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For treatment individualisation of patients with locally advanced head and neck squamous cell 
carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different 
deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning 
computed tomography images. Based on multicentre cohorts for exploration (206 patients) and 
independent validation (85 patients), multiple deep learning strategies including training of 3D- and 
2D-convolutional neural networks (CNN) from scratch, transfer learning and extraction of deep 
autoencoder features were assessed and compared to a clinical model. Analyses were based on Cox 
proportional hazards regression and model performances were assessed by the concordance index 
(C-index) and the model’s ability to stratify patients based on predicted hazards of LRC. Among all 
models, an ensemble of 3D-CNNs achieved the best performance (C-index 0.31) with a significant 
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association to LRC on the independent validation cohort. It performed better than the clinical model 
including the tumour volume (C-index 0.39). Significant differences in LRC were observed between 
patient groups at low or high risk of tumour recurrence as predicted by the model ( p = 0.001 ). This 
3D-CNN ensemble will be further evaluated in a currently ongoing prospective validation study once 
follow-up is complete.

Treatment individualisation is a central objective for the improvement of radiotherapy  outcomes1. In particular, 
patients diagnosed with locally advanced head and neck squamous cell carcinoma (HNSCC) might benefit from 
individualised treatment, since five-year overall survival probability after primary radiochemotherapy is only 
approx. 50%2. Subgroups of patients may be identified that are currently under- or overtreated and might benefit 
from e.g. escalated or de-escalated dose prescriptions. Individualisation of treatment may be based on statistical 
survival models that predict endpoints such as overall survival or loco-regional tumour control (LRC). Survival 
models are able to analyse time-to-event data which frequently contain censored observations. The prognostic 
value of these models is based on biomarkers that are able to stratify patients into groups at different risk of treat-
ment failure. Such biomarkers may result from clinical or tumour-related features such as age, gender or tumour 
stage, molecular analyses of tumour biopsies such as human papillomavirus (HPV) status or gene signatures, 
dosimetric information or clinical imaging data from computed tomography (CT), magnetic resonance imaging 
(MRI), positron emission tomography (PET) scans or combinations  thereof3–13.

Imaging data are considered a valuable source of information for tailoring individual treatment, due to their 
non-invasiveness, repeatability and their ability to represent the entire tumour. Numerous radiomics models, 
in which traditional machine-learning (ML) methods were applied on hundreds to thousands of pre-defined 
and handcrafted image features, have been  developed14–18, but have not yet surpassed the threshold for clinical 
acceptance and  applicability19. Recently, Ger et al.20 found that radiomics features of CT and PET scans failed to 
improve upon clinical risk models in a large head and neck cancer dataset. With the recent advances that deep 
convolutional neural networks (CNNs) have brought to the fields of natural and medical image analysis, there 
is hope to elevate model performance for radiotherapy outcome modelling, as well. This is mostly due to the 
fact that CNNs are able to automatically learn abstract feature representations of the input data during training. 
However, so far most applications of deep learning to medical images revolve around tasks for  segmentation21 
or  classification22–24. The same holds true for the field of radiotherapy, where most applications of deep learn-
ing focus on segmentation, computer-aided detection or motion  management25. Only few attempts have been 
published to combine deep learning on medical imaging data and survival  analysis26–28.

The Cox proportional hazards model (CPHM) is a clinically established survival model. It is often used 
because it allows to exclusively model effects of patient covariates on individual event times without making dis-
tributional assumptions. Previously, Katzman et al.29 demonstrated the benefit of combining multi-layer percep-
trons with the CPHM for modelling of nonlinear feature interactions, while Ching et al.30 applied this approach 
to ten cancer-related datasets of high throughput transcriptomics data. Additionally, the CPHM and CNNs 
were combined to build risk models based on pathological histology images for lung cancer and glioblastoma 
patients,  respectively26,27, whereas Haarburger et al.28 applied a similar idea to CT scans of lung cancer patients.

In this manuscript, we developed and independently validated three deep learning approaches to predict LRC 
from treatment-planning CT images of patients with locally advanced HNSCC treated by primary radiochemo-
therapy. (i) We developed a CPHM based only on clinical parameters to provide a baseline model. Subsequently, 
we investigated different deep learning approaches to the CPHM: (ii) we trained 3D- and 2D-CNNs from scratch, 
(iii) we applied a transfer learning strategy by fine-tuning pre-trained networks on our dataset and (iv) we used 
deep  features31–33 generated by a trained  autoencoder34.

Methods
Patient cohort. A multicentre retrospective cohort consisting of 291 patients with locally advanced HNSCC 
was collected and divided into an exploratory and an independent validation cohort (206 and 85 patients, respec-
tively). Allocation of patients was based on the different included studies. 149 of the 206 patients of the explora-
tory cohort were treated in one of the six partner sites of the German Cancer Consortium Radiation Oncology 
Group (DKTK-ROG) between 2005 and  20117. The remaining 57 patients were treated at the University Hos-
pital Dresden (UKD, Germany) between 1999 and  200635. 51 of the 85 patients of the independent validation 
cohort were treated within a prospective clinical trial (NCT00180180) at the UKD between 2006 and  20123, 9. 20 
additional patients were treated at the UKD and the Radiotherapy Center Dresden-Friedrichstadt between 2005 
and 2009 and the remaining 14 patients were treated in Tübingen between 2008 and  201336.

All patients received a CT scan for treatment-planning and were treated by primary radiochemotherapy. 
Inclusion criteria have previously been  described3,7,9,35. Ethical approval for the multicentre retrospective analyses 
was obtained from the Ethics Committee at the Technische Universität Dresden, Germany (EK177042017)17. 
All analyses were carried out in accordance with the relevant guidelines and regulations. Informed consent was 
obtained from all patients. CT scans were provided as DICOM files with contours of the primary tumour manu-
ally delineated and reviewed by experienced radiation oncologists (F.L., K.L., E.G.C.T.). Patient characteristics 
are summarised in Table 1.

The primary endpoint of this study was LRC, which was defined as the time between the start of radiochemo-
therapy and local or regional tumour recurrence. For patients with observed loco-regional recurrence, the event 
time was accompanied by an event indicator variable of 1, whereas for patients without an observed event, the 
last follow-up time was used together with an event indicator variable of 0.
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Design of the analysis. In our analyses we applied the CPHM, which is a regression model commonly 
used in survival analysis for assessing endpoints like overall survival, progression-free survival or, as in our case, 
LRC. It is able to take into account heterogeneous event times and censored observations and hence does not 
require the specification of a predefined and fixed follow-up time. The CPHM assigns a hazard, i.e. a risk, to every 
patient for developing a loco-regional recurrence, which can subsequently be used to classify patients into differ-
ent risk groups for loco-regional failure. The study design is presented in Fig. 1. We investigated four approaches 
to develop survival models based on the CPHM for the prediction of LRC hazards for patients diagnosed with 
locally-advanced HNSCC. First, (i) a clinical model was trained on the exploratory cohort and evaluated on the 
independent validation cohort to provide baseline performance metrics. Moreover, three deep learning based 
strategies using CNNs were applied: We (ii) trained models completely from scratch, using 3D-CNNs as well as 
2D-CNNs, applied (iii) a transfer learning approach leveraging weights of pre-trained 2D-CNN networks, and 
created (iv) a deep autoencoder and used its bottleneck features in a traditional CPHM.

Prognostic performance was evaluated by two approaches, calculation of the concordance index (C-index) 
and the ability to stratify patients into two risk groups based on the model predictions. The C-index37–39 measures 
the alignment between the observed times of loco-regional recurrence and the model predictions. It is given 
on a scale between zero and one with 0.5 indicating no prognostic value of the model. A C-index close to zero 
represents perfect predictions, since predicted hazards should be lower for patients with a longer recurrence-free 
time. We emphasise that this is in contrast to the situation of directly predicting event times, where a C-index 
close to one would be desirable. 95% confidence intervals (CI) for C-indices were computed using the survcomp 
R  package40,41 which implements the method proposed by Pencina et al.42. Models that did not contain the 
C-index 0.5 within the 95% CI on the independent validation cohort were considered as successfully validated.

Furthermore, based on the model predictions, patients were assigned to two groups, at low or at high risk 
for loco-regional recurrence. This stratification was based on the hazard values predicted by the models for 
every individual patient. The median value of these predictions on the exploratory cohort was used as a cutoff. 
Patients with a predicted hazard exceeding the cutoff were assigned to the high risk group and the remaining 
patients with hazards smaller or equal to the cutoff were assigned to the low risk group. To stratify patients of the 
independent validation cohort, the same cutoff was applied. The difference in LRC between the stratified patient 
groups was assessed using the log-rank test for the Kaplan–Meier (KM) curves of both risk groups. Significance 
was established for p values below 0.05.

To address the random nature of the CNN training procedure and to leverage the benefits of model 
 ensembles43, we repeated model training three times, each time using 10-fold cross-validation (CV) based on 
the exploratory cohort, stratified by the LRC event status, for a total of 30 CV runs. By applying CV on the 
exploratory cohort, splits of the samples into training and internal test folds were obtained. Models were built 
in each CV run using the data of the training fold. Data of the internal test fold was set aside for optional hyper-
parameter tuning and data of the independent validation cohort was used to measure model performance on 
previously unseen data.

Since each of the 30 CV runs resulted in a trained model (which we refer to as single model), we created 
ensemble predictions by averaging of the network outputs, essentially considering the information of multiple 
models before making a final prediction.

Table 1.  Patient characteristics of the exploratory and independent validation cohort: p values were obtained 
by using two-sided Mann–Whitney U-tests for continuous variables and χ2 homogeneity tests for categorical 
variables.

Variable

Exploratory cohort (n = 206)
Independent validation cohort (n 
= 85)

p valueMedian (Range) Median (Range)

Follow up time of patients alive (months) 52.62 (4.27–131.91) 42.55 (7.85–107.27) 0.72

Age (years) 59.00 (39.20–84.50) 55.00 (37.00–76.00) 0.023

Primary tumour volume ( cm3) 29.13 (4.52–321.74) 40.62 (2.70–239.07) 0.039

Number of patients (%) Number of patients (%)

Gender male/female 174/32 (84/16) 74/11 (87/13) 0.70

cT-stage T1/T2/T3/T4 2/23/51/130 (1/11/25/63) 2/9/30/44 (2/11/35/52) 0.21

cN-stage N0/N1/N2/N3/unknown 30/7/154/15/0 (15/3/75/7/0) 9/8/64/3/1 (11/9/75/4/1) 0.097

UICC-stage I/II/III/IV 0/0/15/191 (0/0/7/93) 1/2/9/73 (1/2/11/86) 0.039

Tumour site oropharynx/oral cavity/hypophar-
ynx/larynx 93/51/62/0 (45/25/30/0) 29/23/28/5 (34/27/33/6) 0.003

p16 status negative/positive/unknown 148/28/30 (72/13/15) 52/5/28 (61/6/33) 0.26

Pathological grading 0/1/2/3/unknown 1/6/131/61/7 (1/3/63/30/3) 0/0/43/35/7 (0/0/51/41/8) 0.071

Smoking status no/yes/unknown 41/163/2 (20/79/1) 13/51/21 (15/60/25) 1.00

Alcohol consumption no/yes/unknown 62/85/59 (30/41/29) 23/25/37 (27/29/44) 0.60

Loco-regional tumour recurrence 84 (41) 28 (33) 0.26
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Image processing. Preprocessing of patient CT scans was carried out using an in-house developed  toolkit44 
(available from https ://githu b.com/oncor ay/mirp) by performing (1.) cubic interpolation to isotropic voxel size 
of 1mm3 , (2.) cropping of the transversal plane to 224 by 224 pixels (with the tumour’s centre of mass as the 
centre of the cropped slice), (3.) clipping of the intensity range of Hounsfield units (HU) to the range [-200, 200] 
and (4.) normalisation of pixel values to the interval (0, 1).

Multiple image samples of each patient’s CT scan were extracted and used for model training and prediction. 
For all 2D-CNN models, we used 7 slices cranial and 8 slices caudal of the slice with the largest tumour area as 
provided by the segmentation mask, comprising a total of 16 transversal CT slices per patient. For training of the 
3D-CNNs we used smaller image regions of the axial plane due to GPU memory limitations. We first extracted 
a 32× 64× 64 ( z× y× x ) sized volume centered at the tumour centre of mass. Then, 15 additional random 
volumes of the same size were extracted for each patient. The volume centres were uniformly sampled from a 
cubic region of edgelength 32 around the tumour centre of mass. Zero padding was added to all extracted vol-
umes where necessary. For each of the volumes, a prediction was computed. Those were subsequently averaged 
to obtain a single prediction for each patient.

Cox proportional hazards model. The traditional CPHM fits the effect of p-dimensional covariates x on 
the hazard function h via h(t, x) = h0(t) exp

(

∑p
j=1 βjxj

)

, with an unspecified baseline hazard function h0(t) . 
We followed Katzman et al.29 in extending this to the more general form of h(t, x) = h0(t) exp

(

γβ(x)
)

 with β 
denoting weights learned by a neural network. Log-hazard values γβ(x) were estimated from CT image samples 
x by minimisation of (a batch approximation of) the negative of the Cox partial log-likelihood function

letting δi denote an event indicator variable that takes on the value 1 if loco-regional tumour recurrence was 
observed for CT sample i and 0 otherwise, and n being the total number of available CT samples. Further details 
on survival analysis and the CPHM are given in “Survival analysis and deep Cox proportional hazards model-
ling” section of the supplement.
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Figure 1.  Design of the analysis. (i) To provide baseline results, a clinical Cox proportional hazards model 
(CPHM) was trained on the exploratory cohort and evaluated on the independent validation cohort. (ii)–(iv) 
Three deep learning approaches were evaluated by training convolutional neural networks in a cross-validation 
approach. Subsequently, for each approach ensembles were constructed from the models obtained during cross-
validation and their performance was evaluated on the independent validation cohort.

https://github.com/oncoray/mirp
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All computations were done using Python 3.6.7 and Keras 2.2.445 with tensorflow (v1.12.0) backend. Our code 
is publically available from https ://githu b.com/oncor ay/cnn-hnscc  and experimental outputs can be downloaded 
from http://doi.org/10.14278 /rodar e.255.

Clinical model. To develop the clinical CPHM, we considered the clinical features patient age, gender, cT-
stage, cN-stage, UICC-stage, tumour site, p16 status, pathological grading, smoking status, alcohol consumption 
and primary tumour volume. These features have already been considered in previous  studies7,35. Tumour site 
comprised the values oropharynx, hypopharynx, larynx and oral cavity and was one-hot encoded. Volume was 
computed by summation of tumour segmentation masks and division by a factor of 1000 to obtain units of cm3 , 
followed by a (natural) logarithmic transformation.

Imputation of missing values for cN-stage, pathological grading and smoking status (1, 14 and 23 cases, 
respectively) was performed through selection of the most frequent value in the exploratory cohort. Due to 
more missing values (58 cases), p16 was converted into the variables p16unknown and p16. The same was done 
for alcohol consumption for which there were 96 missing cases. cT, cN, UICC and pathological grading stages 
were converted into the binary categories cT < 4 , cN < 2 , UICC < 47 and pathological grading < 2 . Patient age 
and tumour volume were z-score normalised with means and standard deviations obtained from the explora-
tory cohort. Clinical features prognostic for LRC were selected by applying a forward variable selection CPHM 
based on the likelihood ratio test (inclusion α = 0.05 , exclusion α = 0.1 ) using the exploratory cohort. Finally, 
a CPHM was trained on the exploratory cohort using the selected features and applied to the independent 
validation cohort.

Model ensembles. Due to our cross-validation approach (10-fold CV repeated three times), 30 different 
models were trained in every analysis. By averaging the resulting predicted log-hazard values, one final ensem-
ble prediction for the hazard of loco-regional recurrence was obtained for every patient. On the independent 
validation cohort, a patient’s ensemble prediction was computed by averaging over all 30 model predictions. For 
every patient of the exploratory cohort, a training and an internal test ensemble prediction was computed, since 
they appeared as part of the training folds and as part of the internal test folds. Training ensemble predictions 
were obtained by computing for every patient an average over all those 27 models for which that patient was part 
of the training fold. Similarly, internal test ensemble predictions were computed by only using the remaining 
three models for which the patient belonged to the internal test fold. For ensemble stratification of patients into 
groups at low and high risk of loco-regional recurrence, the cutoff value was determined as the median value of 
the training ensemble predictions.

Training from scratch. Different network architectures of 3D-CNN and 2D-CNN models were trained 
from scratch. In all trainings we used the AMSGrad  version46 of the Adam optimiser to estimate model param-
eters. For the 3D-CNN experiments the same architecture and hyperparameters as given by Hosny et al.23 were 
used with small changes. Due to a different input shape, the first dense layer contained slightly fewer neurons. In 
the last layer, a single output neuron with tanh activation was used instead of two neurons with softmax activa-
tion which they used for classification purposes. Each model was trained for a fixed number of 200 epochs with 
a batch size of 24. Neither data augmentation nor callbacks for early stopping or learning rate adjustments were 
used.

The 2D-CNN architecture (Fig. 2) was loosely inspired by the VGG  architecture47. It consisted of five convo-
lution blocks, each containing two convolutional layers with filter size 5× 5 for the first block and 3× 3 for all 
remaining blocks and ReLU activation functions. No batch normalisation (BN) was used. The second convolu-
tional layer of each block performed downsampling by using a stride of two. The first block comprised of 16 filters. 
The number of filters was doubled in each subsequent block. A flattening operation and a dropout layer (p=0.3) 
followed the last convolutional layer, before being connected to two fully-connected dense layers with ReLU 
activation of sizes 256 and 64, respectively. Dropout with the same probability as above was also applied between 
those dense layers. Lastly, the model output was given by a single dense neuron with tanh activation. Training 
was done for a maximum of 50 epochs with a learning rate of 5 · 10−5 while doing early stopping (patience=10) 
on the internal test fold as well as reducing learning rates on plateaus (factor=0.5, patience=3, min _lr = 10−7 ) 
via the provided Keras callbacks. We also evaluated performance after replacing the final tanh activation with a 
linear output, essentially allowing for unrestricted log-hazard ranges. Moreover, the effect of inserting BN layers 
between convolutions and ReLU activations was assessed.

The effect of combining clinical features and CT samples as two separate inputs to a 2D-CNN was evaluated. 
First, Spearman correlation coefficients between the 2D-CNN model-output (with BN and tanh as final activa-
tion) and the clinical features were computed. Then, a second input branch, designed to estimate log-hazard 
values from the clinical features was added to the network architecture as depicted in Fig. 2b). It consisted of a 
single dense neuron with tanh activation and with BN. The log-hazard estimates coming from the clinical branch 
and the image branch were then concatenated and fed through the final output layer consisting again of a single 
dense neuron with tanh activation and with BN.

Transfer learning. We evaluated the capabilities of transfer learning for training 2D-CNNs. The  ResNet5048, 
 DenseNet20149 and InceptionResNetV2 (IRNV2)50 architectures with weights pre-trained on the ImageNet 
dataset were used as foundation models. Their fully connected layers were replaced by a global average pooling 
layer followed by three dense layers with 128, 32 and one neurons, respectively. The first two dense layers utilised 
the ReLU activation function and the final layer used the tanh activation to restrict hazard output to the range 
(exp(−1), exp(1)) . No BN was applied in the newly added layers.

https://github.com/oncoray/cnn-hnscc
http://doi.org/10.14278/rodare.255
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We ran two experiments per architecture, using the last convolutional layer (denoted “last”) and an earlier 
 layer51 (denoted by the name of the layer in the Keras implementation) of the pre-trained networks as foundation 
for our models. Since those models were trained on RGB images with three input channels, we renormalised 
each CT slice to the range [0, 255], replicated it to three channels and applied the network preprocessing func-
tions provided by the Keras framework. All layers were fine-tuned simultaneously with a learning rate of 10−6 
for a maximum of 20 epochs while doing early stopping (patience=5) on the internal test fold as well as reducing 
learning rates on plateaus (factor=0.5, patience=3, min _lr = 10−7 ) via the provided Keras callbacks. A batch 
size of 32 was used and neither data augmentation nor weight regularisation were applied.

Deep features. Following Wang et al.34, we trained a 2D-CNN autoencoder model that learns to reproduce 
input CT slices as close as possible while passing through a so called bottleneck layer which acts as a means of 
compression and dimensionality reduction. Successful reconstruction requires capturing of important image 
characteristics at the bottleneck and we assumed that relevant tumour information was also encoded within 
those features. The model architecture is provided in Fig. 3 and consisted of an encoder part of six convolu-
tional layers with filter size 3× 3 , starting with 16 filters and doubling on each subsequent layer. Leaky ReLU 
( α = 0.01 ) was used as activation. No BN was applied. Between convolutional layers, max-pooling was used 
to reduce spatial resolution by a factor of two. Finally, a last 3× 3 convolutional layer with 64 filters and the 
same specification as above was applied to reduce the number of features in the bottleneck representation. The 
following decoder model was constructed as a mirror image of the encoder using upsampling layers for dou-
bling spatial resolution in each step. The decoder’s last layer was a single 1× 1 convolutional filter with sigmoid 
activation function to produce outputs with a data range of (0, 1), matching the input image range. Using the 
binary-crossentropy loss function, we trained the autoencoder for 100 epochs with batches of size 32 using the 
AMSGrad version of the Adam optimiser with learning rate 10−3 . We used data augmentation by randomly 

(a)

(b)

(       )

(       )

(  )

Figure 2.  Architecture used when training a 2D-convolutional neural network from scratch. Numbers give 
shapes of computed feature maps. The network consists of convolutional filters (‘conv’, light orange), with 
ReLU activation functions (orange). These are followed by a flattening layer and fully-connected dense layers 
(‘fc’, green). Network output is computed through a tanh activation (purple). (a) This architecture was used 
when training only on image data. The model output is given by γβ(ximg) . (b) An additional dense layer was 
introduced when clinical features were used in addition to image data. The network output in this case is given 
by γβ(x).

Figure 3.  Architecture of the applied autoencoder. Numbers describe the shapes of computed feature maps. 
Convolutional layers (’conv’) are comprised of convolutional filters (light orange) and Leaky ReLU ( α = 0.01 ) 
activation functions (orange). Spatial downsampling is performed using max-pooling layers (red), resulting 
in a set of bottleneck features. Upsampling operations (’up’, blue), and convolutional layers are then used to 
reconstruct the input image. A sigmoid activation (purple) is used as model output to match the range of the 
input data.
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shearing (shear_range = 0.1), zooming (zoom_range = 0.1) and rotating (rotation_range = 45) the input data. 
We then extracted the bottleneck feature maps of each slice which were of shape 7× 7× 64 , leading to a reduc-
tion to 6.25% of the original image size ( 224× 224 ). Those features were then flattened into a 3136 dimensional 
vector and a principal component analysis (PCA) was performed using the features of all slices of every patient 
from the training fold of the CV as a means of dimensionality reduction. Classical CPHMs were subsequently 
fitted on those training folds using one, two, five and ten PCA features. The learned PCA transformation was 
then applied to the independent validation cohort features before evaluating the performance of the trained 
CPHMs on those transformed features. In addition, a Lasso-based CPHM (LCPHM)52, that automatically selects 
relevant features, was fit on the full set of bottleneck features of each training fold without performing a PCA for 
a maximum of 5000 iterations. The best hyperparameter � , which determines the amount of L1 regularisation 
of the LCPHM, was obtained by another nested CV run on each training fold. This procedure was implemented 
using the R programming language and the glmnet  package53.

Results
Clinical model. All available clinical features were considered to develop a clinical model for the predic-
tion of LRC hazards. Based on the forward variable selection procedure, only the tumour volume was selected. 
This univariate CPHM achieved a C-index of 0.39 (95% CI: 0.32-0.45) on the exploratory cohort and a C-index 
of 0.39 (95% CI: 0.30–0.48) on the independent validation cohort. Stratification of the independent validation 
cohort into patient groups at low and high risk of loco-regional recurrence based on this clinical model showed 
a statistical trend approaching significance ( p = 0.052 , Supplementary Fig. 1).

Training from scratch. An ensemble of 3D-CNNs was successfully validated for the prediction of LRC. 
It achieved a C-index of 0.31 (95%-CI: 0.22-0.39) on the independent validation cohort (Table 2), outperform-
ing the clinical model. Ensembling slightly improved average single model performance (C-index: 0.32, Sup-
plementary Table 1). Moreover, stratification of patients of the independent validation cohort (Fig. 4, top row) 
into groups at low and high risk of loco-regional recurrence based on the model predictions revealed significant 
differences in LRC ( p = 0.001 ). Ensembles of 2D-CNN models trained from scratch were also successfully vali-
dated for prognosis of LRC. However, they showed higher C-indices than the 3D model (C-index: 0.38-0.39, 
Table 2), i.e. a performance comparable to the clinical model. Average single model performance was similar 
(Supplementary Table 1). All 2D ensemble models led to significant patient stratifications on the independent 
validation cohort for LRC or showed a statistical trend (Fig. 4, centre row) ( p = 0.051 ). Table 2 also shows that 
the inclusion of BN and the choice of final activation did not have a strong impact on performance regarding 
C-indices or stratification ability of the independent validation cohort. The Spearman correlation coefficient 
between model predictions and z-score normalised log-tumour volume was moderate across all 30 models (with 
BN, tanh as final activation), with average values of 0.30 and 0.36 for the exploratory and independent valida-
tion cohort, respectively. Combining imaging data and tumour volume as network input resulted in decreased 
performance compared to models with only the CT image as input: a C-index of 0.40 (95%-CI: 0.29-0.50) was 

Table 2.  Ensemble training from scratch: C-indices for the endpoint loco-regional control (LRC) are 
computed by averaging the model predictions of the repeated cross-validation models to build an ensemble 
model. Values in parenthesis denote 95% confidence intervals. In addition, differences in LRC between 
Kaplan–Meier curves of the stratified patient groups are assessed by the log-rank test. Best performance is 
marked in bold. C-index concordance index, tanh , hyperbolic tangent.

Final activation Batch normalisation

C-index Log-rank p value

Exploratory cohort

Independent validation cohortTraining Internal test

3D-CNN

tanh Yes
0.02 0.39 0.31

0.001
(0.01–0.03) (0.33–0.46) (0.22–0.39)

2D-CNN

linear No
0.02 0.43 0.39

0.039
(0.01–0.02) (0.36–0.49) (0.29–0.49)

linear Yes
0.01 0.43 0.38

0.015
(0.00–0.02) (0.36–0.49) (0.27–0.48)

tanh No
0.07 0.42 0.38

0.051
(0.05–0.09) (0.36–0.48) (0.28–0.48)

tanh Yes
0.01 0.42 0.38

0.015
(0.01–0.02) (0.36–0.48) (0.27–0.48)

2D-CNN + volume

tanh Yes
0.06 0.47 0.40

0.070
(0.04–0.08) (0.41–0.53) (0.29–0.50)
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obtained on the independent validation cohort and model predictions did not result in a statistically significant 
stratification ( p = 0.070).

Transfer learning. For transfer learning, the ensemble of DenseNet201 models in combination with its 
last convolutional layer as the foundation was successfully validated for prognosis of LRC and achieved the best 
C-index of 0.37 (95%-CI: 0.27-0.47) on the independent validation cohort (Table 3), which was slightly better 
than the clinical model. Compared to average single model peformance (C-index: 0.41, Supplementary Table 2) 
this was an improvement of 0.04. Moreover, a statistically significant stratification into low and high risk groups 
of loco-regional recurrence was achieved by this ensemble for the independent validation cohort (Fig. 4, bottom 
row) ( p = 0.041 ). Using the last convolutional layer as foundation, ensembles of ResNet50 or IRNV2 models 
were not able to successfully stratify patients of the independent validation cohort. Layers different from the last 
convolutional layer of the pre-trained models as input for the newly added dense layers resulted in slightly worse 
C-indices in all cases.

Boxplots showing the variability of ensemble predictions for patients of the independent validation cohort 
are provided in Supplementary Figs. 2, 3 and 4 for the ensemble of 3D-CNN models, 2D-CNN models and 
DenseNet201 models, respectively.

Deep features. The prognostic performance of classical CPHMs using bottleneck features of autoencoder 
models as covariates are given in Table 4. Model performance was inferior to the clinical model in all scenarios 
and none of the models achieved a statistically significant stratification of the independent validation cohort into 
low and high risk groups. The best C-index on the independent validation cohort was 0.42 (95%-CI: 0.32–0.53), 
obtained by the LCPHM ensemble. The ensemble model improved the C-index on the independent validation 
cohort by 0.03 compared to the average single model C-index (Supplementary Table  3). The amount of the full 
variance of the data captured by the PCA features is provided in Supplementary Table  4.

Discussion
We investigated deep learning methods in a survival analysis setting for the endpoint LRC, based on treatment-
planning CT images of locally advanced HNSCC patients treated with primary radiochemotherapy. Best per-
formance and successful validation was achieved by an ensemble of 3D-CNNs with a C-index of 0.31 on the 
independent validation cohort. Patient risk groups defined by the model predictions showed significant differ-
ences in LRC ( p = 0.001 ). Ensembles of different 2D-CNN approaches performed similar to a clinical CPHM 
based on the tumour volume (independent validation C-index of 0.39). Compared to using only a single trained 
model instance, our analysis revealed benefits in using model ensembles for final predictions, which is in line 
with the reasoning of  Dietterich43.

Overall, reported performances for 2D-CNNs were comparable to results previously published from our 
group by Leger et al.17. They evaluated multiple combinations of feature selection algorithms and classical 
machine learning models based on handcrafted radiomics features on the same dataset. An average independ-
ent validation C-index over all combinations of 0.62 was achieved (which corresponds to a C-index of 0.38 in our 
context, as explained in the “Methods” section). Similarly, Haarburger et al.28 reported C-indices between 0.585 

Table 3.  Ensemble of transfer learning models: C-indices for the endpoint loco-regional control (LRC) are 
computed by averaging the model predictions of the repeated cross-validation models to build an ensemble 
model. Values in parenthesis denote 95% confidence intervals. In addition, differences in LRC between 
Kaplan–Meier curves of the stratified patient groups are assessed by the log-rank test. Best performance is 
marked in bold. C-index concordance index, IRNV2 inceptionResNetV2.

Architecture Layer name

C-index Log-rank p value

Exploratory cohort

Independent validation cohortTraining Internal test

ResNet50 last
0.06 0.37 0.39

0.17
(0.04–0.07) (0.31–0.42) (0.30–0.48)

ResNet50 activation_37
0.14 0.39 0.41

0.15
(0.11–0.17) (0.33–0.44) (0.31–0.51)

DenseNet201 last
0.05 0.39 0.37

0.041
(0.04–0.06) (0.33–0.45) (0.27–0.47)

DenseNet201 conv4_block48
0.12 0.43 0.43

0.032
(0.10–0.15) (0.37–0.50) (0.33–0.53)

IRNV2 last
0.08 0.38 0.41

0.25
(0.06–0.10) (0.32–0.44) (0.31–0.52)

IRNV2 block17_10_ac
0.26 0.41 0.42

0.023
(0.22–0.31) (0.36–0.47) (0.32–0.53)
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and 0.623 using a CNN based CPHM on a CT imaging dataset of lung cancer patients. However, they suggested 
to reformulate the regression problem as a classification task. This was due to their GPU memory limitations 
which did not allow large enough batch sizes for good approximations of the partial log-likelihood function of 
the CPHM. We did not observe problems with small batch sizes (see Supplementary Table 5), but investigated 
their approach in an additional analysis: We evaluated ensemble model performance of 2D-CNNs using a cutoff 
of 24 months for LRC. Samples of 72 patients previously used in our analysis had to be discarded due to censoring 
before the cutoff value, clearly demonstrating the downside of binarising the time-to-event variable. We achieved 
an area under the receiver operating characteristic (AUROC) curve of 0.60 on the independent validation cohort 
which is comparable to the reported AUROC values of 0.598 and 0.63628.

We also provided empirical evidence (Supplementary Table 5) that approximation of the Cox partial log 
likelihood by batches does not seem to be problematic since models were able to learn well on the training set 
regardless of small (32) or large (256) batch sizes. However, we did not observe additional benefits for increased 
batch sizes. Moreover, we found that adding more samples of a single patient for training and inference did not 
further improve 2D-CNN results (Supplementary Table 5).

Using deep autoencoder features turned out to be the least effective approach among our investigations, since 
it never achieved statistically significant patient stratifications and showed the worst C-indices on the independ-
ent validation cohort. This might be due to having used a too large compression in our network design of the 
bottleneck features or having chosen a too small amount of PCA features. This is indicated by the performance 
improvements when switching from five to 10 PCA features, as well as by results reported by Wang et al.34. There, 
using 16 autoencoder features (of a different network architecture and without PCA), C-indices of 0.713 and 
0.694 on two cohorts diagnosed with high-grade serous ovarian cancer were reported.

Most CNN models struggled with overfitting, as can be seen in the large discrepancies of C-indices between 
training and internal test/independent validation (Tables 2, 3), which is also reflected in the large separation of 
KM curves between low and high risk groups in the training column of Fig. 4. Adding multiple regularisation 
approaches such as L1 and L2 weight regularisation, increased dropout rates and data augmentation to the fit-
ting procedure of our 2D-CNN models trained from scratch, we observed indeed drops in training performance 
for most approaches but without improvements on the independent validation, Supplementary Table 6. Similar 
observations were made for the 3D-CNN models. There, we employed a 3D data augmentation strategy using 
code from https ://githu b.com/MIC-DKFZ/batch gener ators  which included elastic deformations (deformation 
scale (0, 0.25)), random rotations in the range of [− 15, 15] degrees for each of the three spatial axes, random 
rescaling in the range of (0.75, 1.25), mirroring, random brightness multiplications in the range (0.7, 1.5), gauss-
ian noise additions with noise variance parameter set to (0, 0.05) and per channel gamma transformations using 
a gamma range parameter of (0.5, 2). However, ensemble results were similar (independent validation C-index 
0.30, log-rank p = 0.003 ) to the results obtained without using data augmentation. Throughout our experiments, 
we also observed C-index performance on the internal test folds of the CV to have much higher variance com-
pared to results of the training folds and the independent validation. We attribute this to the small sample sizes 
of about 20 patients in the internal test folds during the 10-fold CVs. Ensemble predictions for the internal test 
patients were also consistently worse than the ensemble predictions for the patients of the independent validation 
cohort, which might be due to the smaller number of models used for building the ensembles (only three models 
for the former but 30 for the latter) and inherent statistical differences between patients of the exploratory and 
the independent validation cohort for, e.g. tumour volume or tumour site.

The performance benefits observed for 3D-CNNs may have multiple causes. Firstly, those models allowed 
to incorporate potentially relevant spatial (three dimensional) context around the tumour during training. In 

Table 4.  Ensemble of autoencoder models: C-indices for the endpoint loco-regional control (LRC) are 
computed by averaging the model predictions of the repeated cross-validation models to build an ensemble 
model. Values in parenthesis denote 95% confidence intervals. In addition, differences in LRC between 
Kaplan–Meier curves of the stratified patient groups are assessed by the log-rank test. Best performance is 
marked in bold.  C-index concordance index, ML machine learning, CPHM Cox proportional hazards model, 
LCPHM Lasso-Cox proportional hazards model, PCA principal component analysis.

Feature selection + ML algorithm

C-index Log-rank p value

Exploratory cohort

Independent validation cohortTraining Internal test

- + LCPHM
0.01 0.50 0.42

0.19
(0.00–0.01) (0.43–0.57) (0.32–0.53)

PCA(1) + CPHM
0.49 0.53 0.54

0.63
(0.42–0.56) (0.47–0.60) (0.42–0.66)

PCA(2) + CPHM
0.47 0.51 0.53

0.19
(0.40–0.54) (0.44–0.58) (0.42–0.64)

PCA(5) + CPHM
0.44 0.50 0.50

0.72
(0.37–0.50) (0.44–0.57) (0.41–0.60)

PCA(10) + CPHM
0.35 0.42 0.43

0.40
(0.29–0.40) (0.36–0.48) (0.33–0.53)

https://github.com/MIC-DKFZ/batchgenerators
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contrast, 2D-CNN models by design were not capable of exploiting this additional information during training, 
but only during inference, by considering predictions of multiple patient slices. Secondly, the input image size 
differed between 2D and 3D-CNN models. While 2D-CNNs analysed the full axial plane, 3D-CNN models 
processed only a relatively small axial area close to the tumour which might have allowed them to learn more 
relevant tumour features and not to get distracted by possibly uninformative image regions. Thirdly, the model’s 
architecture and hyperparameters differed between 2D and 3D-CNN models which could have influenced the 
observed performance differences.

Our analysis contains some limitations: Our data set, even though competitive in size in the field of medical 
imaging, might be too small to obtain better results. For 2D-CNN models, even transfer learning was not able 
to circumvent this limitation, which might also be due to the large translational gap that exists between natural 
RGB images and CT scans. Federated  learning54,55 seems to be a promising way to tackle the small sample size 
problem of medical imaging. This includes setting up infrastructures to allow to collaboratively train models on 
data of multiple institutions without violating data-privacy regulations. Also, exploring generative adversarial 
networks for enhancing dataset sizes through simultaneous generation of synthetic image samples and plausible 
time-to-event  labels56,57 might provide a potentially interesting task. However, for HNSCC, treatment-planning 

Figure 4.  Ensemble Kaplan–Meier curves: Kaplan–Meier curves for patient groups at low risk (blue) and 
high risk (orange) of loco-regional recurrence for training and internal test folds as well as for the independent 
validation cohort. The stratification was created using the median of the training ensemble predictions as cutoff. 
The top row shows the curves obtained from an ensemble of 3D-CNN models trained from scratch based on 
the architecture of Hosny et al.23 with tanh as final activation. The centre row shows the curves obtained from an 
ensemble of 2D-CNN models trained from scratch without batch normalisation and tanh as final activation. The 
bottom row shows the curves obtained from an ensemble of transfer learning models based on DenseNet201 
with the last convolutional layer as foundation.
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CT scans may simply not contain much more predictive information to achieve better performance, no matter 
the deep learning approach, model architecture or hyperparameters. As previously  indicated3,9,58, considering 
additional imaging during the course of treatment or additional imaging modalities such as MRI or PET may 
offer improved predictive potential. Another limitation of our analysis concerns the Cox partial log-likelihood 
function, as given by equation (1), which does not account for ties in the data. This can very well occur if mul-
tiple samples of the same patient are present in a single training batch. Therefore, we plan on using e.g. Efrons 
correction  method59 in future analysis but refrained from that in our current experiments in order to avoid 
introduction of additional complexity in the loss function. Instead, we experimented with using slight random 
perturbations on the observed event times to avoid exact matches. We did, however, not observe noteworthy 
changes in model performance (see first row of Supplementary Table 6). An alternative to the CPHM is the com-
bination of deep learning with accelerated failure time models, as demonstrated by Chapfuwa et al.57 on clinical 
data. Due to their fully-parametric nature, direct prediction of event times becomes easier and non-monotonic 
hazard functions can be modelled.

Deep learning approaches on treatment-planning CT images can be useful building blocks on the way to 
achieve the goal of personalisation of radiotherapy. They may be extended using additional information, e.g. from 
tumour histology or molecular samples. Nevertheless, deep learning approaches should not be considered the 
universal remedy since they also bring with them some drawbacks compared to simpler models. Those include 
increased computational complexity and difficulties in understanding the image-based causes of their predic-
tions, leading to decreased model interpretability.

In this study, we implemented CNNs for the prediction of LRC after primary radiochemotherapy of locally 
advanced HNSCC based on CT imaging. An ensemble of 3D-CNN models was successfully validated and showed 
an improved performance compared to 2D-CNN approaches and a clinical model. Risk groups defined on these 
models differed significantly in LRC. In the future, we aim to assess robustness and translational ability of our 
trained models by applying them to data of the prospective HNPrädBio trial of the DKTK-ROG as another 
independent validation (NCT02059668)60.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on reason-
able request. Experimental output and trained models are accessible from http://doi.org/10.14278 /rodar e.255. 
Python and R code of our analyses is available from https ://githu b.com/oncor ay/cnn-hnscc .
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