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Abstract

Despite subjects with Dominantly-Inherited Alzheimer’s Disease (DIAD) represent less than 1% 

of all Alzheimer’s Disease (AD) cases, the Dominantly Inherited Alzheimer Network (DIAN) 

initiative constitutes a strong impact in the understanding of AD disease course with special 

emphasis on the presyptomatic disease phase. Until now, the 3 genes involved in DIAD 

pathogenesis (PSEN1, PSEN2 and APP) have been commonly merged into one group (Mutation 

Carriers, MC) and studied using conventional statistical analysis. Comparisons between groups 

using null-hypothesis testing or longitudinal regression procedures, such as the linear-mixed-

effects models, have been assessed in the extant literature.

Within this context, the work presented here performs a comparison between different groups of 

subjects by considering the 3 genes, either jointly or separately, and using tools based on Machine 

Learning (ML). This involves a feature selection step which makes use of ANOVA followed by 

Principal Component Analysis (PCA) to determine which features would be realiable for further 

comparison purposes. Then, the selected predictors are classified using a Support-Vector-Machine 

(SVM) in a nested k-Fold cross-validation resulting in maximum classification rates of 72–74% 

using PiB PET features, specially when comparing asymptomatic Non-Carriers (NC) subjects with 

asymptomatic PSEN1 Mutation-Carriers (PSEN1-MC). Results obtained from these experiments 

led to the idea that PSEN1-MC might be considered as a mixture of two different subgroups 

including: a first group whose patterns were very close to NC subjects, and a second group much 

more different in terms of imaging patterns. Thus, using a k-Means clustering algorithm it was 

determined both subgroups and a new classification scenario was conducted to validate this 

process. The comparison between each subgroup vs. NC subjects resulted in classification rates 

around 80% underscoring the importance of considering DIAN as an heterogeneous entity.

Keywords

Dominantly-Inherited Alzheimer’s Disease (DIAD); DIAN; Alzheimer’s Disease (AD); 
Neuroimaging; Machine Learning

1. Introduction

Alzheimer’s Disease (AD) is neuropathologically defined by the presence of amyloid-β 
(Aβ)-plaques and by neurofibrillary tangles associated with a suggestive clinical phenotype 

[1, 2, 3]. Clinically AD is characterized by a progressive loss of memory and other 

neuropsychiatric changes such as decline in executive functioning and behavioral changes 

[4, 5].
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Since the development of a theoretical model of biomarker changes for AD [6], multiple 

longitudinal studies about AD have tried to find the exact triggers that could explain the 

prognosis and evolution of the disease. Clinicopathologic evidence suggests that 

pathological changes leading to AD such as deposition of Aβ-plaques begin many years 

prior to onset of cognitive symptoms [7, 8, 9, 10], but it still awaits for further empirical 

validation. In addition to this, as some more recent works point out, the nature of AD might 

be mistakenly described until now as different genetic alterations, which are causing the 

same disease, are expressing themselves through different triggers [11, 12, 13, 14, 3, 15].

Dominantly Inherited Alzheimers Disease (DIAD) only represent about 1% of all AD cases, 

but it has a marked importance for AD research [16]. This type of AD is caused by known 

mutations in the Amyloid Precursor Protein (APP) [17], Presenilin-1 (PSEN1) [18, 3] (most 

frequently found), or Presenilin-2 (PSEN2) [19] genes. DIAD is quite similar to the more 

common Late Onset AD (LOAD) in many features including clinical presentation and 

disease course [20, 21, 22, 23, 3, 24]. In this sense, the main difference between DIAD and 

LOAD is in the age at onset, family history and co-pathologies [25].

To facilitate the study of DIAD and its comparison with LOAD, the National Institute on 

Aging (NIA) funded the Dominantly Inherited Alzheimer Network (DIAN) [26]. This study 

assesses people at risk of inheriting an autosomal dominant AD mutation and monitor their 

evolution through a standardized procedure which includes clinical, cognitive, 

neuroimaging, CSF and plasma tests among others.

Currently, the DIAN study presents more than 450 subjects with 90 different mutations in 

multiple genes1.

The reason why DIAN is so important for AD research is related to the understanding of the 

disease natural history. It is certain that a person with DIAD will develop AD in the future, 

so a follow-up of different biomarkers from DIAD subjects (specially during their initial 

stages as asymptomatic carriers) could provide a great deal of information which may later 

be used to make a model of the disease [27, 28]. Findings obtained from DIAD can be 

extrapolated to the sporadic LOAD so it is expected that better treatments will be prescribed 

at pre-clinical stages of the disease when damage is minimal and pathogenesis can be slowed 

down or even prevented from progressing [7, 29, 30, 31, 24, 5].

DIAD research has played an important role in the fact that it is now well-accepted that AD 

pathogenesis starts 20–30 years before the onset of clinical symptoms [5]. Previous works 

dedicated to decipher the time course of DIAD have made use of regression models to 

explore the evolution of AD markers based on a predicted variable called AAOE (Age At 

Onset Estimated) and its equivalent EYO (Estimated Years to Onset) which is predicted 

considering the disease onset age of their first-degree relatives [32, 22] or the average age of 

onset for each mutation type [25].

Over the last decades, neuroscience has transitioned from qualitative reports of case studies 

from abnormal conditions to quantitative statistical maps to characterize the global pattern of 

1Or mutation combinations like Exons duplications for example.
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disease. With the inclusion of classical statistics, pathological models were obtained based 

on classical statistical assumptions on data, which are not always fulfilled [33], making 

interpretation of the results arguable. Fortunately, the recent use of Machine Learning (ML) 

techniques in the analysis of different neurological disorders [34] is having a noticeable 

impact on diagnosis and prognosis of diseases, such as Parkinson’s Disease (PD) or AD, 

even though their complex pathological models are not yet completely understood in limited 

sample sizes. This conforms a potentially useful screening tool in the diagnosis of unseen 

subjects or in the development of new treatments. The latter, combined with the emergence 

of highly detailed databases like DIAN, might result in an accurate model of AD disease 

courses, despite the definition of AD as a mixture of different AD subtypes [35].

With this aim, the work presented here proposes a DIAD analysis based on ML techniques 

to discern between Non-Carriers (NC) and Mutation-Carriers (MC) participants grouped by 

which gene is causing (or will cause) the disease. This give us 3 main hypothesis including 

1) to check whether all data modalities are necessary for DIAD diagnosis including: Non-

Imaging Biomarkers (NIB) such as Aβ4(0,2) amyloid, τ protein or the apolipoprotein APOE 

among others; and imaging features extracted from PiB PET (PIB), FDG PET (FDG) and 

MRI scans (MRI); 2) to validate if reducing the MC heterogeneity via separating the 

mutations by their responsible gene has a significative impact on the DIAD diagnosis 

accuracy; and 3) to determine if the model generated using ML can be used to determine in 

which period before the symptoms onset group differences are larger.

Final results presented a high performance in classification rates when using PET features 

with subgrouping MC gene expression even though there may not yet be cognitive 

symptoms (EYO greater than 5 and 10 years), as well as when clustering asymptomatic 

PSEN1 MC into two groups: a first group quite similar to the NC group and a second group 

totally different. The application of a ML approach to these new subsets has resulted in a 

novel model of the disease and it is expected to have a great impact on DIAD knowledge.

2. Material & Methods

2.1. Participants

DIAN project was founded by Washington University School of Medicine in 2008. This 

study has been approved by the local institutional review boards of each participating site 

from United States, Canada, France, Spain, United Kingdom and Australia among other 

places. Full details of participating sites, enrollment, assessment protocol and infrastructure 

of DIAN were published in [26]. The inclusion criteria list includes statements such as be 

aged 18 (inclusive) or older and the child of an affected individual (clinically or by testing) 

in a pedigree with a known mutation for DIAD; to have two persons who are not their full-

blooded siblings who can serve as collateral sources for the study; or be fluent in a language 

approved by the DIAN Coordinating Center.

In this work, we have made use of data results from the DIAN Observational Study Data 

Freeze 11 but excluding previously those participants with least one of the following 

diagnosed diseases: cerebral stroke (3 subjects), transient ischemic attack (1 subject), 

dementia by alcoholism (4 subjects), Parkinson’s disease (1 subject), traumatic brain injury 
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with chronic deficit/dysfunction (3 subjects), dementia with Lewy bodies, vascular 

dementia, dementia by unknown causes (3 subjects), frontotemporal dementia, primary 

progressive aphasia, progressive nonfluent aphasia, semantic dementia, other types of 

dementia (e.g. logopenic, anomic or transcortical), progressive supranuclear palsy, 

corticobasal degeneration, Huntington’s disease, prionic dementia, Down syndrome, 

hydrocephalus and central nervous system neoplasm. Besides, in order not to increase the 

heterogeneity in symptomatic subjects, LOAD cases in DIAN study have been also 

discarded (13 subjects). As a result, our average dataset consists of a total of 442 subjects 

(184 males, 41.63%) with an age at baseline of 38.71 ± 10.98 years2. Other disorders such 

as B12 vitamin deficit, depresion, alcoholism, abuse of other substances, seizures and 

traumatic brain injury without chronic deficit/dysfunction or thyroid problems have been 

included due to the large amount of participants with at least one of those diagnostics.

2.2. Genetic groups

Mutations in the APP, PSEN1 and PSEN2 genes were identified in DIAN from DNA 

extracted from peripheral blood samples as described in [36]. Among all the included 

participants, 265 were DIAD Mutation Carriers (MC): 202 PSEN1, 22 PSEN2 and 43 APP; 

while 173 were Non-Carriers (NC) subjects. The 2 remaining subjects were labelled as 

Unknown and they were not included in the analysis.

2.3. Non-imaging markers

In the models proposed in [20, 8], fibrillar amyloid-β (Aβ) depositions play a key role in the 

development of AD [37]. Once amyloid Aβ depositions begin to accumulate, many other 

biomarkers such as CSF τ protein also becomes abnormal. This stage is followed by a brain 

atrophy (measured by volumetric MRI tests) and cognitive symptoms.

As mentioned in section 1, several works suggest that there are differences in pathogenesis 

between DIAD and LOAD [38, 39]. Following recent works [40], and based on availability, 

we decided to include in this study markers such as Aβ42, Aβ40, Aβ42:Aβ40 ratio, τ and p-τ 
as non-imaging biomarkers (NIB) available ro most of our subjects (table 1).

Detailed information about data preparation is available from: https://dian.wustl.edu˜/our-

research˜/observational-study/.

2.4. Imaging markers

DIAN dataset includes a wide range of imaging variables from MRI and PET images for 

each participant. Two classes of PET imaging are available for Data Freeze 11: FDG (PET 

imaging using Fluorodeoxyglucose F18 for imaging of the brain metabolism) and PiB (PET 

imaging using Pittsburgh Compound B for imaging of amyloid depositions). This section 

gives some details about data acquisition and complementary tools.

2.4.1. MRI acquisition—MRI acquisition was carried out following the Alzheimer 

Disease Neuroimaging Initiative (ADNI) protocol [6]. Each participant received an 

2Given in terms of mean and standard deviation.
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accelerated 3D sagittal T1-weighted MPRAGE on a 3T scanner. Resulting images presented 

a voxel size of 1.1×1.1×1.2 mm and an adquisition time of approximately 5–6 minutes. All 

scans have been acquired with a Siemens BioGraph mMR PET-MR 3T scanner or a Siemens 

Trio 3T MRI scanner depending on the center where tests have been obtained.

All MRI sessions have been processed using the FreeSurfer, v5.3 analysis suite including all 

patches, for cortical reconstruction and volumetric segmentation [41]. The technical details 

of these procedures are described in prior publications [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 

52, 53]. More information is available on the website (http://surfer.nmr.mgh.harvard.edu/).

The MRI preprocessing pipeline includes: motion correction and segmentation of the 

subcortical white matter and deep gray matter volumetric structures on T1 combined with 

T2 images [48]; intensity normalization; registration to a spherical atlas which utilizes 

individual cortical folding patterns to match cortical geometry across subjects [45]; and 

parcellation of the cerebral cortex into units based on gyral and sulcal structure [54]. For 

each vertex on the cortical surface, thickness was calculated as the shortest distance from the 

gray/white boundary to the gray/csf boundary [55].

2.4.2. FDG and PiB acquisition—Amyloid imaging was performed with a bolus 

injection of approximately 15 mCi of [11C]PiB. Dynamic imaging acquisition started either 

at injection for 70 minutes or 40 minutes post-injection for 30 minutes. For analysis, the PiB 

PET data between 40 to 70 minutes were used. Metabolic [18F]FDG-PET imaging that 

assess the neurodegenerative processess in AD [56, 57, 58], was performed with a 3D 

dynamic acquisition. It began 40 minutes after a bolus injection of approximately 5 mCi of 

FDG and lasted for 20 minutes.

PET images were motion corrected and registered to their MRI using the methods described 

in [59, 60]. For each region-of-interest3, standardized uptake value ratio (SUVR) was 

calculated using a cerebellar reference.

Dynamic PET scans are divided into early, middle, and late frames and registered to correct 

for head motion. The T1 weighted MRI scans are registered to the Talairach atlas and to the 

PET images, and transformed into an atlas space. Since PET imaging has a spatial resolution 

around 6 mm, the regional activity measured directly from PET is a linear combination of 

activity from different regions. This phenomenon is known as the partial volume effect [63, 

64] so, it was compensated through the use of a regional spread function for partial volume 

correction in the analysis [65].

2.5. Summary of input variables

Considering both imaging and non-imaging variables available in DIAN database, a final set 

of 1755 features were considered in this work including 10 NIB tests and 1745 imaging 

features (521 FDG, 184 MRI and 1040 PiB).

3Regions obtained using FreeSurfer, v5.3 following the same protocols as in ADNI cohort study [61, 62].
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2.6. Symptomatology

Separability between symptomatic and asymptomatic subjects have been carried out taking 

into account the Clinical Dementia Rating (CDR) scale [66, 67]. While asymptomatic or 

preclinical subjects are those whose CDR results are equal to 0, sympomatic subjects can be 

divided according to CDR scale into early symptomatic (CDR = 0.5), mild dementia (CDR 

= 1), moderate dementia (CDR = 2) and severe dementia (CDR = 3) [68]. Table 2 gives a 

description of DIAN participants as a function of their baseline CDR results.

2.7. Experiments Definition

To cover all the questions proposed for this work, three experiments have been described as 

follows:

2.7.1. Experiment 1 - Between-group discrimination ability by data type—
Until now, most of the works proposed for DIAN database analysis were focused on the 

separability between MC and NC subjects using conventional statistical tests like t-Test. As 

mentioned in section 1, although some of these works have pointed out the relevance of 

considering the MC separately according to their mutation, we have decided to include a 

direct comparison between MC and NC as our reference baseline case to improve. It is 

expected that resulting conclusions could help with the clinical practice for two main 

reasons: 1) if focusing only on statistically relevant features, to be able to discard non 

significant ones, it could be reduced the amount of time and costs associated to these kind of 

tests; and 2) based on this reduced dataset, it could be established a simplified model for 

DIAD progression. According to these two ideas, the first experiment proposed in this work 

makes a between-group discrimination to discern between MC and NC to determine which 

features give a better classification performance (diagnosis) and which of them might be 

discarded from the point of view of a Machine Learning analysis.

2.7.2. Experiment 2 - Assessment of group heterogeneity in mutation 
carriers—Once determined which features get a better performance when comparing MC 

vs. NC, next step will be to determine if subgrouping the MC set according to the affected 

genes (PSEN1, PSEN2, APP) improves classification accuracy. With the exception of 

defined analysis made in PSEN1 MC subjects subgroups [69, 4, 28, 3], there is no statistical 

evidence as yet that DIAD should be studied as an homogeneous entity including all subjects 

with at least one of those genes regardless the kind of mutation they present or treat each 

mutation separately. With this aim, we have made a binary classification between NC vs. 

PSEN1 carriers as the most populated MC subgroup and a multiclass classification 

comparing NC vs. PSEN1 vs. PSEN2 and vs. APP with particular attention to those features 

which gave better results in experiment 1.

2.7.3. Experiment 3 - Comparisons based on EYO—Having fitted the best model 

of DIAD according to the affected genes, a temporal comparison of these groups was 

performed. For that, several classifications of subjects subgrouped according to their EYO in 

steps of 5 years [EYO ≥ 15, EYO ≥ 10, EYO ≥ 5] are also carried out. The objective here is 

to determine at which range of EYO differences between MC and NC are maximized even 

when participants do not present any kind of AD cognitive symptom.
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2.7.4. Extension of Experiment 2 - Clustering PSEN1-MC—To go deeper into the 

subject of data heterogeneity in DIAN database, an extra comparison has been added. As 

most of the asymptomatic MC participants (with special focus on PSEN1 MC) are quite 

similar to any NC subject, maybe this is resulting in a mixture of two different groups 

(clusters) including both: subjects quite similar to NC cases and those whose prognosis is 

clearly different. If it is proven this theory, it will reinforce the explanation of why 

classification results are so low in comparison with the proposed experiments even 

regardless the AAEOE value given for any subject.

2.8. Balance of subjects

For the comparisons proposed for each experiment and considering different cohorts of 

subjects, the total number of participants (NC and MC) in each experiment has been 

summarized as follows in Table 3:

2.9. Feature preparation

A general diagram of the data processing pipeline is shown in Figure 1 and it is organised as 

follows: first, a cross-validation procedure splits input data into two groups (training and 

test). Second, these subsets are standardized and used as inputs of a feature selection 

procedure based on an ANOVA test. And finally, once were selected features that matched 

with the previous conditions, a Principal Component Analysis (PCA) was used in order to 

reduce the number of features that will be used for their posterior classification.

2.9.1. Data standardization—In order to avoid having input variables with larger 

ranges that will affect to a posterior multivariate analysis [70], a feature standardization 

procedure based on rescaling using the z-score formula (1) was performed.

zi =
xi − μxi

σxi
i = 1, 2, …, N (1)

when xi is defined to be the original feature i, μxi its mean, and σxi its standard deviation.

2.9.2. Missing data—Some of the test results in DIAN study are not available for all the 

subjects. In these cases, it was decided not to include subjects with unknown tests results in 

our analysis.

2.9.3. Analysis of variance (ANOVA)—The feature selection consists of two phases: 

the first one is a feature selection algorithm based on an ANOVA test [71, 72] to remove 

non-informative features for classification. Using this approach, two classes with N 
observations in each class are compared. For that, suppose xi,j denotes the j-th observation (j 
= 1, 2, …, N) of a feature for the i-th class. As only considering experiments in which two 

classes are compared, for this work i only could take two possible values: i = 1, 2. Using this 

notation, group means xi and global mean x are defined as follows:
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xi = 1
N ∑

j = 1

N
xi, j x = 1

2N ∑
i = 1

2
∑
j = 1

N
xi, j (2)

Then, the estimated total variance of the sample σTotal
2  is descomposed into within class 

variance σwithin
2  and the between class variance σbetween

2  as:

σTotal 
2 = ∑i, j xi, j − x 2

σwithin 
2 = ∑i, j xi, j − xi

2

σbetween 
2 = N∑i xi − x 2

(3)

Using the one-way ANOVA feature selection method which tests the null hypothesis that 

means obtained from the two classes are equal, and calculating the expected values of 

equation (3), two new estimators for the variances can be obtained:

Swithin 
2 = σwithin 

2

2(N − 1)

Sbetween 
2 = σbetween 

2

2(N − 1)

(4)

Then, dividing Sbetween
2  by Swithin

2 , F-statistic is defined. This statistic is therefore used to 

test the null hypothesis considering an specific significance level α using a one-tailed test of 

the F-distribution. As highest Fvalues represent the most part of the variance in the target 

data, values with a high Fvalues are selected. Due to the correspondence between Fvalues and 

their probability, p-value, to reject the null hypothesis, only those features with p-value 

below a significance level (α) should be selected.

2.9.4. Principal Component Analysis (PCA)—This mathematical procedure [73, 74] 

provides an approximation of an input dataset X composed by K participants and M 
variables in terms of a new set of NComp variables with M ≥ NComp. This method uses an 

orthogonal transformation to convert a set of observations of possibly correlated variables 

into a set of values of linearly uncorrelated variables called Principal Components (or 

loadings). In order to do that, PCA makes use of the eigenvalue decomposition of its 

covariance matrix as shown in expression (5):

XTX = WΛWT (5)

where the columns of W contain the eigenvectors of XTX and Λ is a diagonal matrix whose 

diagonal elements are the eigenvalues of XTX. Therefore, the kth subject of the original data 

xk can be projected to the new space defined by W, obtaining its new set of coordinates sk:

sk = xkWT (6)

Castillo-Barnes et al. Page 9

Inf Fusion. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PCA has been commonly used in applications for AD diagnosis assistance [75, 76, 77]. 

Most direct consequence to these works is that a reduced number of principal components 

are necessary and enough to describe the information about AD encoded in the input 

features.

2.10. Classification

All individual classifications performed in this work make use of Support-Vector-Machine 

(SVM) classifiers [78, 79]. A SVM classifier is a ML algorithm that splits a given set of 

binary labeled training data into two subsets. It makes use of an hyperplane that maximizes 

the distance between the two trained classes. Following this idea, a function f :ℝp 1, 0
using p-dimensional patterns xi and class labels yi is built to classify new examples (x, y):

x1, y1 , x2, y2 , …, xR, yR ∈ ℝp × 1, 0 (7)

In order to maximize the distance to the decision boundary that separates the two classes 

(hyperplane), quadratic programming algorithms are used to minimize the margin cost 

function J as follows in expression (8) subject to the inequality constraints in (9). Note that 

as feature vectors may belong to one of the next three cases: (a) well-classified feature 

vectors outside the hyperplane margins, (b) well-classified feature vectors inside the 

hyperplane margins and (c) missclassificated feature vectors. These three cases can be 

merged into one when introducing a new set of variables, εi, also called ‘slack variables’. 

Therefore, the objective will be to maximize the hyperplane margins whereas mantaining εi 

≥ 0 as low as possible including the maximum amount of points well-classified.

J w, w0, ε = 1
2‖w‖2 + C ∑

i = 1

l
εi (8)

yi wTxi + w0 ≥ 1 − εi, εi ≥ 0, i = 1, 2, …, l (9)

The linear combination of a vectors subset (support vectors) conforms the solution of this 

problem.

2.11. Cross-validation strategy

To validate the classification results, each dataset has been splited into two groups: a training 

data group, which was used to train the prediction model, and a test data group, that is then 

used to measure the classifier’s performance. In this work, as the number of participants is 

large enough, an N-fold cross-validation strategy with N = 10 has been selected [80]. In 

addition to these traditional/empirical methods for the evaluation of the classification 

performance, it was analyzed the upper bounds of the empirical error based on the theory of 

uniform convergence of means to their expectations [81], since their competitive 

performance in heterogeneous data applications, such as the field of neuroscience and 

neuroimaging. A recent advance in this regard, based on the “in general position” 

assumption of the data distribution, allows to obtain tighter upper bounds effectively 
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connecting the empirical and actual risks for linear classifiers within a small confidence 

interval [82].

3. Results

Following the schema proposed in Figure 1 and the comparisons defined in Table 3, several 

simulations were performed to obtain the number of PCA components (NComp) which 

maximize the classification performance considering a previous ANOVA analysis which 

discards non-significant features for a significance level α.

Depending on the type of input data, four feature selection and classification procedures for 

each experiment were defined: one for the NIB tests and three for imaging features (FDG, 

MRI and PiB). Once discarded participants without all tests results for each experiment; 

discarded all tests with a variance equal to 0; having standarizated all remaining columns 

using the z-score formula as described in (1); and regardless the experiment considered; a 

total of 10 NIB, 520 FDG, 184 MRI and 1040 PiB results were included as input features 

for each stack.

Moreover, in order to check if these characteristics were suitable for a later ANOVA 

analysis, Kolmogórov-Smirnov test was applied [83]. The objective of this test was to 

determine the percentage of features from each group which can be assumed to present a 

normal distribution. In this work, for all experiments at least 50%−75% of the features 

matched this condition. Thus, it was admited the use of ANOVA for feature selection.

At this point, for each experiment, the feature selection procedure (ANOVA + PCA) is 

carried out over training data and evaluated following the 10-fold cross-validation schema. 

Classification is performed using an SVM classifier with Linear Kernel. All these 

experiments are calculated considering the 50 most significant features of each input data 

class using the ANOVA analysis and up to 20 number of components for PCA: NComp = 1, 

2,…, 20.

In the case of experiment 1, it was first decided to make a comparison between NC and MC 

participants regardless of their CDR. However, and as depicted in Figure 2 (upper), due to 

the overall small differences obtained following this idea with classification rates not better 

than 60.39% for FDG and less than 60.08% for PiB, it was finally decided to compare only 

asymptomatic subjects for both groups. Moreover, as one of the main objectives for this 

work was to determinate if subgrouping MC participants in terms of their responsible gene, 

a second comparison of NC vs asymptomatic PSEN1 vs asymptomatic PSEN2 vs 

asymptomatic APP was proposed. In that case, the problem was related to the size of each 

class (only 20 asymptomatic PSEN2 and 29 asymptomatic APP cases) which limits the 

generalization ability of each classifier4. Thus, it was finally decided only to focus on the 

most populated group and make a direct comparison between NC vs asymptomatic PSEN1 

(Experiment 2) which has led to an increase in classification performance above 11.31% 

when NComp = 15 as shown in Figure 2 (down). Note that performance represented has been 

4This problem appears when the sample size is too small in comparison with the number of input features [84].
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defined in terms of balanced accuracy which is equal to the arithmetic mean of sensitivity 

(true positive rate) and specificity (true negative rate).

As most of the values obtained showed low classification results, it was analyzed the upper 

bounds of the empirical error based on the theory of uniform convergence of means to their 

expectations like explained in section 2.11 for some of the components computed for PCA. 

In Table 4, it has been included both upper bounds of the empirical error and cross-

validation classification performance for a given set of NComp and each kind of input data 

from experiment 2. Note that, in order not to overload the table, only some of these 

combinations have been depicted.

In regard of the results obtained, it was decided to use NComp = 15 as our reference level for 

PCA analysis. Using this value, different levels of EYO have been processed from the same 

point of view (experiment 3) as a way to determine how EYO has an effect on the 

classification outcome. As depicted in Figure 3, best performance results in terms of 

balanced accuracy were obtained for: MRI at EY O ≥ 15 years (70.00%); PiB at EY O ≥ 10 

years (63.75%); and PiB at EY O ≥ 5 years (60.00%).

For each experiment and considering all the imaging data types, ROC curves have been 

calculated as shown in Figure 4 with the exception of EYO analysis which has been included 

as Supplementary Material. These curves can be used to check whether a fixed number of 

features selected by ANOVA analysis and a particular value for PCA NComp might involve a 

robust solution for the computer aided-diagnosis system. Moreover, to reinforce this idea, 

Area Under the Curve (AUC) has also been computed as represented in Figure 5 for PiB5 

with maximum levels AUC = 0.679 at NComp = 15 when comparing directly PiB features 

from NC subjects vs asymptomatic PSEN1 participants.

In order to show the PCA results at a more detailed level, analysis of its variance has also 

been carried out. As depicted in Figure 6 for imaging markers, both FDG, MRI and PiB 
reach the 90% of their total variance within the 405 interval NComp ∈ [0, 10]. Thus, it can be 

assumed that increasing NComp will not provide significant differences in classification. This 

is the reason why NComp has been choosen as a value in the [0, 20] interval.

Apart from the proposed schema using ANOVA + PCA + SVM methods, a direct 

characterization of biomedical tests has also been presented here considering only those 

features which present a significance level for ANOVA below a certain threshold. Figure 7 

shows the most significant imaging features for experiment 2 in terms of ANOVA analysis 

as example6. Moreover, in addition to this plot, a graphical representation of p-value for the 

first two experiments and considering a significance level for ANOVA α = 0.05 has also 

been included as shown in Figure 8. Note that as lower p-values represent more highlighted 

differences between groups comparisons, we have made use of the log(p-value) instead of p-

value.

5AUC for both FDG and MRI tests have been included as Supplementary Material.
6Remaining violinplot figures for experiments 1 and 3 have been included as Supplementary Material.
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To complete this section, a comment about the study case presented in section 2.7.4 is also 

provided. When it was considered the scenario where NC and asymptomatic PSEN1 MC 

were compared, it was analyzed the distribution of the most significative features from both 

NC and PSEN1 MC classes. As shown in Figure 9, the histograms obtained from each 

marker revealed two similar distributions7 with no many differences between them.

Although this analysis could be ended here, shapes and sizes of both distributions suggested 

the existence of at least two subclasses within each group with special emphasys when 

considering the PSEN1 MC class. Making use of the Akaike Information criterion [85] for 

k-Means to determine the minimum number of clusters in a class as well as the k-Means 

algorithm itself, they were computed the two clusters within the PSEN1 subset. As shown in 

Figure 10, one of the PSEN1 subsets (violet) is usually displaced in relation to the centre of 

NC class (yellow) unlike the second subset (turquoise). This behaviour remains the same 

regardless also including symptomatic PSEN1 MC.

In this scenario, the new classification rates obtained when comparing NC vs asymptomatic 

PSEN1 MC from the first cluster, and the NC vs asymptomatic PSEN1 MC from the second 

cluster showed significant differences between them. In fact, following the same procedure 

as perfomed for previous experiments, this resulted in classification rates above 73.56% 

(first cluster) and 66.08% (second cluster) when using NComp = 15 as our reference in 

previous experiments. This difference is even more highlighted when also including 

symptomatic cases: 77.69% (first cluster) and 65.44% (second cluster) as depicted in Figure 

11.

4. Discussion & Conclusions

A deep characterization of the clinical and preclinical stages of AD is critical to develop new 

lines of treatment for the disease [86, 24, 5]. As many works point out, AD should not be 

considered as a single entity [87]. Some of the AD subtypes, including the rare autosomal 

dominant form might evolve differently and require different ways to face up with the 

disease. However, most of the current clinical trials carried out to test interventions for AD 

did not discriminate between disease subtypes (mainly defined genetically in the case of 

DIAD).

For this work, the 3 experiments as described in section 2.7 section have been carried out 

with the aim to explore the possibilities offered by ML in analyzing DIAN dataset. In all the 

experiments presented here, a set of healthy control and non-carriers subjects have been 

compared with a group of mutation-carriers considering as inputs biomedical markers (NIB) 

and imaging markers (FDG, MRI, PiB). Due to the particular cases considered, experiments 

are discussed individually as follows in the next subsections. Then, a final section 

summarizes all the key points in common between them.

7In order not to overload this work, only FDG results were depicted.
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4.1. Experiment 1 - NC vs MC

Experiment 1 makes a comparison between NC and MC first considering all posible 

mutation types at every stage. Discussion about this experiment can be started from the 

analysis of classification rates obtained with a maximum balanced accuracy of 60.39% when 

using FDG imaging markers and 60.08% for PiB. If focusing on the other kind of tests, this 

rate decreases to even lower rates regardless of the number of input features selected from 

the ANOVA analysis or the combination ANOVA+PCA. To this aim, in a second step, it was 

decided to use only asymptomatic participants as a way to reduce the heterogeneity between 

subjects. This resulted in classification rates slightly higher than 60% when using PiB but 

still to far away from our objective. In this scenario, although PiB presented a better 

behaviour, results obtained have to be treated with caution since the low rates obtained and 

the lack of robustness shown in Figure 4: PiB curves present a considerable difference with 

respect the diagonal line but with a low AUC (maximum AUC equal to 0.6138 when using a 

high NComp for PCA). In the light of these findings, it can be assumed that PiB features 

ensure an appropriate separation of MC and NC but within a noisy environment in which 

missclasification errors happen very often. If unmasking data heterogeneity, better 

classification rates are expected to be obtained.

Despite of having some highly significant brain regions obtained from the ANOVA analysis 

selection such as those highlighted in Figure 8; superposition and data heterogeneity is 

limiting effectiveness of ML analysis for this experiment. Nevertheless, these results are 

quite similar to obtained in other works with special attention to central brain and right 

hemisphere. For example, [86] proved significant differences for carriers at temporal lobe 
(both medially in the region of the hippocampus and laterally in the temporal neocortex), 

cuneus, precuneus, cingulate, putamen and thalamus also referred by [88, 89, 16].

4.2. Experiment 2 - NC vs subgrouped MC

As a way to highlight the relevance of better comparing NC vs subgrouped MC in future 

DIAN studies, a second comparison between NC vs PSEN1 vs PSEN2 vs APP MC was 

performed. However, due to the low number of subjects in PSEN2 and APP classes as 

depicted in 2, it was finally decided only to compare NC vs PSEN1 MC participants among 

them.

In regard of Figure 2 results for NC vs asymptomatic PSEN1 MC, when selecting a high 

NComp for PCA, classification results increase up to 71.4% (PiB features). This supposes an 

increase above 13.16% with respect the NC vs asymptomatic MC comparison. In fact, 

regardless of the Estimated Years to Onset (EYO) from any patient, this difference in PiB 
and MRI scans is susceptible of being used to determine whether a new subject is more 

likely to be developing DIAD or if this assumption still remains far in time.

Finally, owing to AUC results in Figure 5, the solution proposed shows a robust behaviour. 

A clear illustration of this can be seen in the region between NComp = 4 and NComp = 15 

where the increasing in AUC values take place in a linear way. Indeed, even considering a 

NComp out of these margins, none of the AUC values raise (or lower) dramatically.

Castillo-Barnes et al. Page 14

Inf Fusion. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As depicted in Figure 8, now the most highlighted regions are located at: cerebellum, 

entorhinal, cingulate (both caudal-ant., isthmus, post. and rostral-ant.), medial orbitofrontal, 
frontal pole, middletemporal, parahippocampal, corpus callosum (both ant., mid-ant. and 

post.), pars triangularis, precentral, ventral DC, brain-stem and insula. In comparison with 

the current literature related to this experiment, [4] described a significant deposition of Aβ 
amiloid in WM but it did not specified which were the particular regions where these results 

were obtained. Only [69] referred changes at cerebellum corresponding with one of our most 

significant regions for PiB markers. Note that as those works only were referred to PSEN1 

MC but without specifying ther CDR grade, these results are not totally comparable to ours. 

The only work that presented a similar comparison was [28] where making use of brain 

imaging and fluid biomarkers, they characterized 18 asymptomatic children with E280A 

PSEN1 mutation. In that case, it was proven that MC children were distinguished from 

control individuals by higher levels in Aβ42 and Aβ42 : Aβ40 ratio plus differences measured 

in precuneus area, post. cingulate, medial temporal lobe and hippocampus. These results 

also correspond with the presented here although NIB result have not been significant for 

our ML model.

4.3. Experiment 3 - NC vs asymptomatic PSEN1 MC (EYO consideration)

Once it has been proven that comparing NC vs MC subgrouped by their responsible gene is 

more effective from the point of view of ML analysis specially for PiB features, next step 

has been to determine if this significance is variable in time. For that, considering different 

levels of EYO applied to asymptomatic PSEN1 MC, input features have been classified and 

compared among them as shown in Figure 3.

In view of the results obtained, what first calls the attention is the lack of classification 

results for PiB and NIB at EY O ≥ 15 years. In [20], authors referred changes for signaling 

findings at neostriatum area. However, using our balanced muestral size of [35, 35] 

participants, not enough differences between NC and asymptomatic PSEN1 MC with EY O 
≥ 15 years were found. The same reasoning applies to NIB features despite findings given 

by other works such as [20, 89, 9, 14, 90] where it was stated that Aβ depositions (and 

increasing of CSF τ levels and brain atrophy) occurs at least 15 years before symptoms onset 

when comparing NC vs MC. On the contrary, both MRI and FDG classifications have 

returned classification rates above 70.50% specially when considering FDG scan results. 

Indeed, ANOVA analysis carried out has underscored the following brain regions: 

paracentral, postcentral, insula, putamen, cingulate (both. caudalant. and rostral-ant.), 

fusiform gyrus, medial orbitofrontal, parahippocampal, corpus callosum (both central, mid-

ant. and post.), choroid-plexus, accumbens, inf. lat. vent., inf. temporal, frontal pole, cuneus, 

pars orbitalis, lingual and supramarginal. Some of these areas corresponds with the findings 

discovered by other works like [20] using MRI scans at this stage.

At a posterior stage of DIAD pathogenesis, when introducing EY O ≥ 10 cases ([64, 64] 

participants), the first data patterns using PiB features and/or NIB begin to be significant and 

SVM classifiers start to discern between NC and MC cases8.

8At NComp = 15, AUC = 0.595 for PiB features
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It is known that hippocampal volume reductions are observed as early as 10 years before 

expected onset [86, 20]. Moreover, there are also references to changes in FDG and PiB 
located at: precuneus, entorhinal, precentral, parietal lobule (both lateral and post-central) 

and post. cingulate regions; as well as significant changes for MRI features related to 

atrophy of accumbens and amygdala [32, 89]. Most of these patterns fit with the majority of 

the highlighted regions by our ANOVA analysis but also including: poscentral, frontal pole, 

paracentral, corpus callosum, pericalcarine, cerebellum, inf. lat. vent., choroid-plexus, pars 
opecularis, lateral orbitofrontal, insula, supramarginal and middletemporal. With reference 

to NIB features, although [9] pointed out significant concentrations of Aβ42, τ and p-τ 
markers in MC group at very early EYO points, these results have not been relevant in this 

case.

Finally, with respect EY O ≥ 5 results, it is well known that decreased volumes of the 

thalamus, caudate, temporal lobe, parietal lobe and occipital lobe are reported in 

presymptomatic PSEN1 mutation carriers about 5 years before symptom onset [86, 13, 90]. 

Other works such as presented in [20, 89, 14] confirm these results, add new regions like 

precuneus and entorhinal areas to the list, and even suggest significant changes in cerebral 

hypometabolism and hippocampal atrophy during this stage of the disease. All of these 

results are consistent with ours but extending our findings to: cerebellum, ventral DC, corpus 
callosum, accumbens, choroid-plexus, pars opecularis, insula, amygdala, caudal 
middlefrontal, precentral, paracentral, poscentral and post. cingulate.

4.4. Extension of Experiment 2

One last question that remains to be answered is if classification results for experiments 1, 2 

and 3 could be improved. Although it has been proved 1) that PET scans are the most 

suitable kind of test for DIAD, and 2) that reducing the heterogeneity of the disease (for 

example by differentiating participants according to their responsible gene) we can get a 

more precise model of the pathology; similarity between NC and asymptomatic MC at early 

stages of the disease should be further explored. This is the main reason why the extension 

of experiment 2 proposed in section 2.7.4 has been suggested as a way to measure the 

relationship between NC subsets and those without any kind of mutation. In this scenario, 

distribution analysis of the most significant features for DIAD could be a good starting 

point. As shown in Figure 9 for FDG, a preliminary assessment of NC and PSEN1 

distributions suggests that both classes are very similar. Although this behaviour was not as 

good as expected, in view of the distribution tails from PSEN1 distributions it was stated that 

maybe this shape might be related to a mixture of two/more distributions. To confirm this 

idea, a clustering approach based on the use of k-Means algorithm was applied to the data as 

a way to determine if one/more of these PSEN1 subclasses could belong to the same 

distribution of NC participants or if they could be considered as an independent entity. 

Fortunately, as depicted in Figure 11 when using FDG imaging markers9, the second 

statement was confirmed. In fact, whereas one of the PSEN1 clusters is hard to distinguish 

from NC with classification rates barely above 64%, the other one improve these rates with 

balanced accuracy rates close to 80%. This procedure has been also repeated for NIB, MRI 

9As the input markers type which gave the best results.
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and PiB confirming this trend though not as much margin as using FDG including both 

symptomatic and asymptomatic cases. For example, when only using asymptomatic PSEN1 

MC cases, PSEN1 subclasses got a difference margin up to 6.1% whereas FDG got 7.5%.

Relative to demographics extracted from each cluster, both populations are closely similar 

between them in terms of sex, age or MMSE as summarized in Table 5 (both symptomatic 

and asymptomatic cases) and Table 6 (only asymptomatic). This fact reflects that clustering 

is not based on the separation of participants according to their sex, age, or even their degree 

of disease; but only about activation measures. Although no significant differences were 

found with respect their first-degree relatives age at onset or the average age at onset 

obtained for the PSEN1 group, a further analysis of these subgroups is proposed for future 

work.

4.5. General conclusions

When this work was proposed, its main objective was to answer three questions: first, which 

kind of clinical test was the most relevant for DIAN diagnosis; second, considering MC 

subjects all together or separately (3 genes whose mutation is responsible of DIAD) if this 

could aid us to improve the model of the disease; and third, to confirm if these ideas could 

be used for a longitudinal analysis from the point of view of ML algorithms and to test its 

validity. In this sense, there is no other work trying to perform a ML analysis using this 

database so any conclusion stated here can be used for future works in the study of DIAN.

Owing to classification results obtained from each experiment performed, the first 

conclusion that we can assume is that all the imaging tests can provide relevant information 

concerning the DIAD prognosis and/or its pathogenesis with special emphasis on PiB 
features. This is indicating that even subtle differences in Aβ plaques deposited in neuronal 

tissue are more related to a higher separation between MC and non-MC than any other kind 

of test considered for this work. In fact, regardless the experiment under consideration, 

differences between NC and MC are larger using PiB than any other kind of input marker 

with an exception: results obtained whe comparing NC vs asymptomatic PSEN1 MC with 

EY O ≥ 15 years in experiment 3. Nevertheless, these results should be taken with care due 

to the kind of input markers used: SUVR values obtained using the analysis suite FreeSurfer. 

It is no exaggeration to state that a proper image preprocessing particularly designed for AD 

study might bring new evidences about pathogenesis and prognosis of the disease better than 

SUVR values do. Indeed, an specific analysis of those regions might be also important for 

future works even when a no direct evidence of AD has appeared yet (asymptomatic 

subjects) [14].

With respect to the improvement achieved when subgrouping DIAD participants in DIAN 

study, it is obvious that comparisons using subgrouped MC outperforms the results obtained 

for NC vs MC from experiment 1. Although it would have been desirable to compare NC vs 

PSEN1 vs PSEN2 and APP MC in a multiclass classification schema, the improvement 

reached when comparing NC vs asymptomatic PSEN1 MC instead of just using NC vs 

asymptomatic MC has been noteworthy (11.31% of classification increase for experiment 2). 

Further, if taking into account the results obtained for the extension of experiment 2, it has 

been demonstrated that even comparisons within PSEN1 MC with respect the control group 
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(NC) show a strong differentiation among two PSEN1 subclasses in terms of imaging 

response. This fact has not been described before beyond the proposal made by [3] who 

suggested the existence of two or more differenciated groups for PSEN1 MC from the point 

of view of their symptomatology. Now, as this assumption was mathematically confirmed, 

this result constitutes an important milestone for the understanding of AD for two simple 

reasons: 1) it helps to corroborate findings in previous works, and 2) it establishes the basis 

for future comparisons even despite the low discriminative information extracted from 

DIAD markers but with special emphasis on PET imaging markers.

In conclusion, despite subjects with an inherited autosomal dominant AD mutation represent 

less than 1% of AD persons, the study carried out by DIAN initiative constitutes a strong 

impact in the understanding of AD with special emphasis on the disease course [26, 30]. As 

exposed during the discussion of all experiments, merging all MC subtypes as one unique 

MC group (even regardless the stage of their pathogenesis) might lead to a loss in statistical 

power. In the current work, it has been shown that our model fits better with DIAD 

progression even at its earliest stages. In this sense, since the proposal of a theoretical 

biomarker changes model for AD by [6], though several works have pointed out the 

relevance of different markers even 20 years before first symptoms onset, the application of 

deeper mathematical tools like ML models aid to discard some of them and to concentrate 

only of those clearly relevant. For all these reasons, it is expected that the use of new DIAN 

database updates joined with a deep image processing of FDG, MRI but, above all, PiB 
scans; provide insights into DIAD and LOAD and could even potentially be employed as 

read out in future treatment trials10.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment

This work was supported by the MINECO/FEDER under the TEC2015-64718-R and RTI2018-098913-B-I00 
projects and the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía under the 
Excellence Project P11-TIC-7103.

LS is supported by Alzheimers Research UK Senior Research Fellowship (ARUK-SRF2017B-1).

HM is supported by Japan AMED.

Data collection and sharing for this project was supported by The Dominantly Inherited Alzheimers Network 
(DIAN, U19AG032438) funded by the National Institute on Aging (NIA), the German Center for 
Neurodegenerative Diseases (DZNE), Raul Carrea Institute for Neurological Research (FLENI), Partial support by 
the Research and Development Grants for Dementia from Japan Agency for Medical Research and Development, 
AMED, and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute 
(KHIDI). This manuscript has been reviewed by DIAN Study investigators for scientific content and consistency of 
data interpretation with previous DIAN Study publications. We acknowledge the altruism of the participants and 
their families and contributions of the DIAN research and support 695 staff at each of the participating sites for 
their contributions to this study.

10For example, the recent trials involving anti-Aβ antibodies referred by [24].

Castillo-Barnes et al. Page 18

Inf Fusion. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

[1]. St George-Hyslop PH, Haines JL, Farrer LA, Polinsky R, Broeckhoven CV, Goate A, McLachlan 
DRC, Orr H, Bruni AC, Sorbi S, Rainero I, Foncin JF, Pollen D, Cantu J-M, Tupler R, 
Voskresen-skaya N, Mayeux R, Growdon J, Fried VA, Myers RH, Nee L, Back-hovens H, Martin 
J-J, Rossor M, Owen MJ, Mullan M, Percy ME, Karlinsky H, Rich S, Heston L, Montesi M, 
Mortilla M, Nacmias N, Gusella JF, Hardy JA, Genetic linkage studies suggest that alzheimer’s 
disease is not a single homogeneous disorder, Nature 347 (1990) 194. doi:10.1038/347194a0. 
URL 10.1038/347194a0 [PubMed: 2395471] 

[2]. Ringman J, Monsell S, Ng D, Zhou Y, Nguyen A, Coppola G, Van Berlo V, Mendez M, Tung S, 
Weintraub S, Mesulam M, Bigio E, Gitelman D, Fisher-Hubbard A, Albin R, Vinters H, 
Neuropathology of autosomal dominant alzheimer disease in the national alzheimer coordinating 
center database, Journal of Neuropathology and Experimental Neurology 75 (3) (2016) 284–290. 
doi:10.1093/jnen/nlv028. [PubMed: 26888304] 

[3]. Ryan NS, Nicholas JM, Weston PSJ, Liang Y, Lashley T, Guerreiro R, Adamson G, Kenny J, Beck 
J, Chavez-Gutierrez L, de Strooper B, Revesz T, Holton J, Mead S, Rossor MN, Fox NC, Clinical 
phenotype and genetic associations in autosomal dominant familial alzheimer’s disease: a case 
series, The Lancet Neurology 15 (13) (2016) 1326–1335. doi:10.1016/S1474-4422(16)30193-4. 
URL http://www.sciencedirect.com/science/article/pii/S1474442216301934 [PubMed: 
27777022] 

[4]. Ringman JM, Goate A, Masters CL, Cairns NJ, Danek A, Graff-Radford N, Ghetti B, Morris JC, 
Genetic heterogeneity in alzheimer disease and implications for treatment strategies, Current 
Neurology and Neuroscience Reports 14 (11) (2014) 499. doi:10.1007/s11910-014-0499-8. URL 
10.1007/s11910-014-0499-8 [PubMed: 25217249] 

[5]. Martins RN, Villemagne V, Sohrabi HR, Chatterjee P, Shah TM, Verdile G, Fraser P, Taddei K, 
Gupta VB, Rainey-Smith SR, Hone E, Pedrini S, Lim WL, Martins I, Frost S, Gupta S, O’Bryant 
S, Rembach A, Ames D, Ellis K, Fuller SJ, Brown B, Gardener SL, Fernando B, Bharadwaj P, 
Burnham S, Laws SM, Barron AM, Goozee K, Wahjoepramono EJ, Asih PR, Doecke JD, 
Salvado O, Bush AI, Rowe CC, Gandy SE, Masters CL, Alzheimer’s disease: a journey from 
amyloid peptides and oxidative stress, to biomarker technologies and disease prevention 
strategies-gains from aibl and dian cohort studies, Journal of Alzheimer’s Disease 62 (3) (2018) 
965–992. doi:10.3233/JAD-171145.

[6]. Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski 
JQ, Hypothetical model of dynamic biomarkers of the alzheimer’s pathological cascade, The 
Lancet Neurology 9 (1) (2010) 119–128. doi:10.1016/S1474-4422(09)70299-6. URL http://
www.sciencedirect.com/science/article/pii/S1474442209702996 [PubMed: 20083042] 

[7]. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR, Kaye 
J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies 
B, Morrison-Bogorad M, Wagster MV, Phelps CH, Toward defining the preclinical stages of 
alzheimer’s disease: Recommendations from the national institute on aging-alzheimer’s 
association workgroups on diagnostic guidelines for alzheimer’s disease, Alzheimer’s & 
Dementia 7 (3) (2011) 280–292. doi:10.1016/j.jalz.2011.03.003. URL http://
www.sciencedirect.com/science/article/pii/S1552526011000999

[8]. Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, 
Wiste HJ, Weigand SD, Lesnick TG, Pankratz VS, Donohue MC, Trojanowski JQ, Tracking 
pathophysiological processes in alzheimer’s disease: an updated hypothetical model of dynamic 
biomarkers, The Lancet Neurology 12 (2) (2013) 207–216. doi:10.1016/S1474-4422(12)70291-0. 
URL http://www.sciencedirect.com/science/article/pii/S1474442212702910 [PubMed: 
23332364] 

[9]. Fagan AM, Xiong C, Jasielec MS, Bateman RJ, Goate AM, Benzinger TLS, Ghetti B, Martins 
RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Salloway S, Schofield PR, Sperling RA, 
Marcus D, Cairns NJ, Buckles VD, Ladenson JH, Morris JC, Holtzman DM, Longitudinal 
change in csf biomarkers in autosomal-dominant alzheimer’s disease, Science Translational 
Medicine 6 (226). doi:10.1126/scitranslmed.3007901. URL http://stm.sciencemag.org/
content/6/226/226ra30

Castillo-Barnes et al. Page 19

Inf Fusion. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sciencedirect.com/science/article/pii/S1474442216301934
http://www.sciencedirect.com/science/article/pii/S1474442209702996
http://www.sciencedirect.com/science/article/pii/S1474442209702996
http://www.sciencedirect.com/science/article/pii/S1552526011000999
http://www.sciencedirect.com/science/article/pii/S1552526011000999
http://www.sciencedirect.com/science/article/pii/S1474442212702910
http://stm.sciencemag.org/content/6/226/226ra30
http://stm.sciencemag.org/content/6/226/226ra30


[10]. Vos SJB, Verhey F, Frlich L, Kornhuber J, Wiltfang J, Maier W, Peters O, Rther E, Nobili F, 
Morbelli S, Frisoni GB, Drzezga A, Didic M, van Berckel BNM, Simmons A, Soininen H, 
Koszewska I, Mecocci P, Tsolaki M, Vellas B, Lovestone S, Muscio C, Herukka S-K, Salmon E, 
Bastin C, Wallin A, Nordlund A, de Mendona A, Silva D, Santana I, Lemos R, Engelborghs S, 
Van der Mussele S, Freund-Levi Y, Wallin K, Hampel H, van der Flier W, Scheltens P, Visser PJ, 
Prevalence and prognosis of alzheimers disease at the mild cognitive impairment stage, Brain 138 
(5) (2015) 1327–1338. doi:10.1093/brain/awv029. URL 10.1093/brain/awv029 [PubMed: 
25693589] 

[11]. Hutton M, Pérez-Tur J, Hardy J, Genetics of alzheimer’s disease, Essays In Biochemistry 33 
(1998) 117–131. doi:10.1042/bse0330117. URL http://essays.biochemistry.org/content/33/117 
[PubMed: 10488446] 

[12]. Scahill RI, Ridgway GR, Bartlett JW, Barnes J, Ryan NS, Mead S, Beck J, Clarkson MJ, Crutch 
SJ, Schott JM, et al., Genetic influences on atrophy patterns in familial alzheimer’s disease: a 
comparison of app and psen1 mutations, Journal of Alzheimer’s disease 35 (1) (2013) 199–212.

[13]. Ryan NS, Biessels G-J, Kim L, Nicholas JM, Barber PA, Walsh P, Gami P, Morris HR, Bastos-
Leite AJ, Schott JM, Beck J, Mead S, Chavez-Gutierrez L, de Strooper B, Rossor MN, Revesz T, 
Lashley T, Fox NC, Genetic determinants of white matter hyperintensities and amyloid 
angiopathy in familial alzheimer’s disease, Neurobiology of Aging 36 (12) (2015) 3140–3151. 
doi:10.1016/j.neurobiolaging.2015.08.026. [PubMed: 26410308] 

[14]. Suárez-Calvet M, Araque Caballero MÁ, Kleinberger G, Bateman RJ, Fagan AM, Morris JC, 
Levin J, Danek A, Ewers M, Haass C, Early changes in csf strem2 in dominantly inherited 
alzheimer’s disease occur after amyloid deposition and neuronal injury, Science Translational 
Medicine 8 (369). doi:10.1126/scitranslmed.aag1767. URL http://stm.sciencemag.org/
content/8/369/369ra178

[15]. Di Fede G, Catania M, Maderna E, Ghidoni R, Benussi L, Tonoli E, Giaccone G, Moda F, 
Paterlini A, Campagnani I, Sorrentino S, Colombo L, Kubis A, Bistaffa E, Ghetti B, Tagliavini F, 
Molecular subtypes of alzheimers disease, Scientific reports. 8 (1). doi:10.1038/
s41598-018-21641-1.

[16]. Oxtoby NP, Young AL, Cash DM, Benzinger TLS, Fagan AM, Morris JC, Bateman RJ, Fox NC, 
Schott JM, Alexander DC, Data-driven models of dominantly-inherited alzheimer’s disease 
progression, Brain 141 (5) (2018) 1529–1544. doi:10.1093/brain/awy050. URL 10.1093/brain/
awy050 [PubMed: 29579160] 

[17]. Levy E, Carman M, Fernandez-Madrid I, Power M, Lieberburg I, van Duinen S, Bots G, 
Luyendijk W, Frangione B, Mutation of the alzheimer’s disease amyloid gene in hereditary 
cerebral hemorrhage, dutch type, Science 248 (4959) (1990) 1124–1126. doi:10.1126/
science.2111584. URL http://science.sciencemag.org/content/248/4959/1124 [PubMed: 
2111584] 

[18]. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, 
Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee 
L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HAR, Haines 
JL, Pericak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH, 
Cloning of a gene bearing missense mutations in early-onset familial alzheimer’s disease, Nature 
375 (1995) 754. doi:10.1038/375754a0. URL 10.1038/375754a0 [PubMed: 7596406] 

[19]. Levy-Lahad E, Wasco W, Poorkaj P, Romano D, Oshima J, Pettin-gell W, Yu C, Jondro P, 
Schmidt S, Wang K, et al., Candidate gene for the chromosome 1 familial alzheimer’s disease 
locus, Science 269 (5226) (1995) 973–977. doi:10.1126/science.7638622. URL http://
science.sciencemag.org/content/269/5226/973 [PubMed: 7638622] 

[20]. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie 
X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti 
B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, 
Schofield PR, Sperling RA, Salloway S, Morris JC, Clinical and biomarker changes in 
dominantly inherited alzheimer’s disease, New England Journal of Medicine 367 (9) (2012) 795–
804. doi: 10.1056/NEJMoa1202753. URL 10.1056/NEJMoa1202753 [PubMed: 22784036] 

[21]. Reiman EM, Quiroz YT, Fleisher AS, Chen K, Velez-Pardo C, Jimenez-Del-Rio M, Fagan AM, 
Shah AR, Alvarez S, Arbelaez A, Giraldo M, Acosta-Baena N, Sperling RA, Dickerson B, Stern 

Castillo-Barnes et al. Page 20

Inf Fusion. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://essays.biochemistry.org/content/33/117
http://stm.sciencemag.org/content/8/369/369ra178
http://stm.sciencemag.org/content/8/369/369ra178
http://science.sciencemag.org/content/248/4959/1124
http://science.sciencemag.org/content/269/5226/973
http://science.sciencemag.org/content/269/5226/973


CE, Tirado V, Munoz C, Reiman RA, Huentelman MJ, Alexander GE, Langbaum JB, Kosik KS, 
Tariot PN, Lopera F, Brain imaging and fluid biomarker analysis in young adults at genetic risk 
for autosomal dominant alzheimer’s disease in the presenilin 1 e280a kindred: a case-control 
study, The Lancet Neurology 11 (12) (2012) 1048–1056. doi:10.1016/S1474-4422(12)70228-4. 
URL http://www.sciencedirect.com/science/article/pii/S1474442212702284 [PubMed: 
23137948] 

[22]. JB T, MR B, RJ B, et al., Functional connectivity in autosomal dominant and late-onset 
alzheimer’s disease, JAMA Neurology 71 (9) (2014) 1111–1122. doi:10.1001/
jamaneurol.2014.1654. URL 10.1001/jamaneurol.2014.1654 [PubMed: 25069482] 

[23]. Tang M, Ryman DC, McDade E, Jasielec MS, Buckles VD, Cairns NJ, Fagan AM, Goate A, 
Marcus DS, Xiong C, Allegri RF, Chhatwal JP, Danek A, Farlow MR, Fox NC, Ghetti B, Graff-
Radford NR, Laske C, Martins RN, Masters CL, Mayeux RP, Ringman JM, Rossor MN, 
Salloway SP, Schofield PR, Morris JC, Bateman RJ, Neurological manifestations of autosomal 
dominant familial alzheimer’s disease: a comparison of the published literature with the 
dominantly inherited alzheimer network observational study (dian-obs), The Lancet Neurology 
15 (13) (2016) 1317–1325. doi:10.1016/S1474-4422(16)30229-0. URL http://
www.sciencedirect.com/science/article/pii/S1474442216302290 [PubMed: 27777020] 

[24]. Bateman RJ, Benzinger TL, Berry S, Clifford DB, Duggan C, Fagan AM, Fanning K, Farlow 
MR, Hassenstab J, McDade EM, Mills S, Paumier K, Quintana M, Salloway SP, Santacruz A, 
Schneider LS, Wang G, Xiong C, The dian-tu next generation alzheimer’s prevention trial: 
Adaptive design and disease progression model, Alzheimer’s & Dementia 13 (1) (2017) 8–19. 
doi:10.1016/j.jalz.2016.07.005. URL http://www.sciencedirect.com/science/article/pii/
S1552526016300486

[25]. Ryman DC, Acosta-Baena N, Aisen PS, Bird T, Danek A, Fox NC, Goate A, Frommelt P, Ghetti 
B, Langbaum JB, Lopera F, Martins R, Masters CL, Mayeux RP, McDade E, Moreno S, Reiman 
EM, Ringman JM, Salloway S, Schofield PR, Sperling R, Tariot PN, Xiong C, Morris JC, 
Bateman RJ, Symptom onset in autosomal dominant alzheimer disease, Neurology 83 (3) (2014) 
253–260. doi:10.1212/WNL.0000000000000596. URL http://n.neurology.org/content/83/3/253 
[PubMed: 24928124] 

[26]. Morris JC, Aisen PS, Bateman RJ, Benzinger TLS, Cairns NJ, Fagan AM, Ghetti B, Goate AM, 
Holtzman DM, Klunk WE, McDade E, Marcus DS, Martins RN, Masters CL, Mayeux R, Oliver 
A, Quaid K, Ringman JM, Rossor MN, Salloway S, Schofield PR, Selsor NJ, Sperling RA, 
Weiner MW, Xiong C, Moulder KL, Buckles VD, Developing an international network for 
alzheimer research: The dominantly inherited alzheimer network, Clinical investigation 2 (10) 
(2012) 975–984. doi:10.4155/cli.12.93. [PubMed: 23139856] 

[27]. Ringman JM, Liang L-J, Zhou Y, Vangala S, Teng E, Kremen S, Wharton D, Goate A, Marcus 
DS, Farlow M, Ghetti B, McDade E, Masters CL, Mayeux RP, Rossor M, Salloway S, Schofield 
PR, Cummings JL, Buckles V, Bateman R, Morris JC, the Dominantly Inherited Alzheimer 
Network, Early behavioural changes in familial alzheimer’s disease in the dominantly inherited 
alzheimer network, Brain 138 (4) (2015) 1036–1045. doi:10.1093/brain/awv004. URL 10.1093/
brain/awv004 [PubMed: 25688083] 

[28]. Quiroz Y, Schultz A, Chen K, et al., Brain imaging and blood biomarker abnormalities in 
children with autosomal dominant alzheimer disease: A cross-sectional study, JAMA Neurology 
72 (8) (2015) 912–919. doi:10.1001/jamaneurol.2015.1099. URL 10.1001/jamaneurol.2015.1099 
[PubMed: 26121081] 

[29]. Mills S, Mallmann J, Santacruz A, Fuqua A, Carril M, Aisen P, Althage M, Belyew S, Benzinger 
T, Brooks W, Buckles V, Cairns N, Clifford D, Danek A, Fagan A, Farlow M, Fox N, Ghetti B, 
Goate A, Heinrichs D, Hornbeck R, Jack C, Jucker M, Klunk W, Marcus D, Martins R, Masters 
C, Mayeux R, McDade E, Morris J, Oliver A, Ringman J, Rossor M, Salloway S, Schofield P, 
Snider J, Snyder P, Sperling R, Stewart C, Thomas R, Xiong C, Bateman R, Preclinical trials in 
autosomal dominant ad: Implementation of the dian-tu trial, Revue Neurologique 169 (10) (2013) 
737–743. doi:10.1016/j.neurol.2013.07.017. URL http://www.sciencedirect.com/science/
article/pii/S003537871300876X

[30]. Moulder KL, Snider BJ, Mills SL, Buckles VD, Santacruz AM, Bateman RJ, Morris JC, 
Dominantly inherited alzheimer network: facilitating research and clinical trials, Alzheimer’s 
Research & Therapy 5 (5) (2013) 48. doi:10.1186/alzrt213. URL 10.1186/alzrt213

Castillo-Barnes et al. Page 21

Inf Fusion. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sciencedirect.com/science/article/pii/S1474442212702284
http://www.sciencedirect.com/science/article/pii/S1474442216302290
http://www.sciencedirect.com/science/article/pii/S1474442216302290
http://www.sciencedirect.com/science/article/pii/S1552526016300486
http://www.sciencedirect.com/science/article/pii/S1552526016300486
http://n.neurology.org/content/83/3/253
http://www.sciencedirect.com/science/article/pii/S003537871300876X
http://www.sciencedirect.com/science/article/pii/S003537871300876X


[31]. Su Y, Blazey TM, Owen CJ, Christensen JJ, Friedrichsen K, Joseph-Mathurin N, Wang Q, 
Hornbeck RC, Ances BM, Snyder AZ, Cash LA, Koeppe RA, Klunk WE, Galasko D, Brickman 
AM, McDade E, Ringman JM, Thompson PM, Saykin AJ, Ghetti B, Sperling RA, Johnson KA, 
Salloway SP, Schofield PR, Masters CL, Villemagne VL, Fox NC, Frster S, Chen K, Reiman 
EM, Xiong C, Marcus DS, Weiner MW, Morris JC, Bateman RJ, Benzinger TLS, Network DIA, 
Quantitative amyloid imaging in autosomal dominant alzheimer’s disease: Results from the dian 
study group, PLOS ONE 11 (3) (2016) 1–14. doi:10.1371/journal.pone.0152082. URL 10.1371/
journal.pone.0152082

[32]. Bateman RJ, Aisen PS, Strooper BD, Fox NC, Lemere CA, Ringman JM, Salloway S, Sperling 
RA, Windisch M, Xiong C, Autosomal-dominant alzheimer’s disease: a review and proposal for 
the prevention of alzheimer’s disease, Alzheimer’s Research & Therapy 3 (1) (2010) 1. 
doi:10.1186/alzrt59.

[33]. Lindquist MA, Caffo B, Crainiceanu C, Ironing out the statistical wrinkles in ten ironic rules, 
NeuroImage 81 (2013) 499–502. doi:10.1016/j.neuroimage.2013.02.056. [PubMed: 23587691] 

[34]. Sakai K, Yamada K, Machine learning studies on major brain diseases: 5-year trends of 2014–
2018, Japanese Journal of Radiology 37 (1) (2018) 34–72. doi:10.1007/s11604-018-0794-4. 
[PubMed: 30498877] 

[35]. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Hae-berlein SB, Holtzman DM, Jagust 
W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, 
Scheltens P, Siemers E, Snyder HM, Sperling R, Elliott C, Masliah E, Ryan L, Silverberg N, 
NIA-AA research framework: Toward a biological definition of alzheimer’s disease, Alzheimer’s 
& Dementia 14 (4) (2018) 535–562. doi:10.1016/j.jalz.2018.02.018.

[36]. Cruchaga C, Chakraverty S, Mayo K, Vallania FLM, Mitra RD, Faber K, Williamson J, Bird T, 
Diaz-Arrastia R, Foroud TM, Boeve BF, Graff-Radford NR, St. Jean P, Lawson M, Ehm MG, 
Mayeux R, Goate AM, for the NIA-LOAD/NCRAD Family Study Consortium, Rare variants in 
app, psen1 and psen2 increase risk for ad in late-onset alzheimer’s disease families, PLoS ONE 7 
(2). doi:10.1371/journal.pone.0031039. URL http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3270040/

[37]. Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gomez MG, Langois CM, Langbaum JB, 
Ayutyanont N, Roontiva A, Thiyyagura P, Lee W, Mo H, Lopez L, Moreno S, Acosta-Baena N, 
Giraldo M, Garcia G, Reiman RA, Huentelman MJ, Kosik KS, Tariot PN, Lopera F, Reiman EM, 
Florbetapir pet analysis of amyloid-beta deposition in the presenilin 1 e280a autosomal dominant 
alzheimer’s disease kindred: a cross-sectional study, The Lancet Neurology 11 (12) (2012) 1057–
1065. doi:10.1016/S1474-4422(12)70227-2. URL 10.1016/S1474-4422(12)70227-2 [PubMed: 
23137949] 

[38]. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, 
Bateman RJ, Decreased clearance of cns - amyloid in alzheimer’s disease, Science 330 (6012) 
(2010) 1774–1774. doi: 10.1126/science.1197623. URL http://science.sciencemag.org/
content/330/6012/1774 [PubMed: 21148344] 

[39]. Pera M, Alcolea D, Sánchez-Valle R, Guardia-Laguarta C, Colom-Cadena M, Badiola N, Suárez-
Calvet M, Lladó A, Barrera-Ocampo AA, Sepulveda-Falla D, Blesa R, Molinuevo JL, Clarimón 
J, Ferrer I, Gelpi E, Lleó A, Distinct patterns of app processing in the cns in autosomal-dominant 
and sporadic alzheimer disease, Acta Neuropathologica 125 (2) (2013) 201–213. doi:10.1007/
s00401-012-1062-9. URL 10.1007/s00401-012-1062-9 [PubMed: 23224319] 

[40]. Yan L, Liu CY, Wong K-P, Huang S-C, Mack WJ, Jann K, Coppola G, Ringman JM, Wang DJ, 
Regional association of pcasl-mri with fdg-pet and pib-pet in people at risk for autosomal 
dominant alzheimer’s disease, NeuroImage: Clinical 17 (2018) 751–760. doi:10.1016/
j.nicl.2017.12.003. URL http://www.sciencedirect.com/science/article/pii/S221315821730308X 
[PubMed: 29527482] 

[41]. Reuter M, Schmansky NJ, Rosas HD, Fischl B, Within-subject template estimation for unbiased 
longitudinal image analysis, NeuroImage 61 (4) (2012) 1402–1418. doi:10.1016/
j.neuroimage.2012.02.084. URL http://www.sciencedirect.com/science/article/pii/
S1053811912002765 [PubMed: 22430496] 

Castillo-Barnes et al. Page 22

Inf Fusion. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270040/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270040/
http://science.sciencemag.org/content/330/6012/1774
http://science.sciencemag.org/content/330/6012/1774
http://www.sciencedirect.com/science/article/pii/S221315821730308X
http://www.sciencedirect.com/science/article/pii/S1053811912002765
http://www.sciencedirect.com/science/article/pii/S1053811912002765


[42]. Dale AM, Sereno MI, Improved localizadon of cortical activity by combining EEG and MEG 
with MRI cortical surface reconstruction: A linear approach, Journal of Cognitive Neuroscience 5 
(2) (1993) 162–176. doi:10.1162/jocn.1993.5.2.162. [PubMed: 23972151] 

[43]. Dale AM, Fischl B, Sereno MI, Cortical Surface-Based Analysis, NeuroImage 9 (2) (1999) 179–
194. doi:10.1006/nimg.1998.0395. [PubMed: 9931268] 

[44]. Fischl B, Sereno MI, Dale AM, Cortical surface-based analysis, NeuroImage 9 (2) (1999) 195–
207. doi:10.1006/nimg.1998.0396. [PubMed: 9931269] 

[45]. Fischl B, Sereno MI, Tootell RB, Dale AM, High-resolution intersubject averaging and a 
coordinate system for the cortical surface, Human Brain Mapping 8 (4) (1999) 272–284. 
doi:10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4. [PubMed: 10619420] 

[46]. Fischl B, Dale AM, Measuring the thickness of the human cerebral cortex from magnetic 
resonance images, Proceedings of the National Academy of Sciences 97 (20) (2000) 11050–
11055. doi:10.1073/pnas.200033797.

[47]. Fischl B, Liu A, Dale A, Automated manifold surgery: constructing geometrically accurate and 
topologically correct models of the human cerebral cortex, IEEE Transactions on Medical 
Imaging 20 (1) (2001) 70–80. doi:10.1109/42.906426. [PubMed: 11293693] 

[48]. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, 
Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM, Whole brain segmentation, 
Neuron 33 (3) (2002) 341–355. doi:10.1016/s0896-6273(02)00569-x. [PubMed: 11832223] 

[49]. Fischl B, Automatically parcellating the human cerebral cortex, Cerebral Cortex 14 (1) (2004) 
11–22. doi:10.1093/cercor/bhg087. [PubMed: 14654453] 

[50]. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Ségonne F, Quinn BT, Dale AM, Sequence-
independent segmentation of magnetic resonance images, NeuroImage 23 (2004) S69–S84. 
doi:10.1016/j.neuroimage.2004.07.016. [PubMed: 15501102] 

[51]. Ségonne F, Dale A, Busa E, Glessner M, Salat D, Hahn H, Fischl B, A hybrid approach to the 
skull stripping problem in MRI, NeuroImage 22 (3) (2004) 1060–1075. doi:10.1016/
j.neuroimage.2004.03.032. [PubMed: 15219578] 

[52]. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, 
Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B, Reliability of MRI-
derived measurements of human cerebral cortical thickness: The effects of field strength, scanner 
upgrade and manufacturer, NeuroImage 32 (1) (2006) 180–194. doi:10.1016/
j.neuroimage.2006.02.051. [PubMed: 16651008] 

[53]. Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, 
Brown G, MacFall J, Fischl B, Dale A, Reliability in multi-site structural MRI studies: Effects of 
gradient non-linearity correction on phantom and human data, NeuroImage 30 (2) (2006) 436–
443. doi:10.1016/j.neuroimage.2005.09.046. [PubMed: 16300968] 

[54]. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, 
Maguire RP, Hyman BT, Albert MS, Killiany RJ, An automated labeling system for subdividing 
the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage 31 (3) 
(2006) 968–980. doi:10.1016/j.neuroimage.2006.01.021. [PubMed: 16530430] 

[55]. Fischl B, FreeSurfer, NeuroImage 62 (2) (2012) 774–781. doi:10.1016/
j.neuroimage.2012.01.021. [PubMed: 22248573] 

[56]. Mosconi L, Brain glucose metabolism in the early and specific diagnosis of alzheimer’s disease, 
European Journal of Nuclear Medicine and Molecular Imaging 32 (4) (2005) 486–510. 
doi:10.1007/s00259-005-1762-7. URL 10.1007/s00259-005-1762-7 [PubMed: 15747152] 

[57]. Gomar JJ, Conejero-Goldberg C, Davies P, Goldberg TE, Extension and refinement of the 
predictive value of different classes of markers in adni: Four-year follow-up data, Alzheimer’s & 
Dementia 10 (6) (2014) 704–712. doi:10.1016/j.jalz.2013.11.009. URL http://
www.sciencedirect.com/science/article/pii/S1552526014000090

[58]. Smailagic N, Vacante M, Hyde C, Martin S, Ukoumunne O, Sach-pekidis C, 18f-fdg pet for the 
early diagnosis of alzheimer’s disease dementia and other dementias in people with mild 
cognitive impairment (mci), The Cochrane Library.

Castillo-Barnes et al. Page 23

Inf Fusion. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sciencedirect.com/science/article/pii/S1552526014000090
http://www.sciencedirect.com/science/article/pii/S1552526014000090


[59]. Rowland DJ, Garbow JR, Laforest R, Snyder AZ, Registration of [18f]FDG microPET and small-
animal MRI, Nuclear Medicine and Biology 32 (6) (2005) 567–572. doi:10.1016/
j.nucmedbio.2005.05.002. [PubMed: 16026703] 

[60]. Eisenstein SA, Koller JM, Piccirillo M, Kim A, Antenor-Dorsey JAV, Videen TO, Snyder AZ, 
Karimi M, Moerlein SM, Black KJ, Perlmutter JS, Hershey T, Characterization of extrastriatal d2 
in vivo specific binding of [18f](n-methyl)benperidol using PET, Synapse 66 (9) (2012) 770–780. 
doi:10.1002/syn.21566. [PubMed: 22535514] 

[61]. Benzinger T, Fagan A, Chhatwal J, Morris JC, Rossor M, Bateman R, Regional variability of 
imaging biomarkers in dian, Alzheimer’s & Dementia 10 (4) (2014) 127. doi:10.1016/
j.jalz.2014.04.054.

[62]. Franzmeier N, Ren J, Bateman RJ, Morris JC, Levin J, Jucker M, Benzinger TL, Yakushev I, 
Koutsouleris N, Ewers M, CROSS-VALIDATED BIOMARKER-BASED PREDICTION OF 4-
YEAR RATE OF COGNITIVE DECLINE IN NON-DEMENTED SUBJECTS AT RISK OF 
AD, Alzheimer’s & Dementia 14 (7) (2018) P75. doi:10.1016/j.jalz.2018.06.2154.

[63]. Frouin V, Comtat C, Reilhac A, Grgoire M-C, Correction of partial-volume effect for pet striatal 
imaging: Fast implementation and study of robustness, Journal of Nuclear Medicine 43 (2002) 
1715–1726. [PubMed: 12468524] 

[64]. Rousset O, Rahmim A, Alavi A, Zaidi H, Partial volume correction strategies in PET, PET 
Clinics 2 (2) (2007) 235–249. doi:10.1016/j.cpet.2007.10.005. [PubMed: 27157875] 

[65]. Rousset OG, Ma Y, Evans AC, Correction for partial volume effects in pet: principle and 
validation., Journal of nuclear medicine : official publication, Society of Nuclear Medicine 39 
(1998) 904–911.

[66]. Berg L, Clinical dementia rating (cdr), Psychopharmacology Bulletin 24 (1988) 637–639. 
[PubMed: 3249765] 

[67]. Morris JC, Clinical dementia rating: A reliable and valid diagnostic and staging measure for 
dementia of the alzheimer type, International Psychogeriatrics 9 (S1) (1997) 173–176. 
doi:10.1017/S1041610297004870. [PubMed: 9447441] 

[68]. Laske C, Sohrabi HR, Jasielec MS, Mller S, Koehler NK, Grber S, Frster S, Drzezga A, Mueller-
Sarnowski F, Danek A, Jucker M, Bateman RJ, Buckles V, Saykin AJ, Martins RN, Morris JC, D. 
I. A. N. (DIAN), Diagnostic value of subjective memory complaints assessed with a single item 
in dominantly inherited alzheimer’s disease: Results of the dian study, BioMed Research 
International (2015) 7 doi:10.1155/2015/828120. URL 10.1155/2015/828120

[69]. Lemere CA, Lopera F, Kosik KS, Lendon CL, Ossa J, Saido TC, Yamaguchi H, Ruiz A, Martinez 
A, Madrigal L, Hincapie L, A. L. JC, Anthony DC, Koo EH, Goate AM, Selkoe DJ, A. V. JC, 
The e280a presenilin 1 alzheimer mutation produces increased aβ42 deposition and severe 
cerebellar pathology, Nature Medicine 2 (10) (1996) 1146–1150. doi:10.1038/nm1096-1146.

[70]. Graf AB, Borer S, Normalization in support vector machines (2001) 277–282 
doi:10.1007/3-540-45404-7_37.

[71]. Heiman G, Research Methods in Statistics, 2002.

[72]. Ramírez J, Górriz J, Ortiz A, Martinez-Murcia F, Segovia F, Salas-Gonzalez D, Castillo-Barnes 
D, Illan I, Puntonet C, Ensemble of random forests one vs. rest classifiers for mci and ad 
prediction using anova cortical and subcortical feature selection and partial least squares, Journal 
of Neuroscience Methods 302 (2018) 47–57. doi:10.1016/j.jneumeth.2017.12.005. URL http://
www.sciencedirect.com/science/article/pii/S0165027017304223 [PubMed: 29242123] 

[73]. Wold S, Esbensen K, Geladi P, Principal component analysis, Chemometrics and Intelligent 
Laboratory Systems 2 (1) (1987) 37–52. doi:10.1016/0169-7439(87)80084-9. URL http://
www.sciencedirect.com/science/article/pii/0169743987800849

[74]. Markiewicz P, Matthews J, Declerck J, Herholz K, Robustness of multivariate image analysis 
assessed by resampling techniques and applied to FDG-PET scans of patients with alzheimer’s 
disease, NeuroImage 46 (2) (2009) 472–485. doi:10.1016/j.neuroimage.2009.01.020. [PubMed: 
19385015] 

[75]. López M, Ramírez J, Górriz J, Illán I, Salas-Gonzalez D, Segovia F, Chaves R, Svm-based cad 
system for early detection of the alzheimer’s disease using kernel pca and lda, Neuroscience 

Castillo-Barnes et al. Page 24

Inf Fusion. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sciencedirect.com/science/article/pii/S0165027017304223
http://www.sciencedirect.com/science/article/pii/S0165027017304223
http://www.sciencedirect.com/science/article/pii/0169743987800849
http://www.sciencedirect.com/science/article/pii/0169743987800849


Letters 464 (3) (2009) 233–238. doi:10.1016/j.neulet.2009.08.061. URL http://
www.sciencedirect.com/science/article/pii/S0304394009011677 [PubMed: 19716856] 

[76]. Illán I, Górriz J, Ramírez J, Salas-Gonzalez D, López M, Segovia F, Chaves R, Gómez-Rio M, 
Puntonet C, 18f-fdg pet imaging analysis for computer aided alzheimer’s diagnosis, Information 
Sciences 181 (4) (2011) 903–916. doi:10.1016/j.ins.2010.10.027. URL http://
www.sciencedirect.com/science/article/pii/S0020025510005323

[77]. Segovia F, Bastin C, Salmon E, Górriz JM, Ramírez J, Phillips C, Combining pet images and 
neuropsychological test data for automatic diagnosis of alzheimer’s disease, PLOS ONE 9 (2) 
(2014) 1–8. doi:10.1371/journal.pone.0088687. URL 10.1371/journal.pone.0088687

[78]. Vapnik VN, Statistical Learning Theory, Ed. 1, John Wiley and Sons, New York, USA, 1998.

[79]. Joachims T, Text categorization with support vector machines: Learning with many relevant 
features, in: Machine Learning: ECML-98, Springer Berlin Heidelberg, 1998, pp. 137–142. 
doi:10.1007/bfb0026683.

[80]. Kohavi R, A study of cross-validation and bootstrap for accuracy estimation and model 
selection., in: IJCAI’95 Proceedings of the 14th international joint conference on Artificial 
intelligence, Vol. 2 of IJCAI’95, 1995, pp. 1137–1145. URL http://dl.acm.org/citation.cfm?
id=1643031.1643047

[81]. Vapnik V, Estimation of Dependences Based on Empirical Data, no. 1, Springer New York, 2006. 
doi:10.1007/0-387-34239-7.

[82]. Górriz JM, Ramirez J, Suckling J, On the computation of distribution-free performance bounds: 
Application to small sample sizes in neuroimaging, Pattern Recognition 93 (2019) 1–13. 
doi:10.1016/j.patcog.2019.03.032. URL http://www.sciencedirect.com/science/article/pii/
S0031320319301402

[83]. Kolmogorov–smirnov test, in: The Concise Encyclopedia of Statistics, Springer New York, pp. 
283–287. doi:10.1007/978-0-387-32833-1_214.

[84]. Ramírez J, Górriz J, Salas-Gonzalez D, Romero A, López M, Álvarez I, Gómez-Río M, 
Computer-aided diagnosis of alzheimer’s type dementia combining support vector machines and 
discriminant set of features, Information Sciences 237 (2013) 59–72. doi:10.1016/
j.ins.2009.05.012.

[85]. Akaike H, A new look at the statistical model identification, IEEE Transactions on Automatic 
Control 19 (6) (1974) 716–723. doi:10.1109/TAC.1974.1100705.

[86]. Cash DM, Ridgway GR, Liang Y, Ryan NS, Kinnunen KM, Yeatman T, Malone IB, Benzinger 
TL, Jack CR, Thompson PM, Ghetti BF, Saykin AJ, Masters CL, Ringman JM, Salloway SP, 
Schofield PR, Sperling RA, Cairns NJ, Marcus DS, Xiong C, Bateman RJ, Morris JC, Rossor 
MN, Ourselin S, Fox NC, The pattern of atrophy in familial alzheimer’s disease, Neurology 81 
(16) (2013) 1425–1433. doi:10.1212/WNL.0b013e3182a841c6. URL http://n.neurology.org/
content/81/16/1425 [PubMed: 24049139] 

[87]. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, Bakardjian H, Benali H, 
Bertram L, Blennow K, Broich K, Cavedo E, Crutch S, Dartigues J-F, Duyckaerts C, Epelbaum 
S, Frisoni GB, Gauthier S, Genthon R, Gouw AA, Habert M-O, Holtzman DM, Kivipelto M, 
Lista S, Molinuevo J-L, O’Bryant SE, Rabinovici GD, Rowe C, Salloway S, Schneider LS, 
Sperling R, Teichmann M, Carrillo MC, Cummings J, Jack CR, Preclinical alzheimer’s disease: 
Definition, natural history, and diagnostic criteria, Alzheimer’s & Dementia 12 (3) (2016) 292–
323. doi:10.1016/j.jalz.2016.02.002. URL http://www.sciencedirect.com/science/article/pii/
S1552526016000509

[88]. Ringman JM, O’Neill J, Geschwind D, Medina L, Apostolova LG, Rodriguez Y, Schaffer B, 
Varpetian A, Tseng B, Ortiz F, Fitten J, Cummings JL, Bartzokis G, Diffusion tensor imaging in 
preclinical and presymptomatic carriers of familial alzheimer’s disease mutations, Brain 130 (7) 
(2007) 1767–1776. doi:10.1093/brain/awm102. [PubMed: 17522104] 

[89]. Benzinger TLS, Blazey T, Jack CR, Koeppe RA, Su Y, Xiong C, Raichle ME, Snyder AZ, Ances 
BM, Bateman RJ, Cairns NJ, Fagan AM, Goate A, Marcus DS, Aisen PS, Christensen JJ, Er-cole 
L, Hornbeck RC, Farrar AM, Aldea P, Jasielec MS, Owen CJ, Xie X, Mayeux R, Brickman A, 
McDade E, Klunk W, Mathis CA, Ringman J, Thompson PM, Ghetti B, Saykin AJ, Sperling RA, 
Johnson KA, Salloway S, Correia S, Schofield PR, Masters CL, Rowe C, Villemagne VL, 
Martins R, Ourselin S, Rossor MN, Fox NC, Cash DM, Weiner MW, Holtzman DM, Buckles 

Castillo-Barnes et al. Page 25

Inf Fusion. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sciencedirect.com/science/article/pii/S0304394009011677
http://www.sciencedirect.com/science/article/pii/S0304394009011677
http://www.sciencedirect.com/science/article/pii/S0020025510005323
http://www.sciencedirect.com/science/article/pii/S0020025510005323
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://www.sciencedirect.com/science/article/pii/S0031320319301402
http://www.sciencedirect.com/science/article/pii/S0031320319301402
http://n.neurology.org/content/81/16/1425
http://n.neurology.org/content/81/16/1425
http://www.sciencedirect.com/science/article/pii/S1552526016000509
http://www.sciencedirect.com/science/article/pii/S1552526016000509


VD, Moulder K, Morris JC, Regional variability of imaging biomarkers in autosomal dominant 
alzheimer’s disease, Proceedings of the National Academy of Sciences 110 (47) (2013) 4502–
4509. doi:10.1073/pnas.1317918110. URL http://www.pnas.org/content/110/47/E4502

[90]. Lee S, Viqar F, Zimmerman ME, Narkhede A, Tosto G, Benzinger TL, Marcus DS, Fagan AM, 
Goate A, Fox NC, Cairns NJ, Holtzman DM, Buckles V, Ghetti B, McDade E, Martins RN, 
Saykin AJ, Masters CL, Ringman JM, Ryan NS, Frster S, Laske C, Schofield PR, Sperling RA, 
Salloway S, Correia S, Jack C, Weiner M, Bateman RJ, Morris JC, Mayeux R, B. AM and, White 
matter hyperintensities are a core feature of alzheimer’s disease: Evidence from the dominantly 
inherited alzheimer network, Annals of Neurology 79 (6) (2016) 929–939. doi:10.1002/
ana.24647. [PubMed: 27016429] 

Castillo-Barnes et al. Page 26

Inf Fusion. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.pnas.org/content/110/47/E4502


• A comparison in DIAN by considering the 3 genes and Machine Learning.

• Feature selection based on ANOVA followed by Principal Component 

Analysis (PCA)

• SVM in a nested k-Fold CV resulted in accuracies of 72–74% using PiB PET 

features

• PSEN1 subgroups vs. NC provided accuracies of 80%, DIAN as an 

heterogeneous entity
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Figure 1: 
General diagram.

Castillo-Barnes et al. Page 28

Inf Fusion. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Classification results for experiments 1 and 2 using a SVM classifier with Linear Kernel and 

considering different types of input data for each NComp in PCA analysis.
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Figure 3: 
Classification results for experiment 3 depending on the Estimated Years to Onset (EYO) 

when comparing NC vs. PSEN1 (only asymptomatic cases).
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Figure 4: 
ROC curves obtained considering different types of input features for experiments 1 and 2.
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Figure 5: 
AUC obtained for each comparison performed for experiments 1, 2 and 3 when only using 

PiB imaging features.
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Figure 6: 
Cumulative variance of PCA relative to NComp.
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Figure 7: 
Violinplots and Boxplots for the 6 most significant features of each input group (NIB, FDG, 

MRI and PiB) when comparing NC vs asymptomatic PSEN1 MC.
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Figure 8: 
Atlas plot of significant brain regions using the log(Fvalue) measure. Threshold referred to 

the significance level 0.05.
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Figure 9: 
Histograms obtained from the 8 most significative FDG imaging markers when comparing 

NC vs asymptomatic PSEN1 MC.
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Figure 10: 
Clustering obtained from FDG imaging markers when comparing NC vs asymptomatic 

PSEN1 MC. This 3D figure has been generated by representing the NComp = 3 components 

obtained from PCA analysis step.
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Figure 11: 
Classification rates obtained from FDG imaging markers when comparing NC vs PSEN1 

MC. These results underscore the similarity between second PSEN1 cluster with respect NC 

whereas the first cluster is clearly more differentiated.
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Table 1:

Non-imaging markers.

Marker Type of test Assay protocols [9]

Aβ42 CSF INNO, xMAP

Aβ40 CSF INNO

Aβ42 : Aβ40 ratio CSF INNO

τ CSF xMAP

p-τ CSF xMAP

Aβ42 Plasma PL_xMAP

Aβ40 Plasma PL_xMAP

Aβ42 : Aβ40 ratio Plasma PL_xMAP

APOE Genetic Alleles ϵi,j with i, j=2,3,4
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Table 2:

CDR in baseline.

Asymptomatic
Symptomatic

Early Mild Moderate Severe

NC 173 0 0 0 0

APP 29 9 4 1 0

PSEN1 122 51 20 5 4

PSEN2 20 2 0 0 0
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Table 3:

Balance of subjects in DIAN database for each experiment.

Exp Description NC MC

1
NC/MC 164 281

NC/MC ** 164 170

2

NC/PSEN1/PSEN2/APP 164 217/20/44

NC/PSEN1/PSEN2/APP ** 164 122/19/29

NC/PSEN1 164 217

NC/PSEN1 ** 164 122

3
NC/PSEN1 164 217

NC/PSEN1 ** 164 122

Used ** to represent only asymptomatic cases.

Inf Fusion. Author manuscript; available in PMC 2021 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Castillo-Barnes et al. Page 42

Table 4:

Classification results for NC vs asymptomatic PSEN1 comparison. Neither FDG nor NIB showed significant 

results.

Input data NComp CV accuracies (%) re-Substitution (%) Upper bounds (%)
(*) h

PIB

3 50.00 62.70 16.34 Reject

10 57.46 85.38 28.21 Accept

15 71.40 87.50 29.31 Accept

20 64.60 89.48 30.35 Accept

MRI

3 56.41 61.21 16.34 Reject

10 57.60 65.82 28.21 Reject

15 56.83 68.01 29.31 Reject

20 56.90 69.83 30.35 Reject

(*)
Reference levels obtained from [82]. CV accuracies column is expressed in terms of the balanced accuracy.
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Table 5:

Demographics obtained from the two clusters computed with k-Means for NC vs PSEN1 MC.

Cluster Group N Age MMSE

First

Male 18 40.17 ± 11.38 26.67 ± 5.04

Female 28 38.61 ± 10.88 26.68 ± 6.03

Both 46 39.21 ± 11.10 26.67 ± 5.67

Second

Male 23 42.65 ± 10.57 26.65 ± 4.98

Female 51 39.37 ± 9.76 26.81 ± 4.74

Both 74 40.39 ± 10.14 26.76 ± 4.82
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Table 6:

Demographics obtained from the two clusters computed with k-Means for NC vs asymptomatic PSEN1 MC.

Cluster Group N Age MMSE

First

Male 16 41.69 ± 10.70 26.94 ± 5.32

Female 21 37.38 ± 9.72 26.71 ± 5.60

Both 37 39.24 ± 10.38 26.81 ± 5.48

Second

Male 20 44.20 ± 10.43 26.65 ± 4.98

Female 37 39.27 ± 9.16 26.81 ± 4.74

Both 57 41.00 ± 9.91 27.79 ± 4.68
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