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DISEASES AND DISORDERS

Patient-centered connectivity-based prediction of tau
pathology spread in Alzheimer’s disease

Nicolai Franzmeier'*, Anna Dewenter’, Lukas Frontzkowski', Martin Dichgans'?3,
Anna Rubinski’, Julia Neitzel', Ruben Smith*®, Olof Strandberg®, Rik Ossenkoppele>®,
Katharina Buerger', Marco Duering’, Oskar Hansson®7, Michael Ewers'3*

In Alzheimer’s disease (AD), the Braak staging scheme suggests a stereotypical tau spreading pattern that does,
however, not capture interindividual variability in tau deposition. This complicates the prediction of tau spreading,
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which may become critical for defining individualized tau-PET readouts in clinical trials. Since tau is assumed to
spread throughout connected regions, we used functional connectivity to improve tau spreading predictions
over Braak staging methods. We included two samples with longitudinal tau-PET from controls and AD patients.
Cross-sectionally, we found connectivity of tau epicenters (i.e., regions with earliest tau) to predict estimated tau
spreading sequences. Longitudinally, we found tau accumulation rates to correlate with connectivity strength to
patient-specific tau epicenters. A connectivity-based, patient-centered tau spreading model improved the assessment
of tau accumulation rates compared to Braak stage-specific readouts and reduced sample sizes by ~40% in simulated
tau-targeting interventions. Thus, connectivity-based tau spreading models may show utility in clinical trials.

INTRODUCTION

B-amyloid (AB) and tau pathology are hallmark pathologies of
Alzheimer’s disease (AD). AP forms extracellular plaques that accu-
mulate in a brain-wide manner decades before symptom onset (I).
In contrast, intracellular neocortical tau pathology emerges closer
to symptom onset in circumscribed hotspots from where it spreads
throughout the brain, ensuing neurodegeneration, cognitive decline,
and, ultimately, dementia (2, 3). Postmortem examinations have
shown that earliest tau pathology typically occurs in the locus coe-
ruleus and entorhinal cortex and, subsequently, in the hippocampus,
inferior temporal cortex, association cortices, and, eventually, in the
primary sensorimotor and visual cortex, as summarized in the “Braak
staging scheme” of progressively expanding tau pathology in AD
(2, 4). The sequential emergence of tau pathology across intercon-
nected brain regions has fostered the idea that tau pathology spreads
“prion like” across connected neurons (5, 6). In cultured neurons
and tau transgenic mice, intracellular tau pathology is propagated
transsynaptically from neuron to neuron (5, 6), possibly in a neural
activity-dependent manner (7), suggesting that tau pathology may
spread along connections between actively communicating brain
regions. In a translational approach, several neuroimaging studies
in humans have demonstrated that functional magnetic resonance
imaging (fMRI)-assessed functional connectivity between brain re-
gions is predictive of the spatial pattern of tau pathology, as as-
sessed by positron emission tomography (PET): First, the spatial
covariance patterns of tau-PET uptake resemble functional brain
network topology, indicative of correlated tau accumulation
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within functionally connected brain networks (8, 9). Second, brain
regions that are highly interconnected with the rest of the brain, i.e.,
so-called hubs, show relatively high tau-PET levels, consistent with
the idea that such regions are more likely to receive pathological tau
species from remote regions (10). Third, functionally interconnected
brain regions in patients with AD exhibit similar tau-PET uptake (11)
and longitudinally assessed tau accumulation rates (12). We further
showed that the levels of future tau accumulation in a given brain
region can be predicted by the levels of baseline tau pathology in con-
nected regions (12). Together, these findings provide converging
evidence for a positive association between brain connectivity and
the accumulation of tau pathology.

While tau spreading in AD is classically argued to follow a ste-
reotypical spatiotemporal pattern summarized by the Braak staging
scheme, postmortem and in vivo tau-PET studies have uncovered
substantial interindividual heterogeneity in tau deposition patterns
with notable deviations from the Braak scheme (13-16). Spatial
variants of tau deposition include those, among others, that are
asymmetric between hemispheres, posterior dominant, limbic pre-
dominant, or hippocampal sparing (13-16). The spatial heteroge-
neity in tau deposition patterns is not primarily driven by different
disease severity levels but corresponds to different clinical profiles
including posterior cortical atrophy (with occipital tau deposition),
nonamnestic AD (with hippocampus sparing tau), and logopenic
primary progressive aphasia (with left-dominant temporoparietal
tau deposition) (14, 16-18). Longitudinal tau-PET studies further
showed that spatial tau accumulation patterns show substantial in-
terindividual variability regardless of clinical stage that can deviate
substantially from the Braak staging scheme (19-23). This interin-
dividual heterogeneity in tau spreading patterns poses challenges to
accurately predict tau progression at the individual level based on
established tau spreading schemes (19-23). Subject-level prediction
of future tau spreading might, however, become critical to define
individualized tau-PET readouts for clinical trials using tau-PET.
Individualized tau-PET readouts can help enhance the sensitivity
to detect treatment effects and help reduce the number of patients
included into these trials. This is of high clinical importance since
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targeting tau is gaining increasing attention as a treatment strategy
against AD, especially in light of the numerous failed anti-amyloid
trials (24). Given the close link between the localization of tau pa-
thology and the occurrence of cognitive domain-specific dementia
symptoms (25, 26), the identification of brain regions in which tau
will subsequently accumulate may further aid in prognostication
and planning of personalized patient management.

Against this background, we aimed to predict future spreading
patterns of tau pathology in a given patient with AD based on (i) the
individual identification of regions with high tau-PET uptake at
baseline (henceforth termed as “tau epicenter”) and (ii) fMRI-
assessed connectivity of the tau epicenter. We hypothesized that tau
accumulation rates would be fastest in regions closely connected to
the epicenter and slowest in regions only weakly connected to the
epicenter. In other words, we expected a gradient of tau accumula-
tion from tau epicenters throughout the brain. Such a connectivity-
based prediction model would allow for a patient-tailored prediction
of regional spreading of tau pathology, going beyond a general tau
staging scheme such as the Braak staging to predict the spread of tau
pathology as the disease progresses. Thus, the overall aim of this
study was to establish and validate a connectivity-based prediction
model of patient-specific tau spreading.

To address this, we included 18F-ﬂortaucipir tau-PET (i.e., AV1451)
data from two independent samples of patients across the Alzheimer’s
continuum. The discovery sample included 213 amyloid-positive
subjects (106 with longitudinal tau-PET data) and 231 controls
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The
validation sample included amyloid-positive subjects (n = 41) and
amyloid-negative controls (n = 16) from the Swedish BioFINDER
cohort (all with longitudinal tau-PET data). For functional connec-
tivity, we used a normative connectivity template (i.e., based on
resting-state fMRI data of 1000 participants of the human connec-
tome project) to develop a tau spreading model that is broadly ap-
plicable to clinically acquired tau-PET data, without the necessity of
high-quality subject-level fMRI data, which can be difficult to
obtain in clinical settings. Using cross-sectional tau-PET data, we
first estimated tau spreading sequences across the AD continuum
and show in both samples that the AD-typical sequence of PET-
assessed tau accumulation largely follows the connectivity pattern of
regions with earliest tau, i.e., tau epicenters located in the inferior
temporal lobe. To replicate this association in spatial subtypes of tau
deposition with heterogeneous tau spreading patterns, we divided
the large cross-sectional ADNI discovery dataset of 213 amyloid-
positive subjects into spatially defined tau-PET subtypes using
independent component analysis (ICA) (27). We show for each
spatial tau-PET subtype that cross-sectionally estimated tau spread-
ing sequences follow the connectivity pattern of tau epicenters that
are spatially variable across subtypes. This finding suggests that het-
erogeneous tau spreading patterns can be explained by variable tau
epicenters (i.e., starting sites of tau pathology) and subsequent
spread throughout the connected regions. Last, to address our main
aim, we tested the association between epicenter connectivity and
future tau accumulation at the individual level by using longitudinal
tau-PET data of amyloid-positive subjects: In both samples, we
show that the connectivity pattern of a given subjects’ tau epicenter
predicts future tau accumulation patterns, with the fastest tau accu-
mulation in regions strongly connected to the epicenters versus
slowest tau accumulation in regions only weakly connected to the
epicenters. This confirms our hypothesis that individual tau spread-

Franzmeier et al., Sci. Adv. 2020; 6 : eabd1327 27 November 2020

ing patterns are to a high degree explained by connectivity patterns
of tau epicenters. Informed by this, we establish an independently
validated and subject-specific prediction model of future tau
spreading: This model combines subject-level baseline tau-PET and
normative connectivity data to determine a subject-tailored region
of interest (ROI) with the highest likelihood of future tau accu-
mulation. We show that longitudinal tau accumulation in the
connectivity-based, patient-tailored ROl is significantly higher than
tau accumulation in predefined regions based on the Braak staging
scheme. Together, individualized connectivity-based prediction of
tau spreading allows more sensitive assessments of tau changes than
the stereotypic Braak staging scheme that is agnostic to subject-specific
tau epicenters and spreading patterns. Last, we show that the pro-
posed individualized spreading model can help increase the sensi-
tivity to detect tau accumulation and reduce sample sizes for clinical
trials using tau-PET end points.

RESULTS

As a discovery sample, we included 444 subjects with available base-
line AV1451 tau-PET, AV45 amyloid-PET, and T1 structural MRI
from the ADNI database. To cover the Alzheimer’s continuum
(defined by abnormal amyloid-PET, AB"), the sample encompassed
117 cognitively normal (CN) AB*, 85 mild cognitively impaired
(MCI) AB", and 11 patients with AD dementia (i.e., AB"). Two hun-
dred thirty-one CN AB™ participants served as a control group. For
a total of 106 AB" participants (i.e., 61 CN AB", 40 MCI AB*, and
5 AD dementia), longitudinal AV1451 tau-PET with an average
follow-up time of 1.58 + 0.75 years was available. As an indepen-
dent validation sample, we used cross-sectional and longitudinal
AV1451 tau-PET data from the BioFINDER cohort, including
16 CN AP~ controls and 41 participants covering the Alzheimer’s con-
tinuum (i.e., 16 CN AB*, 7 MCI AB*, and 18 AB" patients with AD
dementia) with ~1.92 + 0.36 years of tau-PET follow-up. Baseline
characteristics of each sample are summarized in Table 1. A flow
chart illustrating study design and analyses is provided in fig. S1.

Transforming AV1451 tau-PET SUVRs to tau

positivity probabilities

Before addressing our major aims, we transformed AV1451 tau-
PET standardized uptake value ratio (SUVR) values (i.e., intensity
normalized to the inferior cerebellar gray) to regional tau positivity
probabilities, i.e., the probability to stem from the population of
pathologically increased tau-PET values, using a pre-established
approach (28). The rationale is based on previous work describing
considerable oft-target binding of the AV1451 tracer, resulting in
mixed on-target and off-target signal across the brain and thus false
positives, which may significantly bias the modeling of tau spread-
ing (29, 30). To minimize the influence of AV1451 off-target bind-
ing in our analyses, we parcellated the brain into 200 neocortical
brain regions included in a standard brain atlas (Fig. 1A) (31) and
applied for each ROI a two-component Gaussian mixture model
to separate the underlying distributions of off-target (i.e., a normal
distribution with a low mean SUVR) versus on-target binding (i.e., a
skewed distribution with a higher mean SUVR), as illustrated in
Fig. 1B (see Materials and Methods for a more in-depth descrip-
tion). For each individual and ROI, we then assessed the probability
of belonging to the “on-target binding” distribution, henceforth re-
ferred to as tau positivity probability. Average tau positivity maps
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Table 1. Sample characteristic-s. ADAS, Alzheimer’s Disease Assessment Scale.

ADNI CN-AB~ (n=231)

CN-AB* (n=117)

MCI-AB* (n=85) AD dementia (n=11)

72.76 £6.98%"

76.91 +7.49*
47/70
16.44+2.6

75.94+7.67 74.36+10.23
6/5

16+2.05

MMSE (M/SD)
ADAS global (M/SD) 12.27 £4.55™ 13.61+541 2318+ 11**5 32.21+826%" <0.001
Mean tau-PET follow-up
T T (T NA 161+0.79 1.56+0.71 144+0.72 0.871
BioFINDER CN-AB~ (n=16) CN-AB* (n=16) MCI-AB* (n=7) AD(gi";g')‘"a
Age 73.88 (5.32) 75.44 (6.09) 72.71 (6.63) 69.83 (10.48) 0.192
Sex (m/f) 10/6 6/10 2/5 11/7 0.245
Education (M/SD) 12.59 (4.06) 1056 (3.22) 11.14 (2.67) 13.44 (3.26) 0.097
MMSE (M/SD) 29 (1.1)° 29.31(1.08)° 25.57 (2.94) 22.06 (5.17)** <0.001
el areciesel 1.81(1.47)"8 231(1.49)™ 6.17 (2.4) 7.62 (2.45)%* <0.001
(M/SD)
ApOE €4 status (pos/neg) 0/16 10/6 4/3 11/7 <0.001
G"’S%a\'/:“temmm' 052 (0.03)* "5 0.77 (0.12)*% 0.84 (0.14)* 0.97 (0.15)%* <0.001
MM ET ARl 2.03(0.47) 1.91(0.32) 1.82(0.12) 1.97 (0.34) 0.484

time in years (M/SD)

1=subsample of 61 CN AB*, 40 MCl AB*, and 5 AD dementia. *significantly different from CN AB", 1 significantly different from MCl AB*, #significantly different from CN

AR, §significantly different from AD dementia.

for each diagnostic group and sample (i.e., ADNI and BioFINDER)
at baseline are displayed in Fig. 1C, showing increasing tau positivity
probabilities across the Alzheimer’s continuum.

Cross-sectional estimation of tau spreading

sequences in Ap*

To model the AD-typical spatiotemporal sequence of tau spreading,
we used a previously developed approach including the frequency-
based ranking of tau positivity applied to cross-sectional PET data
(28). The estimation of tau spreading sequences on cross-sectional
data is illustrated in Fig. 1D and described in detail in Materials and
Methods. This analysis is based on the assumption that regions that
develop abnormal tau early in AD should show abnormal tau levels
across many AB" subjects, whereas regions that develop abnormal
tau relatively late in AD should show abnormal tau levels in rela-
tively few AB* subjects. We applied this approach to the cross-
sectional tau positivity maps of the 213 AB* ADNI subjects (discovery
sample) and 41 AB" BioFINDER subjects (validation sample) to
determine tau spreading matrices for each sample (Fig. 2, A and E
for ADNI and BioFINDER, respectively). The estimated spatiotem-
poral sequences of tau spreading (see surface renderings in Fig. 2,
B and F for ADNI and BioFINDER, respectively) were highly con-
sistent across ADNI and BioFINDER (spatial correlation: r = 0.78,
R*=0.61, P <0.001), suggesting that the group average spatial pattern
of tau spreading is consistent across studies. In both samples, earli-
est tau positivity was found in inferior temporal regions, followed
by association cortices of the parietal and frontal lobe and lastly by
unimodal sensorimotor and visual regions (see Fig. 2, B and F). Still,
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there is considerable heterogeneity across subjects, as shown in the
tau spreading matrices (Fig. 2, A and E), i.e., some subjects show
high tau levels in brain regions that typically develop tau late in the
estimated tau spreading sequence, while early or intermediate tau
regions are still spared.

In Ap”, estimated tau spreading sequences follow

the connectivity pattern of tau epicenters

We next tested whether the AD-typical sequence in which brain re-
gions become tau positive can be predicted by the connectivity pat-
tern of tau epicenters (i.e., brain regions in which tau emerges first).
Using the cross-sectionally estimated tau spreading sequences (Fig. 2,
B and F), we determined for each, both the discovery and the vali-
dation sample, the 10% ROIs as “epicenters” in which tau accumu-
lates first, as estimated from the above described analysis (see green
box in Fig. 2, A and E and green outlined regions covering mostly
the bilateral inferior temporal cortex in Fig. 2, B and F). To determine
functional connectivity, we used the same 200 ROI parcellation
shown in Fig. 1A to assess a group-average 200 x 200 ROI of weighted
functional connectivity matrix based on preprocessed resting-state
fMRI data from 1000 healthy individuals of the human connectome
project (Fig. 2I). This 200 x 200 connectivity template was density
thresholded at 30% (Fig. 2J; i.e., 30% of the strongest positive con-
nections were retained) to remove spurious connections and trans-
formed to connectivity-based distance (Fig. 2K). Connectivity-based
distance is inversely related to connectivity strength (r = -0.87,
P < 0.001; Fig. 2L) and describes the path length between each ROI
pair, i.e., strongly connected ROIs are “close,” while weakly or indirectly
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Fig. 1. Assessment of tau positivity probabilities and tau spreading sequences. Preprocessed voxel-wise tau-PET SUVR images were parcellated in 200 cortical ROls
(A). Two-component Gaussian mixture modeling was applied to ROI-specific tau-PET data (B) in order separate off target from target binding to transform tau-PET SUVRs
to tau positivity probabilities (C). Cross-sectional tau positivity probabilities were used to estimate spatiotemporal sequences of tau spreading (D). Specifically, subject- and
ROI-specific tau positivity scores were concatenated in a 2D (two-dimensional) matrix (rows, subjects; columns, ROIs), which was subsequently rank ordered by row sums
and column sums. The tau spreading sequence was determined on the basis of the rank order of ROIs. DAN, Dorsal Attention Network; FPCN, Fronto-Parietal Control
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ADNI

BioFINDER

Estimated tau spreading sequence in Ag*
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Tau positivity probabil Gl

Subjects.

[T

Fig. 2. Epicenter connectivity versus estimated tau spreading sequences. Tau positivity matrices for both AB* subjects of the ADNI (A) and BioFINDER (E) were used
to estimate tau spreading sequences for each sample. Blue colors indicate low tau positivity probabilities, while green-yellow colors indicate high tau positivity probabil-
ities (B and F). Within each sample, tau epicenters were defined as those 10% of ROIs with earliest tau positivity [i.e., green box in (A) and (E); green outline in (B), (F), (C),
and (G)]. Seed-based connectivity of the epicenters was determined on the basis of resting-state fMRI data from 1000 subjects of the human connectome project and
transformed to connectivity-based distance (C and G). Scatterplots illustrate the association between connectivity-based distance to the epicenters and the tau positivity
sequences for both ADNI (D) and BioFINDER (H). Using the 200 ROI brain parcellation shown in Fig. 1A, resting-state fMRI functional connectivity was assessed on
1000 subjects of the human connectome project. The resulting group-average connectivity matrix (I) was subsequently density thresholded to remove spurious connections
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ICA-based assessment of tau subtypes in ADNI

A AD-related ICs (i.e., mean IC loading in Ag* > Ap")
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B Group-average tau positivity probability per IC in Ag*
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Fig. 3. ICA-based assessment of tau subtypes in ADNI. ICA was applied to voxel-wise tau-PET SUVR data from the ADNI sample to determine spatial subtypes of tau
deposition. Mean independent component (IC) loadings of 23 ICs were compared between AB* and AB™ subjects. Components were labeled as AD-related whether mean
IC loadings were significantly higher in AB* compared to AR~ using two-sample t tests (a level =0.001). Z scaled IC maps of the nine AD-related components are
shown in (A). AR were assigned to AD-related ICs on the basis of highest IC loadings. Surface renderings of IC-average tau positivity probabilities across AB* subjects are

shown in (B).

connected ROIs are “distant.” We then determined the mean
connectivity-based distance for the tau epicenters derived from ADNI
and BioFINDER (Fig. 2, C and G), which was used as a predictor of
the estimated tau spreading sequence using linear regression. As
hypothesized, we found that connectivity-based distance of the epi-
centers was strongly associated with the estimated tau szpread-
ing sequence in the ADNI discovery sample (B = 0.72, R"=0.52,
P < 0.0001; Fig. 2D) and the BioFINDER validation sample (§ = 0.71,
R*=0.50, P < 0.0001; Fig. 2H). This association remained consistent
when additionally controlling for Euclidean distance between ROIs

Franzmeier et al., Sci. Adv. 2020; 6 : eabd1327 27 November 2020

(ADNI: p=0.78, R*=0.61, P < 0.001; BioFINDER: B = 0.71, R* = 0.50,
P < 0.0001), suggesting that the estimated tau spreading sequence
indeed primarily follows the connectivity pattern of the tau epicenters.

To test whether thresholding the connectivity matrix at densities
other than 30% drove our results, we reanalyzed the data altering
the density threshold between 10 and 50%, yielding highly consistent
results with our main analysis (table S1). Similarly, using 5 to 20%
of ROIs with earliest tau positivity as epicenters did not change the
overall result pattern (table S1). We further tested whether restricting
the connectivity matrix to ROI pairs with an underlying structural
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connection (assessed via diffusion imaging in 1000 human con-
nectome project subjects; see Materials and Methods) improved
the prediction of the estimated tau spreading sequence. When restrict-
ing the functional connectivity matrix to ROI pairs with an under-
lying structural connection at various probability thresholds, results
remained consistent, but prediction accuracy did not improve (see
table S2). Together, these findings confirm our hypothesis that the
AD-typical tau spreading sequence follows the tau epicenters’ func-
tional connectivity pattern.

Modeling heterogeneity in tau spreading patterns

Next, we tested whether the connectivity-based prediction of tau
spreading generalizes toward heterogeneous tau patterns that may
deviate from the stereotypical “Braak-like” tau spreading pattern.
To this end, we asked whether subjects can be meaningfully grouped
into distinct spatial subtypes according to spatial tau-PET patterns.
We then asked whether spatial tau subtypes are characterized by
variable epicenters and whether the sequence of tau spreading
follows the connectivity of subtype-specific epicenters. Thus, we
assessed (i) whether the large AR group of the ADNI discovery
sample includes AD-specific subgroups with discriminable spatial
patterns of tau-PET and (ii) whether connectivity patterns of
subgroup-specific tau epicenters predict the estimated tau spread-
ing sequences within each subgroup better than the tau spreading
sequence estimated on the whole AB" group. To identify spatial tau-
PET subtypes in a data-driven manner, we applied ICA to the
cross-sectional tau-PET SUVR data from the ADNI discovery sam-
ple (n = 444). Note that this analysis was restricted to ADNI because
of the large enough sample that allowed deriving meaningfully sized
subgroups. We specifically used voxel-wise tau-PET SUVR maps
rather than tau positivity probabilities at this stage to use the capa-
bility of ICA to separate noise components (i.e., off-target binding)
from target binding components. Applied to cross-sectional data of
the 444 ADNI subjects, the ICA identified 23 independent compo-
nents (ICs), as determined by the minimum description length
algorithm. To identify AD-related higher tau-PET uptake (27), we
compared component loadings between AB* and AB~ subjects
using two-sample f tests, yielding 9 of 23 components with signifi-
cant higher loadings in AB" versus AR~ (i.e., P < 0.001). Higher
loading in AB* than AR~ suggests that these nine components in-
clude AD-related tau-PET signal. On the basis of maximum com-
ponent loadings, AB" subjects were assigned to one of the nine
AD-related components (see Fig. 3A for z scaled IC maps) after
which we mapped group-average tau positivity maps across the
200 ROI parcellation for each IC (Fig. 3B). As expected, we found
heterogeneous tau patterns across ICs: We found ICs with predomi-
nantly right (IC1) or left (IC2) occipitotemporal tau positivity, with
predominant inferior temporal tau positivity (IC3 and IC9), with
lateralized left (IC4) or right (IC5 and IC6) temporoparietal tau
positivity, as well as predominantly lateral (IC7) and medial (IC8)
parietal tau-PET positivity. Similar to the approach applied previ-
ously in the whole AB" group, we next (i) determined the IC-specific
tau spreading matrices for the cross-sectional estimation of subtype-
specific tau spreading sequences (methods illustrated in Fig. 1D),
(ii) derived IC-specific epicenters (i.e., the 10% of ROIs showing ear-
liest tau positivity), and (iii) tested for each IC whether connectivity-
based distance of the epicenters predicted the IC-specific tau spreading
sequence. The estimated IC-specific tau spreading sequences are
shown in Fig. 4, A and B. We found for each IC that the estimated
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tau spreading sequence was associated with connectivity-based
distance of the epicenters ( = 0.43 to 0.70, all P < 0.0001; see Fig. 4C),
independent of additionally controlling for Euclidean distance, or
altering the connectivity threshold between 10 and 50%. The pre-
dictive accuracy (i.e., R?) of epicenter connectivity for the estimated
tau positivity sequence was significantly higher (P < 0.001) between
IC-specific tau spreading sequences and subject-level tau positivity
maps (fig. S2) compared to whole-group tau spreading sequences
and subject-level tau positivity maps. This suggests that IC-specific
estimates of more heterogeneous tau spreading sequences better
explain subject level tau deposition patterns than the Braak-like tau
spreading sequences estimated on the whole AB" group. To further
illustrate IC-specific tau spreading patterns, we computed mean tau
positivity within sliding windows applied to tau positivity maps from
subjects with lowest to highest overall tau positivity (see Fig. 5A).
The sliding window maps illustrate within each IC that tau abnor-
mality starts in circumscribed epicenters with subsequent spread
throughout the brain (Fig. 5, B to J). When assessing the distribution
of epicenters across the nine ICs, we found that inferior temporal
regions were commonly included as epicenters across most ICs, where-
as superior temporal, occipital, parietal, and frontal ROIs were rather
specific for a given IC (fig. S3). Together, these findings support
the view that tau epicenters are spatially heterogeneous, where
the connectivity pattern of the respective tau epicenters predicts the
spread of tau.

Modeling subject-specific longitudinal tau spreading

Last, we tested whether the association between connectivity and
cross-sectionally estimated tau spreading sequences can be con-
firmed on the individual level by longitudinal modeling of subject-
level tau-PET spreading. To this end, we used longitudinal tau-PET
data from 106 AB* ADNI (i.e., discovery sample) and 41 AB"
BioFINDER subjects (i.e., validation sample). We hypothesized that
rates of tau accumulation should be highest in those regions that are
in close connectivity-based proximity to subject-specific epicenters
versus lowest in regions that are in far connectivity-based distance
to the epicenters (see Fig. 6A). To test this, we determined each
subjects’ tau epicenter at baseline, defined as ROIs showing at least
>30% tau positivity probability (altering the probability threshold
between 20 and 50% did not change the result pattern). Subjects
without evidence of significant tau pathology at baseline (i.e., where
none of the 200 ROIs surpassed a tau positivity probability thresh-
old of >30%) were excluded from further analyses, leaving a total of
57 out of 106 AB" subjects from the ADNI discovery sample and 33
out of 41 AB* subjects from the BioFINDER validation sample. For
each remaining subject, we then used the functional connectivity
template to determine connectivity-based distance of each ROI to
the subject-specific epicenters and grouped the ROIs (except for the
epicenters themselves) into nonoverlapping quartiles on the basis of
their connectivity-based distance to the epicenter (i.e., Q1 is closest
to the epicenter versus Q4 is most distant to the epicenter, see
Fig. 6A; note that Q1 to Q4 ROIs were determined for each subject
individually). Across ROIs within each quartile, we then deter-
mined the average change in tau positivity from baseline to fol-
low-up. We found a gradient of tau accumulation from Q1 to Q4,
where tau changes in Q1 (i.e., 25% of ROIs that are most closely
connected to the epicenter) were significantly higher than those in
the epicenter itself (ADNI: Cohens d = 0.48, P = 0.003; BioFINDER,
Cohens d = 0.78, P = 0.0016) and significantly higher than in the
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Modeling tau subtype-specific, connectivity-based tau spreading in ADNI
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Fig. 4. Modeling tau subtype-specific, connectivity-based tau spreading in ADNI. Estimated tau spreading sequences and their association with epicenter
connectivity across IC-defined tau subtypes in ADNI. (A) Surface maps of the estimated tau spreading sequences for each IC that were assessed on tau positivity matrices
(B). (C) Association of connectivity-based distance of IC-specific epicenters [i.e., green box in (B) and green outline in (A)] and IC-specific estimated tau spreading sequences.
The methodological framework of these analyses is described in Figs. 1 and 2.
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Fig. 5. lllustration of heterogeneous tau spreading patterns in tau subtypes. Sliding window analyses on tau positivity probabilities to illustrate the spatial patterns
of tau accumulation across IC-defined spatial subgroups. Subjects within each IC were sorted on the basis of overall tau positivity probability (i.e., averaged across all
200 ROIs). Sliding window analysis was applied to sorted subjects (A) to illustrate spatial tau spreading patterns for each IC (B to J).

other quartiles, i.e., in regions that are less strongly connected to the
epicenter (ADNI: Q1 versus Q2/3/4, Cohens d = 0.28/0.44/0.51, all
P < 0.002; see Fig. 6B; BioFINDER: Q1 versus Q2/3/4, Cohens
d=0.35/0.41/0.46, all P < 0.001; see Fig. 6C). Results remained con-
sistent (all P < 0.005) when controlling the analyses for mean
Euclidean distance of Q1 to 4 ROIs to the epicenter. This suggests
that tau accumulation is strongest in those brain regions that are
functionally closely connected to the epicenters (i.e., Q1). In ad-
dition, we compared tau accumulation in Q1 with tau accumulation
in Braak stage—specific ROIs (see Fig. 6F), whole-brain, or a tempo-
ral meta-ROI (i.e., Braak stage 1, 3, and 4) (32), which are commonly
used to stage tau-PET (3). Using paired Wilcoxon tests, we found

Franzmeier et al., Sci. Adv. 2020; 6 : eabd1327 27 November 2020

that longitudinal tau changes in Q1 were significantly higher
than in ROIs for Braak 1 (ADNI/BioFINDER: P = 0.022/0.019,
Cohens d = 0.42/0.65), Braak 3 (ADNI/BioFINDER: P < 0.001/0.001,
Cohens d = 0.57/0.82), Braak 4 (ADNI/BioFINDER: P < 0.001/0.001,
Cohens d = 0.56/0.72), Braak 5 (ADNI/BioFINDER: P < 0.001/0.001,
Cohens d =0.51/0.71), and Braak 6 (ADNI/BioFINDER: P < 0.001/0.001,
Cohens d = 0.67/0.55), temporal meta-ROI (ADNI/BioFINDER:
P <0.001/0.001, Cohens d = 0.55/0.82), or in the whole-brain gray
matter (ADNI/BioFINDER: P < 0.001/0.001, Cohens d = 0.56/0.66).
Results are summarized in Fig. 6 (D and E). These findings suggest
that longitudinal tau change in the Q1 ROI (i.e., which is determined
for each subject individually on template-based connectivity to the
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Subject-specific modeling of longitudinal tau spreading
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Fig. 6. Subject-specific modeling of longitudinal tau spreading. Using ROI-based tau positivity probabilities, tau epicenters were defined for each subject at baseline,
defined as regions with >30% tau positivity probability. We determined for each subject the mean connectivity of tau epicenters and grouped non-epicenter ROIs into
quartiles based on the connectivity-based distance to the epicenters (A). Note that this determination of Q1 to Q4 ROIs was done for each subject individually based on
subject-specific tau epicenters at baseline. For those subjects with evidence of tau epicenters at baseline (i.e., where at least one ROl showed a tau positivity probability
of >30%), we determined longitudinal tau changes in quartile distance to the tau epicenters (Q1in closest connectivity-based proximity to the epicenters versus Q4in
greatest connectivity-based distance to the epicenters). Boxplots show a gradient of tau accumulation from epicenters throughout connected regions (i.e., Q1 to Q4) for
ADNI (B) and BioFINDER (C). Analyses in both ADNI (D) and BioFINDER (E) show that longitudinal tau change in patient-tailored Q1 ROIs was higher than tau change in
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paired Wilcoxon tests.
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subjects’ epicenters) is greater than in Braak stage-specific ROIs, a
temporal meta-ROI or whole-brain gray matter ROIs that are agnostic
to subject-specific tau epicenters.

Last, we quantified whether using the Q1 ROI predicted by our
spreading model (Fig. 6A) is more sensitive as a readout of tau
change in tau-targeting trials, as compared to Braak stage-specific,
temporal meta-ROI, or whole-brain readouts. To this end, we ran
sample size estimations for simulated interventions that reduce lon-
gitudinal tau accumulation between 20 and 40% at a statistical
power of 80% and an o of 0.05. For all intervention strengths (i.e.,
20 to 40%), sample size estimations based on both ADNI and
BioFINDER data revealed lowest numbers per arm to detect inter-
vention effects for the Q1 ROI that is predicted by our connectivity-
based spreading model compared to Braak stage ROIs 1 to 6, the
temporal meta-ROI, or whole-brain gray matter assessments. A de-
tailed summary of estimated subject numbers per treatment arm is
provided in Table 2. Together, these findings suggest that using
individualized readouts for assessing longitudinal tau changes can
substantially enhance the sensitivity to detect longitudinal tau accu-
mulation and increase the sensitivity for detecting tau-targeting
intervention effects.

DISCUSSION

The main aim of the current study was to investigate the association
between tau spreading patterns and interregional functional con-
nectivity. In two independent samples across the Alzheimer’s con-
tinuum, we show that cross-sectionally estimated tau spreading
sequences follow the normative connectivity pattern of tau epicen-
ters (i.e., those brain regions with the highest likelihood of abnor-
mal tau across AB" subjects). This association was detected not only
for AD-typical Braak-like tau spreading patterns, with epicenters
mostly located in the inferior temporal lobe, but also for spatially
heterogeneous tau-PET subtypes with variable epicenters and tau
spreading sequences that occur within the context of the primarily
amnestic AD subjects included in the current study. While this re-
sult suggests that tau deposition and tau epicenters can be spatially
variable, our findings provide evidence that tau pathology emerges
locally and spreads subsequently throughout connected regions in
AD. This view is also supported by longitudinal tau-PET analyses in
AB* subjects: Specifically, we determined subject-specific tau epi-
centers on baseline tau-PET scans (i.e., defined as regions with
highest tau deposition), showing that those regions that were func-
tionally closely connected to the epicenters had the highest future
tau accumulation rates. In contrast, regions that were only weakly
connected to the epicenters showed slowest future tau accumula-
tion rates. The major novelty of our study is that future tau spread-
ing patterns can be predicted at the individual level based on the
normative connectivity patterns of tau epicenters. On the basis of
this finding, we propose a patient-tailored method for assessing
tau accumulation specifically in those regions that are closely
connected to a given patients’ tau epicenter. We show that this indi-
vidualized assessment of tau accumulation can significantly improve
the sensitivity to quantify tau accumulation over conventional Braak
stage—derived methods that apply the same ROIs across groups of
different patients. In simulations, we show that using connectivity-
based models to prespecify individualized tau-PET readouts can
significantly reduce sample sizes for clinical trials that use longitu-
dinal tau accumulation as a primary end point. Together, the cur-
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Table 2. Sample size estimation for detecting tau intervention effects
based on different target ROIs.

Required n per arm to detect an
intervention effect of

Target ROI
ADNI: ::Lf’;é?.”i“g 20% 30% 40%
change
Q1 506 208 109
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ Braak1766 541 194
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ Braak31393 848 332
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ Braak4732 531 190
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ Braak5666 294 166
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ B.—aak61 o 507 2936
© TemporalmetaROI 866 396 31
 Whole-brain gray matter 685 306 175
"""""""""""""""" TargetROIfor  20% 30% a0%
BioFINDER: ?;Z‘j“;g{‘g
change
Q1 395 160
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ Braak1153o 619
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,1‘91
216
249
éSO
'1‘97
- N\'/‘\'Ihole—brain gray matter ‘470 '1‘91

rent independently validated results provide further support that
tau pathology emerges in local epicenters from where it spreads
gradually across connected brain regions in AD. Translating the
concept of connectivity-based tau spreading to in vivo tau-PET data
is of high clinical importance since connectivity-based tau spreading
models may be used for patient-tailored prediction of tau accumu-
lation and disease progression, which may be a critical step forward
in establishing precision medicine methods in AD.

We show that the cross-sectionally estimated sequence in which
tau spreads across the brain largely follows the functional connec-
tivity pattern of tau epicenters. Tau epicenters are assumed to develop
abnormal tau early in the course of AD since these regions show a
consistently high likelihood for abnormal tau pathology across CN
AB" subjects to AD dementia (28). Our results are broadly consist-
ent with previous work in patients with AD reporting a spatial
match between functional connectivity patterns of the entorhinal
cortex or inferior temporal brain regions (i.e., epicenters) and
group-average Braak-like tau deposition patterns (11, 28, 33). How-
ever, our results also show that the AD-typical Braak-like tau spreading
scheme assessed in AB" subjects does not fully capture interindividual
variability and heterogeneity in tau deposition patterns that were
observed in the current sample of presymptomatic or clinically typical
(i.e., amnestic) AD. In the ADNI sample of 213 AB" subjects, we
show that subjects can be grouped into spatial subtypes of tau depo-
sition (e.g., AD typical, occipital dominant, asymmetric, etc.; see
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Figs. 3 to 5), which are characterized by subtype-specific tau epicenters
and subtype-specific tau spreading sequences that follow epicenter
connectivity. Moreover, connectivity patterns of subtype-specific tau
epicenters explained interindividual variability in tau deposition
patterns better than the AD-typical Braak-like tau spreading pat-
tern. This finding supports the view that tau deposition can be het-
erogeneous in AD, which is not always captured by the spatially
predefined Braak staging scheme. Our findings suggest that this
heterogeneity in tau spreading patterns potentially results from tau
starting sites (i.e., epicenters) that can be variable across patients.
This interpretation is in line with preclinical studies in tau trans-
genic mice that use local injections of pathological tau to study tau
spreading, showing that the spatial pattern of tau spreading is largely
determined by the connectivity pattern of the tau injection site
(34, 35). It is, thus, possible that heterogeneous tau deposition pat-
terns, which have been reported in AD variants including posterior
cortical atrophy (16), nonamnestic AD, or primary progressive
aphasia (14, 17, 18) are driven by variable sites of earliest tau pathol-
ogy and subsequent spread throughout connected regions. Reasons
for spatial variability in earliest tau deposition in patients with AD
and, thus, heterogeneous tau spreading patterns may be manifold,
including regional differences in gene expression (36, 37), preexist-
ing local brain damage (38), or aberrant local neuronal activity (39).
It is important to consider, however, that the current results are re-
stricted to the spatial heterogeneity of tau deposition that occurs
across patients with typical (i.e., amnestic) AD that are included in
ADNI and BioFINDER. Thus, it will be a critical next step to vali-
date our connectivity-based tau spreading model in clinical AD
variants, such as posterior cortical atrophy or nonamnestic AD, to
better understand whether and how connectivity may shape the
spread of tau in those AD variants that are characterized by highly
heterogeneous tau deposition patterns (14). Together, our current
findings add to the growing literature showing that tau spreading
patterns in AD are closely associated with functional connectivity
and the topology of brain networks.

We could extend our cross-sectional results on epicenter con-
nectivity versus estimated tau-spreading sequences in analyses of
subject-level longitudinal tau-PET data: Specifically, we defined
subject-specific tau epicenters on baseline tau-PET scans as those
regions showing highest tau levels and determined the connectivity
pattern of each subjects’ epicenters to the rest of the brain. When
assessing regional tau changes across 1 to 2 years of follow-up, we
could show that tau accumulation rates were, in fact, strongest in
those brain regions that were in closest connectivity-based proximity
to tau epicenters, whereas tau accumulation rates gradually decreased
in further connectivity-based distance to the epicenters (illustrated
in Fig. 6A). This finding is a critical validation of the cross-sectional
association between epicenter connectivity and estimated tau spread-
ing sequences (i.e., for the whole AB" groups or spatial tau sub-
types), demonstrating that tau spreads indeed from circumscribed
tau epicenters throughout connected regions. In addition, this re-
sult is a critical extension of our previous work showing that future
tau accumulation of a given brain region can be predicted by base-
line tau levels in connected regions (12). Our findings echo previous
reports in tau transgenic mice that reported time-dependent tau
spreading from local tau injection sites across connected regions
(34, 35). Together, these results from preclinical and in vivo tau-
PET studies suggest gradual tau accumulation from epicenters across
connected regions, thereby providing support for the transneuronal
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tau spreading hypothesis (5, 6). However, our findings do not con-
tradict other mechanisms that have been previously linked to the
accumulation of tau pathology, including shared vulnerability of
brain regions and correlated gene expression among connected
regions (36, 40).

Our results are a critical step toward precision medicine, show-
ing that the spatial spread of tau, i.e., the pathological brain change
in AD that is most closely linked to cognitive decline and neuro-
degeneration (41, 42), can be predicted on an individual level. The
importance of developing such an individualized tau spreading
model is its” potential to inform the assessment of longitudinal tau
accumulation, e.g., as an outcome variable in tau-targeting clinical
trials where a high sensitivity to detect tau changes is critical for
determining treatment effects. Conventional quantitative assessments
of longitudinal tau changes may apply the same predefined spatial
readout (e.g., Braak stage ROIs, whole brain, or meta-ROIs) across
a group of patients (20), which does, however, not take into account
spatial heterogeneity in tau accumulation patterns, e.g., across dif-
ferent disease stages or spatial tau subgroups, as reported by us (i.e.,
Figs. 3 to 5) or others (19-23). Thus, applying the same ROIs as
readouts for across subjects with spatially heterogeneous tau accu-
mulation patterns can introduce noise when quantifying longitudi-
nal tau changes, e.g., due to disease stage—specific sensitivity for
detecting tau accumulation (20). Our proposed spreading model
can address this problem by predefining brain regions with a high
likelihood of future tau accumulation in a patient-tailored manner
(i.e., Q1 ROI). We demonstrate that this patient-tailored approach
(i) significantly improves the ability to quantify longitudinal tau ac-
cumulation over assessments in predefined ROIs (i.e., Braak stage
specific and whole brain) and (ii) reduces the required sample sizes
to detect intervention effects in clinical trials that target tau accu-
mulation. Our prediction model works in a fully automated and
data driven manner and can be broadly applied to tau-PET data
since it does not require subject-specific connectivity data but
builds on a connectivity template assessed on high-quality fMRI
data obtained in a normative sample of 1000 healthy individuals.
Still, it will be an important next step to test whether the inclusion
of high-quality subject-level connectivity data (e.g., based on multi-
band resting-state fMRI) may further enhance the prediction of
future tau spread since the normative connectivity data used in the
current sample does not take into account interindividual connec-
tivity differences or AD-associated connectivity changes that may
modulate the spreading of tau (43, 44). Together, our proposed
patient-tailored tau spreading model overcomes the limitation of pre-
defined staging methods (i.e., Braak staging), can increase the
sensitivity to assess longitudinal tau accumulation, and may thus
hold high potential for monitoring tau accumulation and to evalu-
ate the efficacy of treatments that target tau spreading (24, 45).

When interpreting our results, several caveats should be taken
into account. First, the AV1451 tau-PET tracer shows considerable
unspecific binding in brain regions such as the hippocampus and
basal ganglia, which may hamper the modeling of tau spread (30).
To address this, we excluded all regions that are severely affected by
unspecific binding from the analyses (e.g., hippocampus and basal
ganglia). Furthermore, we minimized any influence of AV1451
off-target binding by transforming tau-PET SUVRs to tau positivity
probabilities using a Gaussian mixture modeling approach that has
been previously applied by amyloid- and tau-PET studies to sepa-
rate target from unspecific binding (28, 46). Still, it is possible that
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unspecific binding influences our results; hence, our results await
further replication using second-generation tau-PET data with a
better off-target binding profile. Second, partial volume data were
only available in BioFINDER, since longitudinal MRI scans match-
ing the longitudinal tau-PET data were only available for a limited
number of ADNI subjects. Thus, all results reported are obtained
using non-partial volume-corrected data. When repeating all analy-
ses using partial volume-corrected data from BioFINDER, all
results remained, however, consistent with the reported results. Fur-
thermore, previous studies using the AV1451 tracer have shown
that partial volume correction may enhance the sensitivity to detect
tau-PET changes (20), but that longitudinal tau-PET changes can
also be detected without partial volume correction (22, 23). Thus,
we are confident that the results of the current study are not driven
by partial volume effects. Third, we would like to acknowledge that
the current approach to model tau spreading sequences and sub-
types using cross-sectional data is only one of various approaches
that have been suggested previously. Notably, previous work has
suggested data-driven and event-based models of biomarker changes
in AD, which could be readily applied to tau-PET data to estimate
tau spreading sequences based on cross-sectional data (47, 48). Second,
a more advanced approach has been introduced specifically for neuro-
imaging data, which is capable of modeling both spatial subtypes and
temporal trajectories of pathological brain changes using cross-sectional
data (49). We believe that these complimentary approaches to de-
termine tau spreading sequences may offer additional opportunities to
further validate the association between connectivity and tau spread-
ing in future studies.

In conclusion, the current independently validated results
provide clear evidence that tau spreading patterns follow the con-
nectivity pattern of tau epicenters, i.e., regions in which tau po-
tentially emerges first. Our findings are a critical translation of
preclinical results (5, 7, 34) and provide in vivo support for the
hypothesis of transneuronal tau spreading in AD (5, 6). Our meth-
odological framework may also be used by future studies to
study tau spreading in rare clinical AD variants and non-AD
tauopathies, such as progressive supranuclear palsy or corticobasal
degeneration, where tau spreading patterns may also be a determined
connectivity (5, 6). Our findings a have important clinical implications
since connectivity-based modeling of tau spreading may be a promising
precision medicine tool to prespecify end points for tau-targeting
treatments and to predict future clinical disease progression.

MATERIALS AND METHODS
Sample

Alzheimer’s Disease Neuroimaging Initiative

We included a total of 444 subjects from the ADNI database. Inclu-
sion criteria were availability of AV1451 tau-PET, AV45 amyloid-PET,
T1 MPRAGE structural MRI, and demographic data. All baseline
imaging modalities had to be obtained within a time window of
1.5 years. Each subject AP status was determined on the basis of a glob-
al AV45 amyloid-PET SUVR normalized to the whole cerebellum
using a preestablished FreeSurfer-based protocol using established
cut points (global AV45 SUVR of >1.11) (50). For an in-depth de-
scription of the AV45 amyloid-PET assessment in ADNI, please see
https://adni.bitbucket.io/reference/docs/UCBERKELEYAV45/
ADNI_AV45_Methods_JagustLab_06.25.15.pdf. For 106 AB* sub-
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jects, we additionally included follow-up tau-PET data. Clinical
status was assessed by the ADNI investigators, where subjects were
categorized as CN [MMSE (Mini Mental State Exam) > 24, CDR
(Clinical Dementia Rating) = 0; nondepressed], MCI (MMSE > 24,
CDR = 0.5; objective memory impairment on education-adjusted
Wechsler Memory Scale II, preserved activities of daily living), or
demented (MMSE of 20 to 26, CDR > 0.5; NINCDS/ADRDA criteria
for probable AD). Ethical approval was obtained by the ADNI inves-
tigators, and all participants provided written informed consent.
BioFINDER

For validation, we included 57 participants from BioFINDER in whom
AB status, structural MRI, and longitudinal AV1451 tau-PET assess-
ments were available. AB status in BioFINDER was determined at
baseline using flutemetamol PET, as described previously (46), applying
a pons-normalized global SUVR cutoff of 0.575 (51). In BioFINDER,
the Alzheimer’s continuum was covered by 16 CN AB*, 7 MCI AR,
and 18 AD dementia subjects. As a control sample, we included 16 CN
AP subjects. Inclusion and exclusion criteria and diagnostic criteria of
the BioFINDER study have been described previously (52). All partic-
ipants provided written informed consent to participate in the study
before inclusion in the study. Ethical approval was provided by the
ethics committee at Lund University, Sweden. Imaging procedures
were approved by the Radiation Protection Committee at Skane
University Hospital and by the Swedish Medical Products Agency.

MRI and PET acquisition and preprocessing in ADNI

In ADNI, all MRI data was obtained on 3T scanners with a stan-
dardized protocol across sites, where structural MRI was recorded
using a three-dimensional (3D) T1-weighted MPRAGE sequence
with 1-mm isotropic voxel size (TR = 2300 ms; parameter details can be
found on http://adni.loni.usc.edu/wp-content/uploads/2017/07/
ADNI3-MRI-protocols.pdf). AV1451 tau-PET was recorded using
astandardized protocol using six 5-min time windows 75 to 105 min
after intravenous bolus injection of 370-megabecquerel (MBq)
radiolabeled "*F-AV1451 tracer. Similarly, AV45 amyloid-PET was
recorded in four 5-min time windows 50 to 70 min after intra-
venous injection of 370-MBq '*F-labeled AV45 tracer. Dynamically
acquired images were subsequently realigned and averaged by the
ADNI PET core to obtain a single AV1451 or AV45 image and re-
oriented into a standard 160 x 160 x 96 voxel grid aligned to the
anterior commissure—posterior commissure (AC-PC) line to facili-
tate across site and across scanner comparability. No differences in
global tau-PET uptake were found between ADNI sites [analysis of
variance (ANOVA); F = 0.327, P = 0.568], suggesting that there was
a site-specific bias in the overall levels of tau-PET. Structural T1
MRI images were normalized to Montreal Neurological Institute
(MNI) standard space using Advanced Normalization Tools (ANTSs)
(53). AV1451 and AV45 PET images were then co-registered to the
native-space T1 images and subsequently normalized to MNI space
by applying the ANTs normalization parameters. From each spa-
tially normalized PET image, we then extracted means of 200 ROIs
covering the entire neocortex, using an established brain parcella-
tion (see Fig. 1A) (31). To tailor this atlas to the current sample, we
additionally masked the ROIs with a group-specific gray matter
mask that was binarized at a probability threshold of 0.3.

MRI and PET acquisition and preprocessing in BioFINDER
In BioFINDER, 1-mm isotropic T1-weighted MPRAGE (TR = 1900 ms)
and fluid-attenuated inversion recovery (FLAIR; 0.7 x 0.7 x 5 mm®
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of voxel size, 23 slices, TR = 9000 ms) images were acquired for all
participants on a 3T Siemens Skyra scanner (Siemens Medical Solu-
tions, Erlangen, Germany). Tau-PET imaging was conducted 80 to
100 min after bolus injection of **F-flortaucipir on a GE Discovery
690 PET scanner (General Electric Medical Systems, Milwaukee,
WI, USA). Radiosynthesis and radiochemical purity for '*F-AV1451
within the BioFINDER study have previously been described in de-
tail (54). The image data were processed by the BioFINDER imag-
ing core using a pipeline developed at Lund University that was
described previously (55). Briefly, the MRIs were skull stripped us-
ing the combined MPRAGE and FLAIR data, segmented into gray
and white matter, and normalized to MNI space. PET images were
attenuation corrected, motion corrected, summed, and coregistered
to the MRIs. In line with the ADNI data, SUVR data were calculated
using an inferior cerebellar gray matter as a reference region. Usage
of an alternative reference region (i.e., eroded white matter) yielded
consistent results with the analyses reported in the manuscript. Both
non-partial volume-corrected data and data corrected for partial
volume using the geometrical transfer matrix method (56) were cal-
culated. Usage of partial volume-corrected data yielded consistent
findings with the results obtained on non-partial volume-corrected
data that are reported in the current manuscript.

Assessment of functional connectivity and
connectivity-based distance

To determine a functional connectivity template for the ADNI and
BioFINDER sample, we downloaded spatially normalized (i.e., to
MNI space) minimally preprocessed 3T resting-state fMRI images
from 1000 subjects of the human connectome project (HCP). We
further applied detrending, band-pass filtering (0.01 to 0.08 Hz),
despiking, and motion correction to the HCP resting-state data. To
further eliminate motion artifacts, we performed scrubbing, i.e., re-
moval of high-motion frames, as defined by exceeding 0.5-mm
framewise displacement. Specifically, high-motion volumes together
with one preceding and two subsequent volumes were replaced
with zero-padded volumes to eliminate high-motion volumes but
keep the number of volumes consistent across subjects. The 1000
subject-specific functional connectivity matrices were subsequently
averaged (Fig. 2I) and thresholded at a density of 30% (Fig. 2J). The
resulting thresholded functional connectivity matrix was then con-
verted to distance (i.e., shortest path length between ROIs, Fig. 2K)
(57). Note that we did not perform global signal regression due to
some controversies about potential bias introduced by this pre-
processing step (58). However, when reanalyzing the data with
global signal regression, all results presented in this manuscript
remained virtually the same.

Assessment of structural connectivity

Structural connectivity was assessed on the basis of preprocessed
diffusion MRI data from 1000 subjects of the human connectome
project, corrected for susceptibility-induced By field deviations,
eddy current distortions, subject motion, and aligned to native
structural space (59). To reconstruct the structural connectome, we
used a multishell multitissue constrained spherical deconvolution
and probabilistic tractography pipeline, as implemented in MRtrix3.
This included the following steps: T1-weighted tissue segmentation
to generate five tissue-type images, response function estimation
(“dhollander” algorithm), estimation of the fiber orientation distri-
bution, multitissue informed log-domain intensity normalization,
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modeling 10 million streamlines using anatomically constrained
probabilistic streamlines tractography using dynamic seeding and
cropping at the GMWM (Grey Matter White Matter) interface, and
spherical deconvolution informed filtering of tractograms (SIFT2).
Nodes were defined according to the same 200 ROI parcellation
used in the functional connectivity template (registered to diffusion
space using ANTs). Edges were defined as the SIFT2-filtered num-
ber of streamlines. When assigning the streamlines to the nodes, we
allowed a radial search of 3 mm and scaled each contribution to the
connectome edge by the length of the streamline. Note that the
major advantage of SIFT?2 filtering is the generation of biologi-
cally plausible connectomes where the streamline density in each
voxel matches the fiber orientation distribution estimated from the
diffusion-weighted images (60). From the resulting 1000 structural
connectivity matrices, we created the mean to serve as the structural
connectivity template.

Transforming tau-PET SUVRs to tau positivity probability
Previous studies have shown that the AV1451 tau-PET tracer shows
considerable off-target binding across the brain, causing signal in
brain regions that do not harbor pathological tau (29). Since our
main aim was to model the spread of pathological tau, we adopted a
previously described approach that applies Gaussian mixture mod-
eling to PET data to separate target from off-target binding (28, 46).
The underlying rationale is that most subjects should not show
pathological tau in most brain regions; hence, pathological tau-PET
signal should show a skewed distribution. In contrast, off-target
binding should be unspecific and thus show a normal distribution.
A mixture of on-target and off-target signal should thus result in a
bimodal distribution that can be separated using Gaussian mixture
modeling. To separate on-target from off-target AV1451 signal, we
extracted AV1451 tau-PET SUVRs the 200 ROIs included in the brain
atlas (Fig. 1) (31) and applied Gaussian mixture modeling to ROI-
specific tau-PET values across the ADNI or BioFINDER sample. We
fitted one- and two-component models and determined the model
with the best fit using Akaike’s information criterion, revealing a better
two-component fit for all 200 ROIs within the ADNI and BioFINDER
sample (Fig. 1B). For each subject and ROI, we then determined the
probability of falling on the right-most distribution of the two fitted
Gaussians. Since this right-most distribution likely reflects abnor-
mal AV1451 tau-PET signal, the probability score expresses the
proximity of a subject to the pathological distribution, which can
thus be interpreted as a probabilistic measure of tau positivity.

Mapping Braak stages in Schaefer 200 atlas space

To determine tau-PET uptake within Braak stage-specific ROIs, we
mapped the Schaefer 200 brain atlas to a previously published Braak
staging scheme (3). Specifically, we determined for each of the
200 ROIs the maximum spatial overlap with the previously established
Braak stage ROIs (3), thereby assigning each ROI to a given Braak
stage. In line with previous studies, we excluded Braak stage 2 (i.e.,
hippocampus) because of severe off-target binding within this region.

ICA of tau-PET data

In the large ADNI cohort of 444 subjects, we applied ICA to the
spatially normalized voxel-wise tau-PET SUVR data to stratify the
sample into spatially heterogeneous subtypes of tau deposition. ICA was
performed using the GIFT toolbox in MATLAB (https://trendscenter.
org/software/gift/). The number of components to extract was set to 23,
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as determined via the minimum description length algorithm. To
ensure that the ICA-based clustering of subjects was not driven by
disease stage or overall tau levels, the ICA approach included an
initial grand mean scaling step so that the spatial pattern of tau-PET
and not the absolute tau-PET SUVR was the main determining fac-
tor for clustering. To identify AD-related components, we adopted
a previously described approach (27) and compared subject-specific
component loadings between AB" and AB™ groups. ICs with sig-
nificantly higher loadings in AB" subjects (P < 0.001) were identified
as AD-related components, and AB* were subsequently assigned
to the AD-related components on the basis of maximum compo-
nent loadings.

Statistics

Within each sample, subject characteristics were compared between
groups using chi-square tests for categorical and ANOVAs for nu-
meric variables. All analyses were performed using tau positivity
probabilities, which were derived from Gaussian mixture modeling
of ROI-specific AV1451 tau-PET SUVR data. We determined cross-
sectionally estimated tau spreading sequences for each sample by
concatenating ROI-specific tau positivity probabilities across AB*
subjects to a 2D matrix. Matrix rows (subjects) and columns (ROIs)
were subsequently rank ordered by row and column means, yield-
ing tau spreading matrices (see Fig. 1D). The tau spreading sequence
was estimated on the basis of the columns of the tau spreading ma-
trix. Epicenters were defined as those 10% ROIs (i.e., n = 20) that
showed the earliest tau positivity. Mean connectivity-based distance
across the epicenter ROIs was determined on the basis of resting-state
fMRI data of the human connectome project. The association be-
tween the tau positivity sequence and connectivity-based distance
of the epicenters was determined via linear regression. In the A"
subjects of the ADNI sample, we used the same above-described
approach to determine tau spreading matrices and the association
between estimated tau spreading sequences and epicenter connec-
tivity within the nine IC-defined subtypes of tau pathology. To
model subject-specific tau spreading, we used longitudinal data of
AB" subjects available in ADNI (n = 106) and BioFINDER (n = 41).
Here, we first determined subject-specific epicenters, defined as
ROIs surpassing a tau positivity threshold of 30% at baseline. Sub-
jects without evidence of tau epicenters at baseline (i.e., where none
of the 200 ROIs surpassed a baseline tau positivity threshold of
30%) were excluded, leaving a total of n = 57 AB" subjects from
ADNI and n = 37 subjects from BioFINDER for longitudinal analy-
ses. For each remaining subject, we determined mean connectivity-
based distance of the subject-specific epicenters based on human
connectome project data. Longitudinal change in tau positivity was
determined within the epicenter ROIs and in remaining ROIs,
grouped into quartiles of connectivity-based distance to the epicen-
ters (i.e., QI to Q4; Fig. 6A). In a similar vein, mean longitudinal
change in tau positivity was assessed within Braak-specific ROIs
and across all 200 ROIs (i.e., whole-brain gray matter). To evaluate
whether there was a gradient of tau accumulation from epicenters
throughout connected regions, we compared longitudinal tau change
between epicenters and Q1 to Q4 ROIs for each sample using paired
Wilcoxon tests. To test whether assessing tau change in the patient-
tailored Q1 ROI is more sensitive to capture longitudinal tau change
than Braak stage-specific or whole-brain gray matter assessments,
we compared longitudinal tau changes between subject-specific Q1
ROIs, Braak stage specific, and whole-brain gray matter using
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paired Wilcoxon tests. Last, we determined sample size estimates
for tau targeting interventions with hypothetical intervention ef-
fects of 20/30/40% using the R package pwr (settings: two-sample
t test, two-tailed, type I error rate = 0.05, power = 0.8). Analyses
were conducted for Q1 and Braak stage specific and whole-brain
gray matter.

All statistical analyses were performed in R statistical software.
Brain surface renderings were created in connectome workbench.
All effects were considered significant at a two-tailed alpha thresh-
old of 0.05.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/48/eabd1327/DC1

View/request a protocol for this paper from Bio-protocol.
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