALYSIS

Data are depicted in the figures as mean ± SEM. All statistical analysis was performed using GraphPad Prism software (Version 5+7, GraphPad, San Diego, CA, USA). Statistical tests were applied to all experiments where applicable. The applied statistical tests are indicated in the respective figure legends. Student’s unpaired t test was used to determine significance between WT and Mut MEFs. Student’s paired t test was used to determine significant differences when different mutator cell lines were treated with aspartate or pyruvate. The one sample t test was used to determine significance when native gel immunoblotting was performed with one single cell line or different mutator cell lines to eliminate signal intensity differences between replicates or individual mutator cell lines. Significance was indicated in the figures as *: p < 0.05, **: p < 0.01 or ***: p < 0.001. Data that are not labeled with a star did not reach statistical significance. Statistical analysis of the respective experiments was performed as explained in the figure legends.