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SUMMARY

Tissue clearing methods enable the imaging of biological specimens without sectioning. However, 

reliable and scalable analysis of large imaging data in 3D remains a challenge. Here, we developed 

a deep learning-based framework to quantify and analyze the brain vasculature, named Vessel 

Segmentation & Analysis Pipeline (VesSAP). Our pipeline uses a convolutional neural network 

(CNN) with a transfer learning approach for segmentation and achieves human-level accuracy. 

Using VesSAP we analyzed vascular features of whole C57BL/6J, CD1 and BALB/c mouse brains 

at the micrometer scale after registering them to the Allen mouse brain atlas. We reported evidence 

of secondary intracranial collateral vascularization in CD1 mice and found reduced vascularization 

of the brainstem compared to the cerebrum. Thus, VesSAP enables unbiased and scalable 

quantifications of the angioarchitecture of cleared mouse brains and yields biological insights into 

the vascular function of the brain.
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INTRODUCTION

Changes in cerebrovascular structures are key indicators for a large number of diseases 

affecting the brain. Primary angiopathies, vascular risk factors (e.g., diabetes), traumatic 

brain injury, vascular occlusion and stroke all affect the function of the brain’s vascular 

network1–3. The hallmarks of Alzheimer’s disease including tauopathy and amyloidopathy 

can also lead to aberrant remodeling of blood vessels1,4, allowing capillary rarefaction to be 

used as a marker for vascular damages5. Therefore, quantitative analysis of the entire brain 

vasculature is pivotal to developing a better understanding of brain function in physiological 

and pathological states. However, quantifying micrometer scale changes in the 

cerebrovascular network of brains has been difficult for two main reasons.

First, labeling and imaging of the complete mouse brain vasculature down to the smallest 

blood vessels has not yet been achieved. Neither magnetic resonance imaging (MRI), micro-

computed tomography (MicroCT), nor optical coherence tomography have sufficient 

resolution to capture capillaries in bulk tissue6–8. Fluorescent microscopy provides a higher 

resolution, but can typically only be applied to tissue sections up to 200 μm thickness9. 

Recent advances in tissue clearing could overcome this problem10, but so far there has been 

no systematic description of all vessels of all sizes in an entire brain in three dimensions 

(3D).

The second challenge relates to the automated analysis of large 3D imaging data with 

substantial variance in signal intensity and signal-to-noise ratio at different depths. Simple 

intensity and shape-based filtering approaches such as Frangi’s vesselness filters, or more 

advanced image processing methods with local spatial adaptation cannot reliably 

differentiate vessels from a background in whole brain scans11,12. Finally, imaging of a 

whole brain vascular network at capillary resolution results in datasets of terabyte size. 

Established image processing methods do not scale well to terabyte-sized image volumes as 

they don’t generalize well to large images and they require intensive manual fine-

tuning13–15.

Here, we present VesSAP (Vessel Segmentation & Analysis Pipeline), a deep learning-based 

method for the automated analysis of the entire mouse brain vasculature, overcoming the 

above limitations. VesSAP encompasses 3 major steps: 1) staining, clearing and imaging of 

the mouse brain vasculature down to the capillary level by two different dyes: wheat germ 

agglutinin (WGA) and Evans blue (EB), 2) automatically segmenting and tracing the whole 

brain vasculature data via convolutional neural networks (CNN) and 3) extracting vascular 

features for hundreds of brain regions after registering the data to the Allen brain atlas (Fig. 

1). Our deep learning-based approach for network extraction in cleared tissue is robust, 

despite variations in signal intensities and structures, outperforms previous filter-based 

methods and reaches the quality of segmentation achieved by human annotators. We applied 

VesSAP to the three commonly used mouse strains C57BL/6J, CD1 and BALB/c.
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RESULTS

Vascular staining, DISCO clearing, and imaging

To reliably stain the entire vasculature, we used dyes WGA and EB dyes, which can be 

visualized in different fluorescence channels. We injected the EB dye into the living mice 12 

hours before WGA perfusion, allowing its long-term circulation to mark vessels under 

physiological conditions16, while we perfused the WGA dye during fixation. We then 

performed 3DISCO clearing17 and light-sheet microscopy imaging of whole mouse brains 

(Fig. 2a–c, Supplementary Fig. 1, 2). WGA highlights microvessels, and EB predominantly 

stains major blood vessels, such as the middle cerebral artery and the circle of Willis (Fig. 

2d–i, Supplementary Fig. 3). Merging the signals from both dyes yields a more complete 

staining of the vasculature than relying on individual dyes only (Fig. 2c,f, Supplementary 

Video 1). Staining from both dyes is congruent in mid-sized vessels, with signals originating 

from the vessel wall layer (Fig. 2j–l, Supplementary Fig. 3a–c). Using WGA, we reached a 

higher signal-to-noise ratio (SNR) for microvessels than bigger vessels. With EB, the SNR 

for small capillaries was lower but larger vessels reached a high SNR (Supplementary Fig. 

4). Integrating the information from both channels allows acquisition of the entire 

vasculature, and results in an optimized SNR. We also compared fluorescence signal quality 

of the WGA staining (targeting the complete endothelial glycocalyx lining18) with a 

conventional vessel antibody (anti-CD31, targeting endothelial cell-cell adhesion19) and 

found that WGA produced a higher SNR for the blood vessels in general (Supplementary 

Fig. 5).

Segmentation of the volumetric images

To enable the extraction of quantitative features of the vascular structure, vessels in the 

acquired brain scans need to be segmented in 3D. Motivated by deep learning-based 

approaches in biomedical image data analysis20–28, we used a five layer CNN (Fig. 3a) to 

exploit the complementary signals of both dyes to derive a complete segmentation of the 

entire brain vasculature.

In the first step, the two input channels (WGA and EB) are concatenated. This yields a 

matrix in which each voxel is characterized by two features. Then, each convolutional step 

integrates the information from a voxel’s 3D neighborhood. We use full 3D convolutions20 

without further down or up sampling and fewer trainable parameters in comparison to e.g., 

the 3D U-Net and V-Net29,30 in order to achieve high inference speeds. After the fourth 

convolution, the information from 50 features per voxel is combined with a convolutional 

layer with kernel size one and a sigmoidal activation to estimate the likelihood that a given 

voxel represents a vessel. Subsequent binarization yields the final segmentation. In both 

training and testing, the images are processed in sub-volumes of 50 × 100 × 100 pixels.

Deep neural networks often require large amounts of annotated data or many iterations of 

training. Here, we circumvented this requirement with a transfer learning approach31. In 

short, we first pre-trained the network on a large, synthetically generated vessel-like data set 

(Supplementary Fig. 6)32 and then refined on a small amount of manually annotated parts of 
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the real brain vessel scans. This approach reduced the training iterations on manually 

annotated training data.

To assess the quality of the segmentation, we compared the VesSAP CNN prediction with 

manually labeled ground truth and alternative computational approaches (Table 1). We 

report voxel-wise segmentation metrics, namely accuracy, the F1-score33, Jaccard 

coefficient, and cl-F1, which weight the centerlines and volumes of the vessels (detailed in 

Methods). Compared to the ground truth, our network achieved an accuracy of 0.94 ± 0.01 

and an F1-score of 0.84 ± 0.05 (for additional scores see Table 1, all values are mean ± SD). 

As controls, we implemented alternative state-of-the-art deep learning and classical 

methods. Our network outperforms classical Frangi filters11 (accuracy: 0.85 ± 0.03; F1-

Score: 0.47 ± 0.18), as well as recent methods based on local spatial context via Markov 

random fields13,34 (accuracy: 0.85 ± 0.03; F1-score: 0.48 ± 0.04). VesSAP achieved similar 

performance compared to 3D U-Net and V-Net architectures, which require substantially 

more trainable parameters (3D U-Net: accuracy: 0.95 ± 0.01; F1-score: 0.85 ± 0.03 and V-

Net: accuracy: 0.95 ± 0.02; F1-score: 0.86 ± 0.07, no statistical difference compared to 

VesSAP CNN, two sided t-test all, p-values > 0.3). However, VesSAP CNN outperformed 

the other architectures substantially in terms of speed, being ~20 and ~50 times faster in the 

feedforward path than V-Net and 3D U-Net, respectively. This is particularly important for 

our large datasets (hundreds of gigabytes). For example, VesSAP CNN segments a single 

brain in 4 hours, while V-Net and 3D U-Net require 3.3 days and 8 days, respectively. The 

superior speed of the VesSAP CNN is due to the substantially fewer trainable parameters in 

its architecture (e.g., our implementation of the 3D U-Net has ~178 million parameters, 

VesSAP CNN has ~0.059 million parameters) (Table 1). Next, we compared the 

segmentation accuracy of our network with human annotations. A total of 4 human experts 

independently annotated two volumes. We found that inter-annotator accuracy and F1-score 

of experts were comparable to the predicted segmentation of our network (human 

annotators: accuracy: 0.92 ± 0.02 and F1-score: 0.81 ± 0.06, Fig. 3b). Importantly, we 

extrapolate that human annotators would need more than a year to process a whole brain 

instead of the 4 hours required by our approach. Moreover, we observed differences in the 

human segmentations due to annotator bias. Thus, VesSAP CNN can segment the whole 

brain vasculature consistently at human-level accuracy with a substantially higher speed than 

currently available methods, enabling high throughput for large-scale analysis.

We show an example of a brain vasculature that was segmented by VesSAP in 3D (Fig. 3c 

and Supplementary Video 2, 3). Zooming into a smaller patch reveals that the connectivity 

of the vascular network was fully maintained (Fig. 3d, Supplementary Video 2). Comparing 

single slices of the imaging data with the predicted segmentation shows that vessels are 

accurately segmented regardless of absolute illumination or vessel diameter (Supplementary 

Fig. 7).

Feature extraction and atlas registration

Vessel lengths, radii and the number of bifurcation points are commonly used to describe the 

angioarchitecture2. Hence, we used our segmentation to quantify these features as distinct 

parameters to characterize the mouse brain vasculature (Fig. 4a, Supplementary Video 4). 

Todorov et al. Page 4

Nat Methods. Author manuscript; available in PMC 2020 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We evaluated local vessel length (length normalized to the size of the brain region of 

interest), local bifurcation density (sum of occurrences normalized to the size of the brain 

region of interest) and local vessel radius (average radius along the full length) of the blood 

vessels in different brain regions.

We reported the vascular features in three ways to enable a comparison with various 

previous studies that differed in the measures used (Supplementary Fig. 8). More 

specifically, first, we provided a count of segmented voxels as compared to total voxels 

within a specific brain region (voxel space). Second, we provided the measurements by 

calculating the voxel size of our imaging system and accounted for the Euclidean length 

(microscopic space). Third, we corrected the microscopic measurements to account for the 

tissue shrinkage caused by the clearing process (anatomical space) (Supplementary Tables 

2–10). We calculated this shrinkage rate by measuring the same mouse brain volume using 

MRI prior to clearing.

Here, we use the anatomical space to report our specific biological findings as it is closest to 

the physiological state. For the average blood vessel length of the whole brain, we found a 

value of 545.74 ± 94 mm/mm³ (mean ± SD). Because our method quantifies brain regions 

separately, we could compare our results to the literature, which mostly reported the 

quantifications for either specific brain regions or extrapolations to the whole brain from 

regional quantifications. For example a vascular length of 922 ± 176 mm/mm³ (mean ± SD) 

was previously reported for cortical regions (size of 508 × 508 × 1500 μm)10. We found a 

similar vessel length for the same region in the mouse cortex (C57BL/6J) (913 ± 110 mm/

mm³), substantiating the accuracy of our method. We performed additional comparisons to 

other reports (Supplementary Table 11). Moreover, we compared the measurements acquired 

with our algorithms to manually labeled ground truth data and found a deviation of 8.21% 

for the centerlines, 13.18% for the number of bifurcation points and 16.33% for the average 

radius. These deviations are substantially lower than the average deviation among human 

annotators (Methods).

We quantified and visualized the vessel radius along the entire vascular network (Fig. 4b). 

After extracting vascular features of the whole brain with VesSAP, we registered the volume 

to the Allen brain atlas (Supplementary Video 5, 6). This allowed us to map the segmented 

vasculature and corresponding features topographically to distinct anatomical brain regions 

(Fig. 4c). Each anatomical region can be further divided into sub-regions, yielding a total of 

1238 anatomical structures (619 per hemisphere) for the entire mouse brain (Fig. 4d). This 

allows the analysis of each denoted brain region and grouping regions into clusters such as 

left vs. right hemisphere, gray vs. white matter or any hierarchical clusters of the Allen brain 

atlas ontology. For our subsequent statistical feature analysis, we grouped the labeled 

structures according to the 71 main anatomical clusters of the current Allen brain atlas 

ontology. We thus provide the whole mouse brain vascular map with extracted vessel 

lengths, bifurcation points and radii down to the capillary level.

VesSAP provides a reference map of the whole brain vasculature in mice

Studying the whole brain vasculature in C57BL/6J, CD1 and BALB/c strains (n = 3 mice for 

each strain), we found that the local vessel length and local bifurcation density differ in the 
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same brain over different regions, while they correlate highly among different mice for the 

same regions (Fig. 5a,b). Furthermore, the local bifurcation density correlates highly with 

the local vessel length in most brain regions (Supplementary Fig. 9), and the average vessel 

radius is evenly distributed in different regions of the same brain (Fig. 5c). In addition, the 

extracted features show no statistical difference (Cohen’s d, Supplementary Table 12) 

between the same anatomical cluster among the strains (Supplementary Fig. 9). Finally, 

microvessels make up the overwhelming proportion of the total vascular composition in all 

brain regions (Fig. 5d). We visually inspected exemplary brain regions to validate the output 

of VesSAP. Both VesSAP and visual inspection revealed that the gustatory areas had a 

higher vascular length per volume compared to the anterodorsal nucleus (Fig. 6a–c). Visual 

inspection also suggested that the number of capillaries was the primary reason for regional 

feature variations within the same brain.

Finally, VesSAP offered insights into the neurovascular structure of the different mouse 

strains in our study. There are direct intracranial vascular anastomoses in the C57BL/6J, 

CD1 and BALB/c strains (white arrowheads, Fig. 6d–f). The anterior cerebral artery, middle 

cerebral artery and the posterior cerebral artery are connected at the dorsal visual cortex in 

CD1 (red arrowheads, Fig. 6d,e) unlike in the BALB/c strains33 (Fig. 6f).

DISCUSSION

VesSAP can generate a reference map of the adult mouse brain vasculature. These maps can 

potentially be used to model synthetic cerebrovascular networks35. In addition to the metrics 

we obtain to describe the vasculature, advanced metrics e.g., Strahler values, network 

connectivity, and bifurcation angles can be extracted using the data generated by VesSAP. 

Furthermore, the centerlines and bifurcation points can be interpreted as the edges and nodes 

for building a full vascular network graph, offering a means for studying local and global 

properties of the cerebrovascular network in the future.

The VeSAP workflow relies on staining of the blood by two different dyes. WGA binds to 

the glycocalyx of the endothelial lining of the blood vessels36 but may miss some segments 

of the large vessels18. EB is a dye with a high affinity to serum albumin37, thus, it remains in 

the large vessels after a short perfusion protocol. In addition, EB labeling is not affected by 

subsequent DISCO clearing.

Vessels have long and thin tubular shapes. In our images, the radii of capillaries (about 3 

μm) are in the range of our voxel size. Therefore, a segmentation, which yields the correct 

diameter down to a single-pixel resolution poses a challenge as we observed a 16% deviation 

for the radius. This sub-pixel deviation did not pose a problem for segmenting the whole 

vasculature network and extracting features, because the vascular network can be defined by 

its centerlines and bifurcations.

The described segmentation concept is based on a transfer learning approach, where we 

pretrained the CNN and refined it on a small labeled dataset of 11% of the synthetic dataset 

and only 0.02% of one cleared brain. We consider this a major advantage compared to 

training from scratch. Thus, our CNN might generalize well to different types of imaging 
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data (such as microCT angiography) or other curvilinear structures (e.g., neurons), as only a 

small labeled dataset is needed to adjust our pre-trained network.

Based on our vascular reference map, unknown vascular properties can be discovered and 

biological models can be confirmed. VesSAP showed a high number of collaterals in albino 

CD1 mice. Such collaterals between large vessels can substantially alter the outcome of 

ischemic stroke lesions: the blood deprived brain regions from the occlusion of a large vessel 

can be compensated by a blood supply from the collateral extensions of other large 

vessels33,40. Therefore, our VesSAP method can lead to the discovery of previously 

unknown anatomical details that could be functionally relevant.

In conclusion, VesSAP is a scalable, modular and automated machine learning-based 

method to analyze complex imaging data from cleared mouse brains. We foresee that our 

method will accelerate the applications of tissue clearing in particular for studies assessing 

the brain vasculature.

METHODS

Tissue preparation

Animal experiments were conducted according to institutional guidelines (Klinikum der 

Universität München/Ludwig Maximilian University of Munich), after approval of the 

ethical review board of the government of Upper Bavaria (Regierung von Oberbayern, 

Munich, Germany), and in accordance with the European directive 2010/63/EU for animal 

research. The animals were housed under a 12/12 hr light/dark cycle. For this study we 

injected 150 μl (2% V/V% in saline) of Evans blue dye (Sigma-Aldrich, E2129) 

intraperitoneally into three C57BL/6J, CD1 and BALB/c (Charles River, Strain Codes 027; 

482 and 028 respectively) male, 3 months old mice (n=3 per group). After 12 hrs of 

postinjection time, we anaesthetized the animals with a triple combination of midazolam + 

medetomidine + fentanyl (i.p.; 1 ml per 100 g body mass for mice; 5 mg, 0.5 mg and 0.05 

mg per kg body mass) and opened their chest for transcardial perfusion. The following 

media was supplied by a peristaltic pump set to deliver 8 ml/min volume: 0.25 mg wheat 

germ agglutinin conjugated to Alexa 594 dye (ThermoFisher Scientific, W11262) in 150 μl 

PBS (pH 7.2) and 15 ml PBS 1x and 15 ml 4% PFA. This short perfusion protocol was 

established based on preliminary experiments, where both WGA and EB staining partially 

washed out (data not shown) and with the goal to deliver fixative to the brain tissue using the 

vessels to achieve a homogenous preservation effect41.

After perfusion, the brains were extracted from the neurocranium while severing some of the 

segments of the circle of Willis, which is an inevitable component of most retrieval 

processes besides corrosion cast techniques. Next, the samples were incubated into 3DISCO 

clearing solutions as described17. Briefly, we immersed them in a gradient of 

tetrahydrofuran (Sigma-Aldrich, 186562): 50 vol%, 70 vol%, 80 vol%, 90 vol%, 100 vol% 

(in distilled water), and 100 vol% at 25 °C for 12 h at each concentration. At this point we 

modified the protocol by incubating the samples in tert-Butanol incubation for 12 hrs at 35 

°C followed by immersion in dichloromethane (Sigma-Aldrich, 270997) for 12 hrs at room 

temperature and finally incubation with the refractive index matching solution BABB 
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(benzyl alcohol + benzyl benzoate 1:2; Sigma-Aldrich, 24122 and W213802), for at least 24 

hrs at room temperature until transparency was achieved. Each incubation step was carried 

out on a laboratory shaker.

Imaging of the cleared samples with light-sheet microscopy

We used a 4× objective lens (Olympus XLFLUOR 340) equipped with an immersion 

corrected dipping cap mounted on a LaVision UltraII microscope coupled to a white light 

laser module (NKT SuperK Extreme EXW-12) for imaging. The images were taken in 16 bit 

depth and at a nominal resolution of 1.625 μm / voxel on the XY axes. For 12× imaging we 

used a LaVision objective (12x NA 0.53 MI PLAN with an immersion corrected dipping 

cap). The brain structures were visualized by the Alexa 594 (using a 580/25 excitation and a 

625/30 emission filter) and Evans blue fluorescent dyes (using a 640/40 excitation and a 

690/50 emission filter) in a sequential order. We maximized the signal to noise ratio (SNR) 

for each dye independently to avoid saturation of differently sized vessels when only a single 

channel is used. We achieved this by independently optimizing the excitation power so that 

the strongest signal in the major vessels does not exceed the dynamic range of the camera. In 

z-dimension we took the sectional images in 3 μm steps using left and right sided 

illumination. Our measured resolution was 2.83 μm × 2.83 μm × 4.99 μm for X, Y and Z, 

respectively (Supplementary Fig. 2). To reduce defocus, which derives from the Gaussian 

shape of the beam, we used a 12 step sequential shifting of the focal position of the light-

sheet per plane and side. The thinnest point of the light-sheet was 5 μm.

Imaging of the cleared samples with confocal microscopy

Additionally, the cleared specimens were imaged with an inverted laser-scanning confocal 

microscope (Zeiss, LSM 880) for further analysis. Before imaging, samples were mounted 

by placing them onto the glass surface of a 35 mm glass-bottom petri dish (MatTek, 

P35G-0–14-C) immersed in BABB. A 40x oil-immersion objective lens was used (Zeiss, 

ECPlan-NeoFluar 40x/1.30 Oil DIC M27, 1.3 NA, WD = 0.21 mm). The images were 

acquired by the settings for Alexa 594 (using a 561 excitation and a 585–733 emission 

range) and Evans blue fluorescent dyes (using a 633 excitation and a 638–755 emission 

range) in a sequential order.

Magnetic resonance imaging

We used a nanoScan PET/MR device (3 Tesla, Mediso Medical Imaging Systems) equipped 

with a head coil for murine heads to acquire anatomical scans in the T1 modality.

Reconstruction of the datasets from the tiling volumes

We stitched the acquired volumes using TeraStitcher’s automatic global optimization 

function (v1.10.3). We produced volumetric intensity images of the whole brain considering 

each channel separately. To improve the alignment to the Allen brain atlas we downscaled 

our dataset in the XY plane to achieve pseudo-uniform voxel spacing matching the Z plane.
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Deep learning network architecture

We rely on a deep 3D convolutional neural network (CNN) for segmentation of our blood 

vessel dataset. The networks general architecture consists of 5 convolutional layers, 4 with 

ReLu (rectified linear unit) followed by one convolutional layer with a sigmoid activation 

(Fig. 3a). The input layer is designed to take n images as an input. In the implemented case, 

the input to the first layer of the network are n=2 images of the same brain, which have been 

stained differently (Fig. 3a). To specifically account for the general class imbalance (much 

more tissue background than vessel signals) in our dataset, and the potential of high false 

positive rates associated with the class imbalance, we chose the generalized soft-Dice as the 

loss function to our network. At all levels we used full 3D convolutional kernels (Fig. 3a).

The networks training is driven by an Adam optimizer with a learning rate of 1e−5 and 

exponential decay rate of 0.9 for the 1st moment and 0.99 for the 2nd moment42. A 

prediction or segmentation with a trained model takes volumetric images of arbitrary size as 

input and outputs a probabilistic segmentation map of identical size. To deal with volumes of 

arbitrary size and extension, we processed them in smaller sub-volumes of 100 ×100 × 50 

pixels size. The algorithms have been implemented using the Tensorflow framework and 

KERAS43. They are trained and tested on two NVIDIA Quadro P5000 GPUs and on 

machines with 64GB and 512GB RAM respectively.

Transfer learning

Typically, supervised learning tasks in biomedical imaging are aggravated by a scarce 

availability of labeled training data. Our transfer learning approach aims to circumvent this 

problem by pre-training our models on synthetically generated data and refining them on a 

small set of real images44. Specifically, our approach pre-trains the VesSAP CNN on 3D 

volumes of vascular image data, synthetically generated together with the corresponding 

training labels, using the approach by Schneider and colleagues45. The pre-training is carried 

out on a dataset of 20 volumes of a size of 325 × 304 × 600 pixels for 38 epochs. During 

pre-training we applied a learning rate of 1e−4. Afterwards, the pre-trained model was fine-

tuned by retraining on a real microscopic dataset consisting of eleven volumes with a size of 

500 × 500 × 50 pixels. The image volumes were manually annotated by a commission 

including the expert who had previously prepared the samples and operated the microscope. 

The labels were verified and further refined in consensus by two additional human raters. 

The data we used in this fine-tuning step amounts to 11 % of the volume of the synthetic 

datasets and only a fraction of 0.02% of the voxel volume of a single whole brain. For the 

fine-tuning step, we used a learning rate of 1e−5. The final model was obtained after training 

on the real dataset for 6 epochs. This is a substantially shorter training compared to training 

from scratch, where we train the same VesSAP CNN architecture for 72 epochs until we 

reach the best F1-Score on the validation set. The labeled dataset consists of 17 volumes of 

500 × 500 × 50 pixels from 5 mice brains. Three of those brains are from the CD1 and two 

from the C57BL/6J strain. The volumes are chosen from regions throughout the whole brain, 

to represent the variability in the vascular dataset, both in terms of vessel shapes and 

illumination. To ensure independence, volumes of the training set and test/validation set are 

chosen from independent brains. All datasets include brains from the two strains. Our 

training dataset consists of eleven volumes, the validation dataset of three volumes and the 
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test dataset of three volumes, too. We cross-test on our test and validation dataset by rotating 

these. The volumes are processed during training and inference in 25 small sub-volumes of 

100 × 100 × 50 pixels.

We observed an average F1-Score of 0.84 ± 0.02 (mean ± SD), an average accuracy of 0.94 

± 0.01 (mean ± SD), and an average Jaccard coefficient of 0.84 ± 0.04 (mean ± SD) on our 

test datasets (Fig. 3b). We tested for statistical significance among the top three learning 

methods (VesSAP CNN, V-Net and 3D U-Net) using a paired t-test. We found that the 

differences in F1-Scores are not statistically significant (all p-values > 0.3, rejecting the 

hypothesis of different distributions).

Since the F1-Score, accuracy and Jaccard coefficient are all voxel wise volumetric scores 

and can fall short in evaluating connectedness of components we developed the cl-F1 score. 

cl-F1 is calculated on the intersection of centerlines and vessel volumes and not on volumes 

only, like the traditional F1-score is46. To determine this score we first calculate the 

intersection of the centerline of our prediction with the labeled volume and then calculated 

the intersection of the labeled volume’s centerline with the predicted volume. Next, we treat 

the first intersection as recall, as it is susceptible to false negatives, and the second as 

precision, as it is susceptible to false positives, and input this into the traditional F1-score 

formulation below:

F1 = 2 × precision × recall
precision + recall (I.)

We report an average cl-F1 score of 0.93 ± 0.02 (mean ± SD) on the test set.

All scores are given as mean and standard deviation. Our model reached the best model 

selection point on the validation dataset after 6 epochs of training.

Comparison to 3D U-Net and V-Net

To compare our proposed architecture to different segmentation architectures, we 

implemented the V-Net and 3D U-Net, both more complex CNNs with substantially more 

trainable parameters, which further include down- and up-sampling. While experiments 

show that 3D U-Net and V-Net reach marginally higher performance scores, the differences 

are not statistically significant (two sided t-test, p > 0.3). Their amount of parameters make 

them a factor of 51 and 23 slower during the inference stage. For the segmentation of one of 

our large whole brain datasets this translates to a time of 4 hours versus 8 days for 3D U-Net 

and 3.8 days for V-Net. This difference is also prevalent in the number of trainable 

parameters. VesSAP CNN has 0.058 million parameters, whereas 3D U-Net consists of more 

than 178 million and V-Net of more than 88 million. Furthermore, the light VesSAP CNN 

already reaches human-level performance. We therefore consider the problem of vessel 

segmentation as solved by the VesSAP CNN for our data. It should be mentioned that the 

segmentation network is a modular building block of the overall VesSAP pipeline, and can 

be chosen by each user according to his or her own preferences and, importantly, according 

to the computational power available.
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Pre-processing of segmentation

The pre-processing factors into the overall success of the training and segmentation. The 

intensity distribution among the brains and among brain regions differs substantially. To 

account for the intensity distributions, two preprocessing strategies have been applied 

successively.

1. High-cut filter: In this step the intensities x above a certain threshold c, which is 

defined by a global percentile, where each volume was set to that threshold. 

Next, they were normalized by f(x).

g(x) = c, x > c
x, x ≤ c (II.)

2. Normalization of intensities: The original intensities were normalized to the 

range of 0 to 1, where x is the pixel intensity and X are all intensities of the 

volume.

f(x) = x − min(X)
max(X) − min(X) (III.)

Inter-annotator experiment for the segmentation

To compare VesSAP’s segmentation to a human level annotation we implemented an inter-

annotator experiment. For this experiment we determined a gold standard label (ground 

truth) for two volumes of 500 × 500 × 50 pixels from a commission of three experts, 

including the expert who imaged our data and is therefore most familiar with the images. 

Next, we gave the two volumes to 4 other experts to label the complete vasculature. The 

experts spend multiple hours to label each patch within the ImageJ and ITK-snap 

environment and were allowed to use their favored approaches to generate what they 

considered to be the most accurate labeling. Finally, we calculated the accuracy and dice 

scores for the different annotators, compared to the gold standard and compared them to the 

scores of our model (Table 1).

Feature extraction

In order to quantify the anatomy of the mouse brain vasculature we extracted descriptive 

features based on our segmentation. First, we calculate the features in voxel space. Later we 

registered them to the Allen brain atlas.

As features we extracted the centerlines, the bifurcation points and the radius of the 

segmented blood vessels. We consider those features to be independent to the elongation of 

the light-sheet scans and the connectedness of the vessels due to staining, imaging and/or 

segmentation artefacts.

Our centerline extraction is based on a 3D thinning algorithm47. Before extracting the 

centerlines we applied two cycles of binary erosion and dilation to remove false negative 

pixels within the volume of segmented vessels as those would induce false centerlines. 

Todorov et al. Page 11

Nat Methods. Author manuscript; available in PMC 2020 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Based on the centerlines we extracted bifurcation points. A bifurcation is the branching 

point on a centerline where a larger vessel splits into two or more small vessels (Fig. 4a). In 

a network analysis context they are significant as they represent the nodes of a vascular 

network48. Furthermore, bifurcation points have significance in a biological context. In 

neurodegenerative diseases, capillaries are known to degenerate49, thereby substantially 

reducing the number of bifurcation points in an affected brain region compared to a healthy 

brain. We implemented an algorithm to detect the bifurcation points by taking the centerlines 

as an input and calculating the surrounding centerline pixels for every point on that 

centerline to determine whether a point is a centerline. The radius of a blood vessel is a key 

feature to describe vascular networks. The radius yields information about the flow and 

hierarchy of the vessel network. The proposed algorithm calculates the Euclidean distance 

transform for every segmented pixel v to the closest background pixel bclosest. Next, the 

distance transform matrix was multiplied with the 3D centerline mask equaling the 

minimum radius of the vessel around the centerline.

d v, bclosest = ∑
1

3
vi − bclosest, i

2
(IV.)

Feature quantification

Here we describe in detail how we calculated the features between the three different spaces:

Voxel space to microscopic space—To quantify our vessel length in SI units instead 

of voxels we calculated their Euclidean length, which depends on the direction of the 

connection of skeleton pixels (Supplementary Fig. 9). To calculate the Euclidean length of 

our centerlines, we carried out a connected component analysis, which transformed each 

pixel of the skeleton into an element of an undirected weighted graph, where zero weight 

means no connection and non-zero weights denote the Euclidean distance between two 

voxels (considering 26 connectivity). Thus, we obtain a large and sparse adjacency matrix. 

An element-wise summation of such a matrix provides the total Euclidean length of the 

vascular network along the extracted skeleton.

As measuring connected components is computationally very expensive, we calculated this 

Euclidean length of the centerlines for twelve representative volumes of 500 × 500 × 50 

pixels, and divided by the number of skeleton pixels. We calculate an average Euclidean 

length εCl of 1.3234 ± 0.0063 (mean ± SD) voxels per centerline element. This corresponds 

to a length of 3.9701±0.0188 (mean ± SD) μm in cleared tissue. Since the standard deviation 

of this measurement is low at less than 0.5% of the length, we apply this correction factor to 

the whole brain centerline measurements. This correction does not apply to the bifurcation 

points and our radius statistics, as bifurcations are independent of length and the radius 

extraction returns a Euclidean distance by default. Euclidean length, depending on the 

direction of the connection of skeleton pixels, the length of a skeleton pixel is different 

(Supplementary Fig. 9).
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Microscopic space to anatomical space—To account for the tissue shrinkage 

(Supplementary Fig. 9), which is inherent to DISCO clearing, we carried out an experiment 

to measure the degree of shrinkage. Before clearing, we imaged three live BALB/c mice 

brains with magnetic resonance imaging and calculated their brain’s average volumes, 

through precise manual segmentation by an expert. Next, we cleared three BALB/c brains, 

processed them using VesSAP and measured the total brain volumes using the atlas 

alignment. We report an average volume of 423.84 ± 2.04 mm3 for the live mice and 255.62 

± 6.57 mm3 for the cleared tissue. This accumulates to a total volume shrinkage of 39.69 %. 

We applied this as a correction factor for the volumetric information (e.g. brain regions).

Similar to previous studies, the shrinkage is uniform in all three dimensions. This is 

important, when considering shrinkage in one dimension as needed to account for the 

shrinkage in the centerlines and the radius. The one dimensional correction factor КL then 

corresponds to the cube root of the volumetric correction factor КV.

Accounting for those factors we calculate the vessel length per volume (Z) in cleared 

(Zcleared) and real tissue (Zreal) in Equation V., where NV,vox is the number of total voxels in 

the reference Volume and NCl,vox is the number of centerline voxels in the image Volume:

Zcleared = NCl, vox
NV , vox

× εCl   Zreal = NCl, vox
NV , vox

× εCl × κL
κV

(V.)

Similarly, we calculate the bifurcation density (B) in cleared and real tissue in Equation VI., 

where NBif,vox is the number of bifurcations in the reference Volume:

Bcleared = NBif, vox
NV , vox

   Breal = NBif, vox
NV , vox

× 1
κV

(VI.)

Please note, the voxel spacing of 3 μm has to be considered when reporting the features in 

SI-units.

Inter-annotator experiment for the features

To estimate the error in VesSAP’s feature quantification, we extracted the features on a 

labeled test set of 5 volumes of 500 × 500 × 50 pixels. When comparing to the gold standard 

label, we calculate errors (disagreements) of 8.21% for the centerlines, 13.18% for the 

number of bifurcation points and 16.33% for the average radius. To compare VesSAP’s 

extracted features to a human level annotation we implemented an inter-annotator 

experiment. For this experiment we had 4 annotators, who labeled the vessels and radius in 2 

volumes of 500 × 500 × 50 pixels using the ImageJ and ITK-snap. Finally, we calculated the 

agreement of the extracted features between all annotators and compared to the gold 

standard label.

We calculated this for each of the volumes and find an average error (disagreement) of 

34.62% for the radius, 25.20% for the bifurcation count and 12.55% for the centerline 

length.
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The agreement between the VesSAP output and the gold standard is higher than the average 

agreement between the annotators and the gold standard. This difference underlines the 

quality and reproducibility of VesSAP’s feature extraction.

Registration to the reference atlas

We used the average template, the annotation file and the latest ontology file (Ontology ID: 

1) of the current Allen mouse brain atlas CCFv3 201710. Then we scaled the template and 

the annotation file up from 10 to 3 μm3 to match our reconstructed brain scans and 

multiplied the left side of the (still symmetrical) annotation file with −1 so that the labels 

could be later assigned to the corresponding hemispheres. Next, the average template and the 

3D vascular datasets were downsampled to 10% of their original size in each dimension to 

achieve a reasonably fast alignment with the elastix toolbox50 (v4.9.0). For the sake of the 

integrity of the extracted features, we aligned the template to each of the brain scans 

individually using a two-step rigid and deformable (B-Spline, optimizer: 

AdaptiveStochasticGradientDescent, metric: AdvancedMattesMutualInformation, grid 

spacing in physical units: 90, in the VesSAP repository we host the log and parameter files 

for each brain scan) registration and applied the transformation parameters to the full 

resolution annotation volume (3 μm resolution). Subsequently, we created masks for the 

anatomical clusters based on the current Allen brain atlas ontology.

Statistical analysis of features

Data collection and analysis were not performed blind to the strains. Data distribution was 

assumed to be normal, though this was not formally tested. All data values of the descriptive 

statistics are given as mean ± SEM unless stated otherwise. Data were analyzed with 

standardized effect size indices (Cohen’s d)51 to investigate differences of vessel length, 

number of bifurcation points and radii between brain areas across the three mouse strains 

(n=3 per strain). Descriptive statistics were evaluated across brain regions in the pooled 

(n=9) dataset.

Data visualization

All volumetric datasets were rendered using Imaris, Vision4D and ITK Snap.

CODE AND DATA AVAILABILITY

VesSAP codes and data are publicly hosted at http://DISCOtechnologies.org/VesSAP, and 

include the imaging protocol, data (original scans, registered atlas data), trained algorithms, 

training data and a reference set of features describing the vascular network in all brain 

regions. Additionally, the source code is hosted on GitHub (https://github.com/vessap/

vessap) and on the executable platform CodeOcean (https://doi.org/10.24433/

CO.1402016.v1). Implementation of external libraries is available on request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Summary of the VesSAP pipeline
The method consists of three modular steps: 1, multi dye vessel staining and DISCO tissue 

clearing for high imaging quality using 3D light-sheet microscopy; 2, dep-learning based 

segmentation of blood vessels with 3D reconstruction and 3, anatomical feature extraction 

and mapping of the entire vasculature to the Allen adult mouse brain atlas for statistical 

analysis.

Todorov et al. Page 18

Nat Methods. Author manuscript; available in PMC 2020 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2 |. Enhancement of vascular staining using two complementary dyes
a-c, Maximum intensity projections of the automatically reconstructed tiling scans of WGA 

(a) and Evans blue (b) signals in the same sample and the merged view (c). d-f: Close-up of 

marked region in (c). g–l, Confocal images of WGA- and EB-stained vessels and vascular 

wall (g–i, maximum intensity projections of 112 μm and j–l, single slice of 1 μm). The 

experiment was performed on 9 different mice with similar results.
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Figure 3 |. Deep learning architecture of VesSAP and performance on vessel segmentation
a, The 3D VesSAP network architecture consisting of five convolutional layers and a 

sigmoid activation for the last layer including the kernel sizes and input/output of the feature 

size. b, The F1-score for inter-annotator experiments (blue) compared to VeSAP (red). c, 3D 

rendering of full brain segmentation from a CD1-E mouse. d, 3D rendering of a small 

volume marked in (c). The experiment was performed on 9 different mice with similar 

results.
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Figure 4 |. Pipeline showing feature extraction and registration process
a, Representation of the features extracted from vessels. b, Radius illustration of the 

vasculature in a CD1 mouse brain. C–d, Vascular segmentation results overlaid on the 

hierarchically (c) and randomly color-coded atlas to reveal all annotated regions (d) 

available including hemispheric difference (dashed-line in d). The experiment was 

performed on 9 different mice with similar results.
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Figure 5 |. Anatomical properties of the neurovasculature in the adult mouse brain mapped to 
the Allen brain atlas clusters
a–c, Representation of the local vessel length (a), the density of bifurcations (b) and the 

average radius (c) in each of the 71 main anatomical clusters of the Allen brain atlas. Open, 

black and orange circles denote measurements in CD1, C57BL/6J and BALB/c strains 

respectively; each circle represents a single mouse (a–c). d, Local distribution of the large, 

middle and micro vessels in the same anatomical clusters. All abbreviations are listed in the 

Supplementary table 1. All data values are given as mean ± SEM and n=3 mice per strain 

(a–c).
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Figure 6 |. Exemplary quantitative analysis enabled by VesSAP
a, The respective location of AD and GU areas in the mouse brain (left panels), maximum 

intensity projections of representative volumes from the gustatory areas (GU) and 

anterodorsal nucleus (AD) segmentation (600 × 600 × 33 μm) (right panels). b, c, 

Quantification of the bifurcation density and local vessel length for the AD and GU clusters. 

CD1 mice shown by open circles, BALB/C by orange circles, and C57BL/6J by black 

circles. Values are mean ± SEM, n=3 mice per strain. D–f, Images of the vasculature in a 

representative C57BL/6J (d), CD1 (e) and BALB/c mouse (f) where the white arrowheads 

indicate anastomoses between the major arteries. Direct vascular connections between the 

medial cerebral artery (MCA), the anterior cerebral artery (ACA) and the posterior cerebral 
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artery (PCER) are indicated by red arrowheads. The experiment was performed 3 times with 

similar results.

Todorov et al. Page 24

Nat Methods. Author manuscript; available in PMC 2020 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Todorov et al. Page 25

Table 1:

Evaluation metrics of the different segmentation approaches for 75 volumes of 100 × 100 × 50 pixels (s: 

seconds). All values are given as mean ± SD. Best performing algorithms in bold and underlined; algorithms 

whose performance does not differ more than 2% from the best performing one in bold. Number of trainable 

parameters for deep learning architectures in millions (m).

Segmentation model CI-F1 Accuracy F1-Score Jaccard Parameters Speed

VesSAP CNN 0.93 ± 0.02 0.94 ± 0.01 0.84 ± 0.05 0.84 ± 0.04 0.0587 m 1.19 s

VesSAP CNN, trained from scratch 0.93 ± 0.02 0.94 ± 0.01 0.85 ± 0.04 0.85 ± 0.04 0.0587 m 1.19 s

VesSAP CNN, synthetic training data 0.87 ± 0.02 0.90 ± 0.05 0.72 ± 0.07 0.70 ± 0.05 0.0587 m 1.19 s

3D U-Net 0.93 ± 0.02 0.95 ± 0.01 0.85 ± 0.03 0.85 ± 0.03 178.4537 m 61.22 s

V-Net 0.94 ± 0.02 0.95 ± 0.02 0.86 ± 0.07 0.86 ± 0.07 88.8556 m 26.87 s

Frangi Vesselness 0.84 ± 0.03 0.85 ± 0.03 0.47 ± 0.19 - - 117.00 s

Markov Random Field 0.86 ± 0.02 0.85 ± 0.03 0.48 ± 0.04 - - 24.31 s
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