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Patient-centered connectivity-based prediction of tau 
pathology spread in Alzheimer’s disease
Nicolai Franzmeier1*, Anna Dewenter1, Lukas Frontzkowski1, Martin Dichgans1,2,3, 
Anna Rubinski1, Julia Neitzel1, Ruben Smith4,5, Olof Strandberg5, Rik Ossenkoppele5,6, 
Katharina Buerger1,3, Marco Duering1, Oskar Hansson5,7, Michael Ewers1,3*

In Alzheimer’s disease (AD), the Braak staging scheme suggests a stereotypical tau spreading pattern that does, 
however, not capture interindividual variability in tau deposition. This complicates the prediction of tau spreading, 
which may become critical for defining individualized tau-PET readouts in clinical trials. Since tau is assumed to 
spread throughout connected regions, we used functional connectivity to improve tau spreading predictions 
over Braak staging methods. We included two samples with longitudinal tau-PET from controls and AD patients. 
Cross-sectionally, we found connectivity of tau epicenters (i.e., regions with earliest tau) to predict estimated tau 
spreading sequences. Longitudinally, we found tau accumulation rates to correlate with connectivity strength to 
patient-specific tau epicenters. A connectivity-based, patient-centered tau spreading model improved the assessment 
of tau accumulation rates compared to Braak stage–specific readouts and reduced sample sizes by ~40% in simulated 
tau-targeting interventions. Thus, connectivity-based tau spreading models may show utility in clinical trials.

INTRODUCTION
-amyloid (A) and tau pathology are hallmark pathologies of 
Alzheimer’s disease (AD). A forms extracellular plaques that accu-
mulate in a brain-wide manner decades before symptom onset (1). 
In contrast, intracellular neocortical tau pathology emerges closer 
to symptom onset in circumscribed hotspots from where it spreads 
throughout the brain, ensuing neurodegeneration, cognitive decline, 
and, ultimately, dementia (2, 3). Postmortem examinations have 
shown that earliest tau pathology typically occurs in the locus coe-
ruleus and entorhinal cortex and, subsequently, in the hippocampus, 
inferior temporal cortex, association cortices, and, eventually, in the 
primary sensorimotor and visual cortex, as summarized in the “Braak 
staging scheme” of progressively expanding tau pathology in AD 
(2, 4). The sequential emergence of tau pathology across intercon-
nected brain regions has fostered the idea that tau pathology spreads 
“prion like” across connected neurons (5, 6). In cultured neurons 
and tau transgenic mice, intracellular tau pathology is propagated 
transsynaptically from neuron to neuron (5, 6), possibly in a neural 
activity–dependent manner (7), suggesting that tau pathology may 
spread along connections between actively communicating brain 
regions. In a translational approach, several neuroimaging studies 
in humans have demonstrated that functional magnetic resonance 
imaging (fMRI)–assessed functional connectivity between brain re-
gions is predictive of the spatial pattern of tau pathology, as as-
sessed by positron emission tomography (PET): First, the spatial 
covariance patterns of tau-PET uptake resemble functional brain 
network topology, indicative of correlated tau accumulation 

within functionally connected brain networks (8, 9). Second, brain 
regions that are highly interconnected with the rest of the brain, i.e., 
so-called hubs, show relatively high tau-PET levels, consistent with 
the idea that such regions are more likely to receive pathological tau 
species from remote regions (10). Third, functionally interconnected 
brain regions in patients with AD exhibit similar tau-PET uptake (11) 
and longitudinally assessed tau accumulation rates (12). We further 
showed that the levels of future tau accumulation in a given brain 
region can be predicted by the levels of baseline tau pathology in con-
nected regions (12). Together, these findings provide converging 
evidence for a positive association between brain connectivity and 
the accumulation of tau pathology.

While tau spreading in AD is classically argued to follow a ste-
reotypical spatiotemporal pattern summarized by the Braak staging 
scheme, postmortem and in vivo tau-PET studies have uncovered 
substantial interindividual heterogeneity in tau deposition patterns 
with notable deviations from the Braak scheme (13–16). Spatial 
variants of tau deposition include those, among others, that are 
asymmetric between hemispheres, posterior dominant, limbic pre-
dominant, or hippocampal sparing (13–16). The spatial heteroge-
neity in tau deposition patterns is not primarily driven by different 
disease severity levels but corresponds to different clinical profiles 
including posterior cortical atrophy (with occipital tau deposition), 
nonamnestic AD (with hippocampus sparing tau), and logopenic 
primary progressive aphasia (with left-dominant temporoparietal 
tau deposition) (14, 16–18). Longitudinal tau-PET studies further 
showed that spatial tau accumulation patterns show substantial in-
terindividual variability regardless of clinical stage that can deviate 
substantially from the Braak staging scheme (19–23). This interin-
dividual heterogeneity in tau spreading patterns poses challenges to 
accurately predict tau progression at the individual level based on 
established tau spreading schemes (19–23). Subject-level prediction 
of future tau spreading might, however, become critical to define 
individualized tau-PET readouts for clinical trials using tau-PET. 
Individualized tau-PET readouts can help enhance the sensitivity 
to detect treatment effects and help reduce the number of patients 
included into these trials. This is of high clinical importance since 
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targeting tau is gaining increasing attention as a treatment strategy 
against AD, especially in light of the numerous failed anti-amyloid 
trials (24). Given the close link between the localization of tau pa-
thology and the occurrence of cognitive domain–specific dementia 
symptoms (25, 26), the identification of brain regions in which tau 
will subsequently accumulate may further aid in prognostication 
and planning of personalized patient management.

Against this background, we aimed to predict future spreading 
patterns of tau pathology in a given patient with AD based on (i) the 
individual identification of regions with high tau-PET uptake at 
baseline (henceforth termed as “tau epicenter”) and (ii) fMRI-
assessed connectivity of the tau epicenter. We hypothesized that tau 
accumulation rates would be fastest in regions closely connected to 
the epicenter and slowest in regions only weakly connected to the 
epicenter. In other words, we expected a gradient of tau accumula-
tion from tau epicenters throughout the brain. Such a connectivity-
based prediction model would allow for a patient-tailored prediction 
of regional spreading of tau pathology, going beyond a general tau 
staging scheme such as the Braak staging to predict the spread of tau 
pathology as the disease progresses. Thus, the overall aim of this 
study was to establish and validate a connectivity-based prediction 
model of patient-specific tau spreading.

To address this, we included 18F-flortaucipir tau-PET (i.e., AV1451) 
data from two independent samples of patients across the Alzheimer’s 
continuum. The discovery sample included 213 amyloid-positive 
subjects (106 with longitudinal tau-PET data) and 231 controls 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The 
validation sample included amyloid-positive subjects (n = 41) and 
amyloid-negative controls (n = 16) from the Swedish BioFINDER 
cohort (all with longitudinal tau-PET data). For functional connec-
tivity, we used a normative connectivity template (i.e., based on 
resting-state fMRI data of 1000 participants of the human connec-
tome project) to develop a tau spreading model that is broadly ap-
plicable to clinically acquired tau-PET data, without the necessity of 
high-quality subject-level fMRI data, which can be difficult to 
obtain in clinical settings. Using cross-sectional tau-PET data, we 
first estimated tau spreading sequences across the AD continuum 
and show in both samples that the AD-typical sequence of PET-
assessed tau accumulation largely follows the connectivity pattern of 
regions with earliest tau, i.e., tau epicenters located in the inferior 
temporal lobe. To replicate this association in spatial subtypes of tau 
deposition with heterogeneous tau spreading patterns, we divided 
the large cross-sectional ADNI discovery dataset of 213 amyloid-
positive subjects into spatially defined tau-PET subtypes using 
independent component analysis (ICA) (27). We show for each 
spatial tau-PET subtype that cross-sectionally estimated tau spread-
ing sequences follow the connectivity pattern of tau epicenters that 
are spatially variable across subtypes. This finding suggests that het-
erogeneous tau spreading patterns can be explained by variable tau 
epicenters (i.e., starting sites of tau pathology) and subsequent 
spread throughout the connected regions. Last, to address our main 
aim, we tested the association between epicenter connectivity and 
future tau accumulation at the individual level by using longitudinal 
tau-PET data of amyloid-positive subjects: In both samples, we 
show that the connectivity pattern of a given subjects’ tau epicenter 
predicts future tau accumulation patterns, with the fastest tau accu-
mulation in regions strongly connected to the epicenters versus 
slowest tau accumulation in regions only weakly connected to the 
epicenters. This confirms our hypothesis that individual tau spread-

ing patterns are to a high degree explained by connectivity patterns 
of tau epicenters. Informed by this, we establish an independently 
validated and subject-specific prediction model of future tau 
spreading: This model combines subject-level baseline tau-PET and 
normative connectivity data to determine a subject-tailored region 
of interest (ROI) with the highest likelihood of future tau accu-
mulation. We show that longitudinal tau accumulation in the 
connectivity-based, patient-tailored ROI is significantly higher than 
tau accumulation in predefined regions based on the Braak staging 
scheme. Together, individualized connectivity-based prediction of 
tau spreading allows more sensitive assessments of tau changes than 
the stereotypic Braak staging scheme that is agnostic to subject-specific 
tau epicenters and spreading patterns. Last, we show that the pro-
posed individualized spreading model can help increase the sensi-
tivity to detect tau accumulation and reduce sample sizes for clinical 
trials using tau-PET end points.

RESULTS
As a discovery sample, we included 444 subjects with available base-
line AV1451 tau-PET, AV45 amyloid-PET, and T1 structural MRI 
from the ADNI database. To cover the Alzheimer’s continuum 
(defined by abnormal amyloid-PET, A+), the sample encompassed 
117 cognitively normal (CN) A+, 85 mild cognitively impaired 
(MCI) A+, and 11 patients with AD dementia (i.e., A+). Two hun-
dred thirty-one CN A− participants served as a control group. For 
a total of 106 A+ participants (i.e., 61 CN A+, 40 MCI A+, and 
5 AD dementia), longitudinal AV1451 tau-PET with an average 
follow-up time of 1.58 ± 0.75 years was available. As an indepen-
dent validation sample, we used cross-sectional and longitudinal 
AV1451 tau-PET data from the BioFINDER cohort, including 
16 CN A− controls and 41 participants covering the Alzheimer’s con-
tinuum (i.e., 16 CN A+, 7 MCI A+, and 18 A+ patients with AD 
dementia) with ~1.92 ± 0.36 years of tau-PET follow-up. Baseline 
characteristics of each sample are summarized in Table 1. A flow 
chart illustrating study design and analyses is provided in fig. S1.

Transforming AV1451 tau-PET SUVRs to tau  
positivity probabilities
Before addressing our major aims, we transformed AV1451 tau-
PET standardized uptake value ratio (SUVR) values (i.e., intensity 
normalized to the inferior cerebellar gray) to regional tau positivity 
probabilities, i.e., the probability to stem from the population of 
pathologically increased tau-PET values, using a pre-established 
approach (28). The rationale is based on previous work describing 
considerable off-target binding of the AV1451 tracer, resulting in 
mixed on-target and off-target signal across the brain and thus false 
positives, which may significantly bias the modeling of tau spread-
ing (29, 30). To minimize the influence of AV1451 off-target bind-
ing in our analyses, we parcellated the brain into 200 neocortical 
brain regions included in a standard brain atlas (Fig. 1A) (31) and 
applied for each ROI a two-component Gaussian mixture model 
to separate the underlying distributions of off-target (i.e., a normal 
distribution with a low mean SUVR) versus on-target binding (i.e., a 
skewed distribution with a higher mean SUVR), as illustrated in 
Fig. 1B (see Materials and Methods for a more in-depth descrip-
tion). For each individual and ROI, we then assessed the probability 
of belonging to the “on-target binding” distribution, henceforth re-
ferred to as tau positivity probability. Average tau positivity maps 
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for each diagnostic group and sample (i.e., ADNI and BioFINDER) 
at baseline are displayed in Fig. 1C, showing increasing tau positivity 
probabilities across the Alzheimer’s continuum.

Cross-sectional estimation of tau spreading  
sequences in A+

To model the AD-typical spatiotemporal sequence of tau spreading, 
we used a previously developed approach including the frequency-
based ranking of tau positivity applied to cross-sectional PET data 
(28). The estimation of tau spreading sequences on cross-sectional 
data is illustrated in Fig. 1D and described in detail in Materials and 
Methods. This analysis is based on the assumption that regions that 
develop abnormal tau early in AD should show abnormal tau levels 
across many A+ subjects, whereas regions that develop abnormal 
tau relatively late in AD should show abnormal tau levels in rela-
tively few A+ subjects. We applied this approach to the cross-
sectional tau positivity maps of the 213 A+ ADNI subjects (discovery 
sample) and 41 A+ BioFINDER subjects (validation sample) to 
determine tau spreading matrices for each sample (Fig. 2, A and E 
for ADNI and BioFINDER, respectively). The estimated spatiotem-
poral sequences of tau spreading (see surface renderings in Fig. 2, 
B and F for ADNI and BioFINDER, respectively) were highly con-
sistent across ADNI and BioFINDER (spatial correlation: r = 0.78, 
R2 = 0.61, P < 0.001), suggesting that the group average spatial pattern 
of tau spreading is consistent across studies. In both samples, earli-
est tau positivity was found in inferior temporal regions, followed 
by association cortices of the parietal and frontal lobe and lastly by 
unimodal sensorimotor and visual regions (see Fig. 2, B and F). Still, 

there is considerable heterogeneity across subjects, as shown in the 
tau spreading matrices (Fig. 2, A and E), i.e., some subjects show 
high tau levels in brain regions that typically develop tau late in the 
estimated tau spreading sequence, while early or intermediate tau 
regions are still spared.

In A+, estimated tau spreading sequences follow 
the connectivity pattern of tau epicenters
We next tested whether the AD-typical sequence in which brain re-
gions become tau positive can be predicted by the connectivity pat-
tern of tau epicenters (i.e., brain regions in which tau emerges first). 
Using the cross-sectionally estimated tau spreading sequences (Fig. 2, 
B and F), we determined for each, both the discovery and the vali-
dation sample, the 10% ROIs as “epicenters” in which tau accumu-
lates first, as estimated from the above described analysis (see green 
box in Fig. 2, A and E and green outlined regions covering mostly 
the bilateral inferior temporal cortex in Fig. 2, B and F). To determine 
functional connectivity, we used the same 200 ROI parcellation 
shown in Fig. 1A to assess a group-average 200 × 200 ROI of weighted 
functional connectivity matrix based on preprocessed resting-state 
fMRI data from 1000 healthy individuals of the human connectome 
project (Fig. 2I). This 200 × 200 connectivity template was density 
thresholded at 30% (Fig. 2J; i.e., 30% of the strongest positive con-
nections were retained) to remove spurious connections and trans-
formed to connectivity-based distance (Fig. 2K). Connectivity-based 
distance is inversely related to connectivity strength (r = −0.87, 
P < 0.001; Fig. 2L) and describes the path length between each ROI 
pair, i.e., strongly connected ROIs are “close,” while weakly or indirectly 

Table 1. Sample characteristic-s. ADAS, Alzheimer’s Disease Assessment Scale. 

ADNI CN-A− (n = 231) CN-A+ (n = 117) MCI-A+ (n = 85) AD dementia (n = 11) P value

Age 72.76 ± 6.98*,† 76.91 ± 7.49‡ 75.94 ± 7.67‡ 74.36 ± 10.23 <0.001

Sex (m/f) 93/138 47/70 49/36 6/5 0.030

Education (M/SD) 16.82 ± 2.41† 16.44 ± 2.6 15.88 ± 2.64‡ 16 ± 2.05 0.025

MMSE (M/SD)

ADAS global (M/SD) 12.27 ± 4.55†,§ 13.61 ± 5.41†,§ 23.18 ± 11*,‡,§ 32.21 ± 8.26*,†,‡ <0.001

Mean tau-PET follow-up 
time in years (M/SD)1 NA 1.61 ± 0.79 1.56 ± 0.71 1.44 ± 0.72 0.871

BioFINDER CN-A− (n = 16) CN-A+ (n = 16) MCI-A+ (n = 7) AD dementia
(n = 18)

Age 73.88 (5.32) 75.44 (6.09) 72.71 (6.63) 69.83 (10.48) 0.192

Sex (m/f) 10/6 6/10 2/5 11/7 0.245

Education (M/SD) 12.59 (4.06) 10.56 (3.22) 11.14 (2.67) 13.44 (3.26) 0.097

MMSE (M/SD) 29 (1.1)§ 29.31 (1.08)§ 25.57 (2.94) 22.06 (5.17)*,‡ <0.001

ADAS-delayed recall  
(M/SD) 1.81 (1.47)†,§ 2.31 (1.49)†,§ 6.17 (2.4) 7.62 (2.45)*,‡ <0.001

ApoE 4 status (pos/neg) 0/16 10/6 4/3 11/7 <0.001

Global flutemetamol 
SUVR 0.52 (0.03)*, †, § 0.77 (0.12)‡,§ 0.84 (0.14)‡ 0.97 (0.15)*,‡ <0.001

Mean tau-PET follow-up 
time in years (M/SD) 2.03 (0.47) 1.91 (0.32) 1.82 (0.12) 1.97 (0.34) 0.484

1 = subsample of 61 CN A+, 40 MCI A+, and 5 AD dementia. *significantly different from CN A+, † significantly different from MCI A+, ‡significantly different from CN 
A−, §significantly different from AD dementia.

D
ow

nloaded from
 https://w

w
w

.science.org on M
ay 30, 2024



Franzmeier et al., Sci. Adv. 2020; 6 : eabd1327     27 November 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 17

Fig. 1. Assessment of tau positivity probabilities and tau spreading sequences. Preprocessed voxel-wise tau-PET SUVR images were parcellated in 200 cortical ROIs 
(A). Two-component Gaussian mixture modeling was applied to ROI-specific tau-PET data (B) in order separate off target from target binding to transform tau-PET SUVRs 
to tau positivity probabilities (C). Cross-sectional tau positivity probabilities were used to estimate spatiotemporal sequences of tau spreading (D). Specifically, subject- and 
ROI-specific tau positivity scores were concatenated in a 2D (two-dimensional) matrix (rows, subjects; columns, ROIs), which was subsequently rank ordered by row sums 
and column sums. The tau spreading sequence was determined on the basis of the rank order of ROIs. DAN, Dorsal Attention Network; FPCN, Fronto-Parietal Control 
Network; DMN, Default-Mode Network; VAN, Ventral Attention Network.
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Fig. 2. Epicenter connectivity versus estimated tau spreading sequences. Tau positivity matrices for both A+ subjects of the ADNI (A) and BioFINDER (E) were used 
to estimate tau spreading sequences for each sample. Blue colors indicate low tau positivity probabilities, while green-yellow colors indicate high tau positivity probabil-
ities (B and F). Within each sample, tau epicenters were defined as those 10% of ROIs with earliest tau positivity [i.e., green box in (A) and (E); green outline in (B), (F), (C), 
and (G)]. Seed-based connectivity of the epicenters was determined on the basis of resting-state fMRI data from 1000 subjects of the human connectome project and 
transformed to connectivity-based distance (C and G). Scatterplots illustrate the association between connectivity-based distance to the epicenters and the tau positivity 
sequences for both ADNI (D) and BioFINDER (H). Using the 200 ROI brain parcellation shown in Fig. 1A, resting-state fMRI functional connectivity was assessed on 
1000 subjects of the human connectome project. The resulting group-average connectivity matrix (I) was subsequently density thresholded to remove spurious connections 
(J) and transformed to connectivity-based distance (K), which is inversely related to functional connectivity (L).
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connected ROIs are “distant.” We then determined the mean 
connectivity-based distance for the tau epicenters derived from ADNI 
and BioFINDER (Fig. 2, C and G), which was used as a predictor of 
the estimated tau spreading sequence using linear regression. As 
hypothesized, we found that connectivity-based distance of the epi-
centers was strongly associated with the estimated tau spread-
ing sequence in the ADNI discovery sample ( = 0.72, R2 = 0.52, 
P < 0.0001; Fig. 2D) and the BioFINDER validation sample ( = 0.71, 
R2 = 0.50, P < 0.0001; Fig. 2H). This association remained consistent 
when additionally controlling for Euclidean distance between ROIs 

(ADNI:  = 0.78, R2 = 0.61, P < 0.001; BioFINDER:  = 0.71, R2 = 0.50, 
P < 0.0001), suggesting that the estimated tau spreading sequence 
indeed primarily follows the connectivity pattern of the tau epicenters.

To test whether thresholding the connectivity matrix at densities 
other than 30% drove our results, we reanalyzed the data altering 
the density threshold between 10 and 50%, yielding highly consistent 
results with our main analysis (table S1). Similarly, using 5 to 20% 
of ROIs with earliest tau positivity as epicenters did not change the 
overall result pattern (table S1). We further tested whether restricting 
the connectivity matrix to ROI pairs with an underlying structural 

Fig. 3. ICA-based assessment of tau subtypes in ADNI. ICA was applied to voxel-wise tau-PET SUVR data from the ADNI sample to determine spatial subtypes of tau 
deposition. Mean independent component (IC) loadings of 23 ICs were compared between A+ and A− subjects. Components were labeled as AD-related whether mean 
IC loadings were significantly higher in A+ compared to A− using two-sample t tests ( level = 0.001). Z scaled IC maps of the nine AD-related components are 
shown in (A). A+ were assigned to AD-related ICs on the basis of highest IC loadings. Surface renderings of IC-average tau positivity probabilities across A+ subjects are 
shown in (B).
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connection (assessed via diffusion imaging in 1000 human con-
nectome project subjects; see Materials and Methods) improved 
the prediction of the estimated tau spreading sequence. When restrict-
ing the functional connectivity matrix to ROI pairs with an under-
lying structural connection at various probability thresholds, results 
remained consistent, but prediction accuracy did not improve (see 
table S2). Together, these findings confirm our hypothesis that the 
AD-typical tau spreading sequence follows the tau epicenters’ func-
tional connectivity pattern.

Modeling heterogeneity in tau spreading patterns
Next, we tested whether the connectivity-based prediction of tau 
spreading generalizes toward heterogeneous tau patterns that may 
deviate from the stereotypical “Braak-like” tau spreading pattern. 
To this end, we asked whether subjects can be meaningfully grouped 
into distinct spatial subtypes according to spatial tau-PET patterns. 
We then asked whether spatial tau subtypes are characterized by 
variable epicenters and whether the sequence of tau spreading 
follows the connectivity of subtype-specific epicenters. Thus, we 
assessed (i) whether the large A+ group of the ADNI discovery 
sample includes AD-specific subgroups with discriminable spatial 
patterns of tau-PET and (ii) whether connectivity patterns of 
subgroup-specific tau epicenters predict the estimated tau spread-
ing sequences within each subgroup better than the tau spreading 
sequence estimated on the whole A+ group. To identify spatial tau-
PET subtypes in a data-driven manner, we applied ICA to the 
cross-sectional tau-PET SUVR data from the ADNI discovery sam-
ple (n = 444). Note that this analysis was restricted to ADNI because 
of the large enough sample that allowed deriving meaningfully sized 
subgroups. We specifically used voxel-wise tau-PET SUVR maps 
rather than tau positivity probabilities at this stage to use the capa-
bility of ICA to separate noise components (i.e., off-target binding) 
from target binding components. Applied to cross-sectional data of 
the 444 ADNI subjects, the ICA identified 23 independent compo-
nents (ICs), as determined by the minimum description length 
algorithm. To identify AD-related higher tau-PET uptake (27), we 
compared component loadings between A+ and A− subjects 
using two-sample t tests, yielding 9 of 23 components with signifi-
cant higher loadings in A+ versus A− (i.e., P < 0.001). Higher 
loading in A+ than A− suggests that these nine components in-
clude AD-related tau-PET signal. On the basis of maximum com-
ponent loadings, A+ subjects were assigned to one of the nine 
AD-related components (see Fig. 3A for z scaled IC maps) after 
which we mapped group-average tau positivity maps across the 
200 ROI parcellation for each IC (Fig. 3B). As expected, we found 
heterogeneous tau patterns across ICs: We found ICs with predomi-
nantly right (IC1) or left (IC2) occipitotemporal tau positivity, with 
predominant inferior temporal tau positivity (IC3 and IC9), with 
lateralized left (IC4) or right (IC5 and IC6) temporoparietal tau 
positivity, as well as predominantly lateral (IC7) and medial (IC8) 
parietal tau-PET positivity. Similar to the approach applied previ-
ously in the whole A+ group, we next (i) determined the IC-specific 
tau spreading matrices for the cross-sectional estimation of subtype-
specific tau spreading sequences (methods illustrated in Fig. 1D), 
(ii) derived IC-specific epicenters (i.e., the 10% of ROIs showing ear-
liest tau positivity), and (iii) tested for each IC whether connectivity-
based distance of the epicenters predicted the IC-specific tau spreading 
sequence. The estimated IC-specific tau spreading sequences are 
shown in Fig. 4, A and B. We found for each IC that the estimated 

tau spreading sequence was associated with connectivity-based 
distance of the epicenters ( = 0.43 to 0.70, all P < 0.0001; see Fig. 4C), 
independent of additionally controlling for Euclidean distance, or 
altering the connectivity threshold between 10 and 50%. The pre-
dictive accuracy (i.e., R2) of epicenter connectivity for the estimated 
tau positivity sequence was significantly higher (P < 0.001) between 
IC-specific tau spreading sequences and subject-level tau positivity 
maps (fig. S2) compared to whole-group tau spreading sequences 
and subject-level tau positivity maps. This suggests that IC-specific 
estimates of more heterogeneous tau spreading sequences better 
explain subject level tau deposition patterns than the Braak-like tau 
spreading sequences estimated on the whole A+ group. To further 
illustrate IC-specific tau spreading patterns, we computed mean tau 
positivity within sliding windows applied to tau positivity maps from 
subjects with lowest to highest overall tau positivity (see Fig. 5A). 
The sliding window maps illustrate within each IC that tau abnor-
mality starts in circumscribed epicenters with subsequent spread 
throughout the brain (Fig. 5, B to J). When assessing the distribution 
of epicenters across the nine ICs, we found that inferior temporal 
regions were commonly included as epicenters across most ICs, where-
as superior temporal, occipital, parietal, and frontal ROIs were rather 
specific for a given IC (fig. S3). Together, these findings support 
the view that tau epicenters are spatially heterogeneous, where 
the connectivity pattern of the respective tau epicenters predicts the 
spread of tau.

Modeling subject-specific longitudinal tau spreading
Last, we tested whether the association between connectivity and 
cross-sectionally estimated tau spreading sequences can be con-
firmed on the individual level by longitudinal modeling of subject-
level tau-PET spreading. To this end, we used longitudinal tau-PET 
data from 106 A+ ADNI (i.e., discovery sample) and 41 A+ 
BioFINDER subjects (i.e., validation sample). We hypothesized that 
rates of tau accumulation should be highest in those regions that are 
in close connectivity-based proximity to subject-specific epicenters 
versus lowest in regions that are in far connectivity-based distance 
to the epicenters (see Fig. 6A). To test this, we determined each 
subjects’ tau epicenter at baseline, defined as ROIs showing at least 
>30% tau positivity probability (altering the probability threshold 
between 20 and 50% did not change the result pattern). Subjects 
without evidence of significant tau pathology at baseline (i.e., where 
none of the 200 ROIs surpassed a tau positivity probability thresh-
old of >30%) were excluded from further analyses, leaving a total of 
57 out of 106 A+ subjects from the ADNI discovery sample and 33 
out of 41 A+ subjects from the BioFINDER validation sample. For 
each remaining subject, we then used the functional connectivity 
template to determine connectivity-based distance of each ROI to 
the subject-specific epicenters and grouped the ROIs (except for the 
epicenters themselves) into nonoverlapping quartiles on the basis of 
their connectivity-based distance to the epicenter (i.e., Q1 is closest 
to the epicenter versus Q4 is most distant to the epicenter, see 
Fig. 6A; note that Q1 to Q4 ROIs were determined for each subject 
individually). Across ROIs within each quartile, we then deter-
mined the average change in tau positivity from baseline to fol-
low-up. We found a gradient of tau accumulation from Q1 to Q4, 
where tau changes in Q1 (i.e., 25% of ROIs that are most closely 
connected to the epicenter) were significantly higher than those in 
the epicenter itself (ADNI: Cohens d = 0.48, P = 0.003; BioFINDER, 
Cohens d = 0.78, P = 0.0016) and significantly higher than in the 
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Fig. 4. Modeling tau subtype-specific, connectivity-based tau spreading in ADNI. Estimated tau spreading sequences and their association with epicenter 
connectivity across IC-defined tau subtypes in ADNI. (A) Surface maps of the estimated tau spreading sequences for each IC that were assessed on tau positivity matrices 
(B). (C) Association of connectivity-based distance of IC-specific epicenters [i.e., green box in (B) and green outline in (A)] and IC-specific estimated tau spreading sequences. 
The methodological framework of these analyses is described in Figs. 1 and 2.
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other quartiles, i.e., in regions that are less strongly connected to the 
epicenter (ADNI: Q1 versus Q2/3/4, Cohens d = 0.28/0.44/0.51, all 
P < 0.002; see Fig. 6B; BioFINDER: Q1 versus Q2/3/4, Cohens 
d = 0.35/0.41/0.46, all P < 0.001; see Fig. 6C). Results remained con-
sistent (all P < 0.005) when controlling the analyses for mean 
Euclidean distance of Q1 to 4 ROIs to the epicenter. This suggests 
that tau accumulation is strongest in those brain regions that are 
functionally closely connected to the epicenters (i.e., Q1). In ad-
dition, we compared tau accumulation in Q1 with tau accumulation 
in Braak stage–specific ROIs (see Fig. 6F), whole-brain, or a tempo-
ral meta-ROI (i.e., Braak stage 1, 3, and 4) (32), which are commonly 
used to stage tau-PET (3). Using paired Wilcoxon tests, we found 

that longitudinal tau changes in Q1 were significantly higher 
than in ROIs for Braak 1 (ADNI/BioFINDER: P = 0.022/0.019, 
Cohens d = 0.42/0.65), Braak 3 (ADNI/BioFINDER: P < 0.001/0.001, 
Cohens d = 0.57/0.82), Braak 4 (ADNI/BioFINDER: P < 0.001/0.001, 
Cohens d = 0.56/0.72), Braak 5 (ADNI/BioFINDER: P < 0.001/0.001, 
Cohens d = 0.51/0.71), and Braak 6 (ADNI/BioFINDER: P < 0.001/0.001, 
Cohens d = 0.67/0.55), temporal meta-ROI (ADNI/BioFINDER: 
P < 0.001/0.001, Cohens d = 0.55/0.82), or in the whole-brain gray 
matter (ADNI/BioFINDER: P < 0.001/0.001, Cohens d = 0.56/0.66). 
Results are summarized in Fig. 6 (D and E). These findings suggest 
that longitudinal tau change in the Q1 ROI (i.e., which is determined 
for each subject individually on template-based connectivity to the 

Fig. 5. Illustration of heterogeneous tau spreading patterns in tau subtypes. Sliding window analyses on tau positivity probabilities to illustrate the spatial patterns 
of tau accumulation across IC-defined spatial subgroups. Subjects within each IC were sorted on the basis of overall tau positivity probability (i.e., averaged across all 
200 ROIs). Sliding window analysis was applied to sorted subjects (A) to illustrate spatial tau spreading patterns for each IC (B to J).
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Fig. 6. Subject-specific modeling of longitudinal tau spreading. Using ROI-based tau positivity probabilities, tau epicenters were defined for each subject at baseline, 
defined as regions with >30% tau positivity probability. We determined for each subject the mean connectivity of tau epicenters and grouped non-epicenter ROIs into 
quartiles based on the connectivity-based distance to the epicenters (A). Note that this determination of Q1 to Q4 ROIs was done for each subject individually based on 
subject-specific tau epicenters at baseline. For those subjects with evidence of tau epicenters at baseline (i.e., where at least one ROI showed a tau positivity probability 
of >30%), we determined longitudinal tau changes in quartile distance to the tau epicenters (Q1 in closest connectivity-based proximity to the epicenters versus Q4 in 
greatest connectivity-based distance to the epicenters). Boxplots show a gradient of tau accumulation from epicenters throughout connected regions (i.e., Q1 to Q4) for 
ADNI (B) and BioFINDER (C). Analyses in both ADNI (D) and BioFINDER (E) show that longitudinal tau change in patient-tailored Q1 ROIs was higher than tau change in 
Braak stage–specific ROIs [see (F)], the temporal meta-ROI [i.e., mean across Braak stages 1, 3, and 4 in (F)], or whole-brain gray matter. All P values were determined using 
paired Wilcoxon tests.

D
ow

nloaded from
 https://w

w
w

.science.org on M
ay 30, 2024



Franzmeier et al., Sci. Adv. 2020; 6 : eabd1327     27 November 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 17

subjects’ epicenters) is greater than in Braak stage–specific ROIs, a 
temporal meta-ROI or whole-brain gray matter ROIs that are agnostic 
to subject-specific tau epicenters.

Last, we quantified whether using the Q1 ROI predicted by our 
spreading model (Fig.  6A) is more sensitive as a readout of tau 
change in tau-targeting trials, as compared to Braak stage–specific, 
temporal meta-ROI, or whole-brain readouts. To this end, we ran 
sample size estimations for simulated interventions that reduce lon-
gitudinal tau accumulation between 20 and 40% at a statistical 
power of 80% and an a of 0.05. For all intervention strengths (i.e., 
20 to 40%), sample size estimations based on both ADNI and 
BioFINDER data revealed lowest numbers per arm to detect inter-
vention effects for the Q1 ROI that is predicted by our connectivity-
based spreading model compared to Braak stage ROIs 1 to 6, the 
temporal meta-ROI, or whole-brain gray matter assessments. A de-
tailed summary of estimated subject numbers per treatment arm is 
provided in Table 2. Together, these findings suggest that using 
individualized readouts for assessing longitudinal tau changes can 
substantially enhance the sensitivity to detect longitudinal tau accu-
mulation and increase the sensitivity for detecting tau-targeting 
intervention effects.

DISCUSSION
The main aim of the current study was to investigate the association 
between tau spreading patterns and interregional functional con-
nectivity. In two independent samples across the Alzheimer’s con-
tinuum, we show that cross-sectionally estimated tau spreading 
sequences follow the normative connectivity pattern of tau epicen-
ters (i.e., those brain regions with the highest likelihood of abnor-
mal tau across A+ subjects). This association was detected not only 
for AD-typical Braak-like tau spreading patterns, with epicenters 
mostly located in the inferior temporal lobe, but also for spatially 
heterogeneous tau-PET subtypes with variable epicenters and tau 
spreading sequences that occur within the context of the primarily 
amnestic AD subjects included in the current study. While this re-
sult suggests that tau deposition and tau epicenters can be spatially 
variable, our findings provide evidence that tau pathology emerges 
locally and spreads subsequently throughout connected regions in 
AD. This view is also supported by longitudinal tau-PET analyses in 
A+ subjects: Specifically, we determined subject-specific tau epi-
centers on baseline tau-PET scans (i.e., defined as regions with 
highest tau deposition), showing that those regions that were func-
tionally closely connected to the epicenters had the highest future 
tau accumulation rates. In contrast, regions that were only weakly 
connected to the epicenters showed slowest future tau accumula-
tion rates. The major novelty of our study is that future tau spread-
ing patterns can be predicted at the individual level based on the 
normative connectivity patterns of tau epicenters. On the basis of 
this finding, we propose a patient-tailored method for assessing 
tau accumulation specifically in those regions that are closely 
connected to a given patients’ tau epicenter. We show that this indi-
vidualized assessment of tau accumulation can significantly improve 
the sensitivity to quantify tau accumulation over conventional Braak 
stage–derived methods that apply the same ROIs across groups of 
different patients. In simulations, we show that using connectivity-
based models to prespecify individualized tau-PET readouts can 
significantly reduce sample sizes for clinical trials that use longitu-
dinal tau accumulation as a primary end point. Together, the cur-

rent independently validated results provide further support that 
tau pathology emerges in  local epicenters from where it spreads 
gradually across connected brain regions in AD. Translating the 
concept of connectivity-based tau spreading to in vivo tau-PET data 
is of high clinical importance since connectivity-based tau spreading 
models may be used for patient-tailored prediction of tau accumu-
lation and disease progression, which may be a critical step forward 
in establishing precision medicine methods in AD.

We show that the cross-sectionally estimated sequence in which 
tau spreads across the brain largely follows the functional connec-
tivity pattern of tau epicenters. Tau epicenters are assumed to develop 
abnormal tau early in the course of AD since these regions show a 
consistently high likelihood for abnormal tau pathology across CN 
A+ subjects to AD dementia (28). Our results are broadly consist
ent with previous work in patients with AD reporting a spatial 
match between functional connectivity patterns of the entorhinal 
cortex or inferior temporal brain regions (i.e., epicenters) and 
group-average Braak-like tau deposition patterns (11, 28, 33). How-
ever, our results also show that the AD-typical Braak-like tau spreading 
scheme assessed in A+ subjects does not fully capture interindividual 
variability and heterogeneity in tau deposition patterns that were 
observed in the current sample of presymptomatic or clinically typical 
(i.e., amnestic) AD. In the ADNI sample of 213 A+ subjects, we 
show that subjects can be grouped into spatial subtypes of tau depo-
sition (e.g., AD typical, occipital dominant, asymmetric, etc.; see 

Table 2. Sample size estimation for detecting tau intervention effects 
based on different target ROIs.  

Required n per arm to detect an 
intervention effect of

ADNI:
Target ROI 
for assessing 
tau-PET 
change

20% 30% 40%

Q1 506 208 109

Braak 1 766 341 194

Braak 3 1398 648 382

Braak 4 732 331 190

Braak 5 666 294 166

Braak 6 1121 507 2936

Temporal meta-ROI 866 396 231

Whole-brain gray matter 685 306 175

BioFINDER:
Target ROI for 
assessing 
tau-PET 
change

20% 30% 40%

Q1 395 160 82

Braak 1 1530 619 318

Braak 3 463 191 102

Braak 4 531 216 112

Braak 5 612 249 129

Braak 6 615 250 129

Temporal meta-ROI 484 197 102

Whole-brain gray matter 470 191 100
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Figs. 3 to 5), which are characterized by subtype-specific tau epicenters 
and subtype-specific tau spreading sequences that follow epicenter 
connectivity. Moreover, connectivity patterns of subtype-specific tau 
epicenters explained interindividual variability in tau deposition 
patterns better than the AD-typical Braak-like tau spreading pat-
tern. This finding supports the view that tau deposition can be het-
erogeneous in AD, which is not always captured by the spatially 
predefined Braak staging scheme. Our findings suggest that this 
heterogeneity in tau spreading patterns potentially results from tau 
starting sites (i.e., epicenters) that can be variable across patients. 
This interpretation is in line with preclinical studies in tau trans-
genic mice that use local injections of pathological tau to study tau 
spreading, showing that the spatial pattern of tau spreading is largely 
determined by the connectivity pattern of the tau injection site 
(34, 35). It is, thus, possible that heterogeneous tau deposition pat-
terns, which have been reported in AD variants including posterior 
cortical atrophy (16), nonamnestic AD, or primary progressive 
aphasia (14, 17, 18) are driven by variable sites of earliest tau pathol-
ogy and subsequent spread throughout connected regions. Reasons 
for spatial variability in earliest tau deposition in patients with AD 
and, thus, heterogeneous tau spreading patterns may be manifold, 
including regional differences in gene expression (36, 37), preexist-
ing local brain damage (38), or aberrant local neuronal activity (39). 
It is important to consider, however, that the current results are re-
stricted to the spatial heterogeneity of tau deposition that occurs 
across patients with typical (i.e., amnestic) AD that are included in 
ADNI and BioFINDER. Thus, it will be a critical next step to vali-
date our connectivity-based tau spreading model in clinical AD 
variants, such as posterior cortical atrophy or nonamnestic AD, to 
better understand whether and how connectivity may shape the 
spread of tau in those AD variants that are characterized by highly 
heterogeneous tau deposition patterns (14). Together, our current 
findings add to the growing literature showing that tau spreading 
patterns in AD are closely associated with functional connectivity 
and the topology of brain networks.

We could extend our cross-sectional results on epicenter con-
nectivity versus estimated tau-spreading sequences in analyses of 
subject-level longitudinal tau-PET data: Specifically, we defined 
subject-specific tau epicenters on baseline tau-PET scans as those 
regions showing highest tau levels and determined the connectivity 
pattern of each subjects’ epicenters to the rest of the brain. When 
assessing regional tau changes across 1 to 2 years of follow-up, we 
could show that tau accumulation rates were, in fact, strongest in 
those brain regions that were in closest connectivity-based proximity 
to tau epicenters, whereas tau accumulation rates gradually decreased 
in further connectivity-based distance to the epicenters (illustrated 
in Fig. 6A). This finding is a critical validation of the cross-sectional 
association between epicenter connectivity and estimated tau spread-
ing sequences (i.e., for the whole A+ groups or spatial tau sub-
types), demonstrating that tau spreads indeed from circumscribed 
tau epicenters throughout connected regions. In addition, this re-
sult is a critical extension of our previous work showing that future 
tau accumulation of a given brain region can be predicted by base-
line tau levels in connected regions (12). Our findings echo previous 
reports in tau transgenic mice that reported time-dependent tau 
spreading from local tau injection sites across connected regions 
(34, 35). Together, these results from preclinical and in vivo tau-
PET studies suggest gradual tau accumulation from epicenters across 
connected regions, thereby providing support for the transneuronal 

tau spreading hypothesis (5, 6). However, our findings do not con-
tradict other mechanisms that have been previously linked to the 
accumulation of tau pathology, including shared vulnerability of 
brain regions and correlated gene expression among connected 
regions (36, 40).

Our results are a critical step toward precision medicine, show-
ing that the spatial spread of tau, i.e., the pathological brain change 
in AD that is most closely linked to cognitive decline and neuro
degeneration (41, 42), can be predicted on an individual level. The 
importance of developing such an individualized tau spreading 
model is its’ potential to inform the assessment of longitudinal tau 
accumulation, e.g., as an outcome variable in tau-targeting clinical 
trials where a high sensitivity to detect tau changes is critical for 
determining treatment effects. Conventional quantitative assessments 
of longitudinal tau changes may apply the same predefined spatial 
readout (e.g., Braak stage ROIs, whole brain, or meta-ROIs) across 
a group of patients (20), which does, however, not take into account 
spatial heterogeneity in tau accumulation patterns, e.g., across dif-
ferent disease stages or spatial tau subgroups, as reported by us (i.e., 
Figs. 3 to 5) or others (19–23). Thus, applying the same ROIs as 
readouts for across subjects with spatially heterogeneous tau accu-
mulation patterns can introduce noise when quantifying longitudi-
nal tau changes, e.g., due to disease stage–specific sensitivity for 
detecting tau accumulation (20). Our proposed spreading model 
can address this problem by predefining brain regions with a high 
likelihood of future tau accumulation in a patient-tailored manner 
(i.e., Q1 ROI). We demonstrate that this patient-tailored approach 
(i) significantly improves the ability to quantify longitudinal tau ac-
cumulation over assessments in predefined ROIs (i.e., Braak stage 
specific and whole brain) and (ii) reduces the required sample sizes 
to detect intervention effects in clinical trials that target tau accu-
mulation. Our prediction model works in a fully automated and 
data driven manner and can be broadly applied to tau-PET data 
since it does not require subject-specific connectivity data but 
builds on a connectivity template assessed on high-quality fMRI 
data obtained in a normative sample of 1000 healthy individuals. 
Still, it will be an important next step to test whether the inclusion 
of high-quality subject-level connectivity data (e.g., based on multi-
band resting-state fMRI) may further enhance the prediction of 
future tau spread since the normative connectivity data used in the 
current sample does not take into account interindividual connec-
tivity differences or AD-associated connectivity changes that may 
modulate the spreading of tau (43, 44). Together, our proposed 
patient-tailored tau spreading model overcomes the limitation of pre-
defined staging methods (i.e., Braak staging), can increase the 
sensitivity to assess longitudinal tau accumulation, and may thus 
hold high potential for monitoring tau accumulation and to evalu-
ate the efficacy of treatments that target tau spreading (24, 45).

When interpreting our results, several caveats should be taken 
into account. First, the AV1451 tau-PET tracer shows considerable 
unspecific binding in brain regions such as the hippocampus and 
basal ganglia, which may hamper the modeling of tau spread (30). 
To address this, we excluded all regions that are severely affected by 
unspecific binding from the analyses (e.g., hippocampus and basal 
ganglia). Furthermore, we minimized any influence of AV1451 
off-target binding by transforming tau-PET SUVRs to tau positivity 
probabilities using a Gaussian mixture modeling approach that has 
been previously applied by amyloid- and tau-PET studies to sepa-
rate target from unspecific binding (28, 46). Still, it is possible that 
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unspecific binding influences our results; hence, our results await 
further replication using second-generation tau-PET data with a 
better off-target binding profile. Second, partial volume data were 
only available in BioFINDER, since longitudinal MRI scans match-
ing the longitudinal tau-PET data were only available for a limited 
number of ADNI subjects. Thus, all results reported are obtained 
using non–partial volume–corrected data. When repeating all analy
ses using partial volume–corrected data from BioFINDER, all 
results remained, however, consistent with the reported results. Fur-
thermore, previous studies using the AV1451 tracer have shown 
that partial volume correction may enhance the sensitivity to detect 
tau-PET changes (20), but that longitudinal tau-PET changes can 
also be detected without partial volume correction (22, 23). Thus, 
we are confident that the results of the current study are not driven 
by partial volume effects. Third, we would like to acknowledge that 
the current approach to model tau spreading sequences and sub-
types using cross-sectional data is only one of various approaches 
that have been suggested previously. Notably, previous work has 
suggested data-driven and event-based models of biomarker changes 
in AD, which could be readily applied to tau-PET data to estimate 
tau spreading sequences based on cross-sectional data (47, 48). Second, 
a more advanced approach has been introduced specifically for neuro-
imaging data, which is capable of modeling both spatial subtypes and 
temporal trajectories of pathological brain changes using cross-sectional 
data (49). We believe that these complimentary approaches to de-
termine tau spreading sequences may offer additional opportunities to 
further validate the association between connectivity and tau spread-
ing in future studies.

In conclusion, the current independently validated results 
provide clear evidence that tau spreading patterns follow the con-
nectivity pattern of tau epicenters, i.e., regions in which tau po-
tentially emerges first. Our findings are a critical translation of 
preclinical results (5, 7, 34) and provide in vivo support for the 
hypothesis of transneuronal tau spreading in AD (5, 6). Our meth-
odological framework may also be used by future studies to 
study tau spreading in rare clinical AD variants and non-AD 
tauopathies, such as progressive supranuclear palsy or corticobasal 
degeneration, where tau spreading patterns may also be a determined 
connectivity (5, 6). Our findings a have important clinical implications 
since connectivity-based modeling of tau spreading may be a promising 
precision medicine tool to prespecify end points for tau-targeting 
treatments and to predict future clinical disease progression.

MATERIALS AND METHODS
Sample

Alzheimer’s Disease Neuroimaging Initiative
We included a total of 444 subjects from the ADNI database. Inclu-
sion criteria were availability of AV1451 tau-PET, AV45 amyloid-PET, 
T1 MPRAGE structural MRI, and demographic data. All baseline 
imaging modalities had to be obtained within a time window of 
1.5 years. Each subject A status was determined on the basis of a glob-
al AV45 amyloid-PET SUVR normalized to the whole cerebellum 
using a preestablished FreeSurfer-based protocol using established 
cut points (global AV45 SUVR of >1.11) (50). For an in-depth de-
scription of the AV45 amyloid-PET assessment in ADNI, please see 
https://adni.bitbucket.io/reference/docs/UCBERKELEYAV45/
ADNI_AV45_Methods_JagustLab_06.25.15.pdf. For 106 A+ sub-

jects, we additionally included follow-up tau-PET data. Clinical 
status was assessed by the ADNI investigators, where subjects were 
categorized as CN [MMSE (Mini Mental State Exam) > 24, CDR 
(Clinical Dementia Rating) = 0; nondepressed], MCI (MMSE > 24, 
CDR = 0.5; objective memory impairment on education-adjusted 
Wechsler Memory Scale II, preserved activities of daily living), or 
demented (MMSE of 20 to 26, CDR > 0.5; NINCDS/ADRDA criteria 
for probable AD). Ethical approval was obtained by the ADNI inves-
tigators, and all participants provided written informed consent.
BioFINDER
For validation, we included 57 participants from BioFINDER in whom 
A status, structural MRI, and longitudinal AV1451 tau-PET assess-
ments were available. A status in BioFINDER was determined at 
baseline using flutemetamol PET, as described previously (46), applying 
a pons-normalized global SUVR cutoff of 0.575 (51). In BioFINDER, 
the Alzheimer’s continuum was covered by 16 CN A+, 7 MCI A+, 
and 18 AD dementia subjects. As a control sample, we included 16 CN 
A− subjects. Inclusion and exclusion criteria and diagnostic criteria of 
the BioFINDER study have been described previously (52). All partic-
ipants provided written informed consent to participate in the study 
before inclusion in the study. Ethical approval was provided by the 
ethics committee at Lund University, Sweden. Imaging procedures 
were approved by the Radiation Protection Committee at Skåne 
University Hospital and by the Swedish Medical Products Agency.

MRI and PET acquisition and preprocessing in ADNI
In ADNI, all MRI data was obtained on 3T scanners with a stan-
dardized protocol across sites, where structural MRI was recorded 
using a three-dimensional (3D) T1-weighted MPRAGE sequence 
with 1-mm isotropic voxel size (TR = 2300 ms; parameter details can be 
found on http://adni.loni.usc.edu/wp-content/uploads/2017/07/
ADNI3-MRI-protocols.pdf). AV1451 tau-PET was recorded using 
a standardized protocol using six 5-min time windows 75 to 105 min 
after intravenous bolus injection of 370-megabecquerel (MBq) 
radiolabeled 18F-AV1451 tracer. Similarly, AV45 amyloid-PET was 
recorded in four 5-min time windows 50 to 70 min after intra-
venous injection of 370-MBq 18F-labeled AV45 tracer. Dynamically 
acquired images were subsequently realigned and averaged by the 
ADNI PET core to obtain a single AV1451 or AV45 image and re-
oriented into a standard 160 × 160 × 96 voxel grid aligned to the 
anterior commissure–posterior commissure (AC-PC) line to facili-
tate across site and across scanner comparability. No differences in 
global tau-PET uptake were found between ADNI sites [analysis of 
variance (ANOVA); F = 0.327, P = 0.568], suggesting that there was 
a site-specific bias in the overall levels of tau-PET. Structural T1 
MRI images were normalized to Montreal Neurological Institute 
(MNI) standard space using Advanced Normalization Tools (ANTs) 
(53). AV1451 and AV45 PET images were then co-registered to the 
native-space T1 images and subsequently normalized to MNI space 
by applying the ANTs normalization parameters. From each spa-
tially normalized PET image, we then extracted means of 200 ROIs 
covering the entire neocortex, using an established brain parcella-
tion (see Fig. 1A) (31). To tailor this atlas to the current sample, we 
additionally masked the ROIs with a group-specific gray matter 
mask that was binarized at a probability threshold of 0.3.

MRI and PET acquisition and preprocessing in BioFINDER
In BioFINDER, 1-mm isotropic T1-weighted MPRAGE (TR = 1900 ms) 
and fluid-attenuated inversion recovery (FLAIR; 0.7 × 0.7 × 5 mm3 
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of voxel size, 23 slices, TR = 9000 ms) images were acquired for all 
participants on a 3T Siemens Skyra scanner (Siemens Medical Solu-
tions, Erlangen, Germany). Tau-PET imaging was conducted 80 to 
100 min after bolus injection of 18F-flortaucipir on a GE Discovery 
690 PET scanner (General Electric Medical Systems, Milwaukee, 
WI, USA). Radiosynthesis and radiochemical purity for 18F-AV1451 
within the BioFINDER study have previously been described in de-
tail (54). The image data were processed by the BioFINDER imag-
ing core using a pipeline developed at Lund University that was 
described previously (55). Briefly, the MRIs were skull stripped us-
ing the combined MPRAGE and FLAIR data, segmented into gray 
and white matter, and normalized to MNI space. PET images were 
attenuation corrected, motion corrected, summed, and coregistered 
to the MRIs. In line with the ADNI data, SUVR data were calculated 
using an inferior cerebellar gray matter as a reference region. Usage 
of an alternative reference region (i.e., eroded white matter) yielded 
consistent results with the analyses reported in the manuscript. Both 
non–partial volume–corrected data and data corrected for partial 
volume using the geometrical transfer matrix method (56) were cal-
culated. Usage of partial volume–corrected data yielded consistent 
findings with the results obtained on non–partial volume–corrected 
data that are reported in the current manuscript.

Assessment of functional connectivity and  
connectivity-based distance
To determine a functional connectivity template for the ADNI and 
BioFINDER sample, we downloaded spatially normalized (i.e., to 
MNI space) minimally preprocessed 3T resting-state fMRI images 
from 1000 subjects of the human connectome project (HCP). We 
further applied detrending, band-pass filtering (0.01 to 0.08 Hz), 
despiking, and motion correction to the HCP resting-state data. To 
further eliminate motion artifacts, we performed scrubbing, i.e., re-
moval of high-motion frames, as defined by exceeding 0.5-mm 
framewise displacement. Specifically, high-motion volumes together 
with one preceding and two subsequent volumes were replaced 
with zero-padded volumes to eliminate high-motion volumes but 
keep the number of volumes consistent across subjects. The 1000 
subject-specific functional connectivity matrices were subsequently 
averaged (Fig. 2I) and thresholded at a density of 30% (Fig. 2J). The 
resulting thresholded functional connectivity matrix was then con-
verted to distance (i.e., shortest path length between ROIs, Fig. 2K) 
(57). Note that we did not perform global signal regression due to 
some controversies about potential bias introduced by this pre-
processing step (58). However, when reanalyzing the data with 
global signal regression, all results presented in this manuscript 
remained virtually the same.

Assessment of structural connectivity
Structural connectivity was assessed on the basis of preprocessed 
diffusion MRI data from 1000 subjects of the human connectome 
project, corrected for susceptibility-induced B0 field deviations, 
eddy current distortions, subject motion, and aligned to native 
structural space (59). To reconstruct the structural connectome, we 
used a multishell multitissue constrained spherical deconvolution 
and probabilistic tractography pipeline, as implemented in MRtrix3. 
This included the following steps: T1-weighted tissue segmentation 
to generate five tissue-type images, response function estimation 
(“dhollander” algorithm), estimation of the fiber orientation distri-
bution, multitissue informed log-domain intensity normalization, 

modeling 10 million streamlines using anatomically constrained 
probabilistic streamlines tractography using dynamic seeding and 
cropping at the GMWM (Grey Matter White Matter) interface, and 
spherical deconvolution informed filtering of tractograms (SIFT2). 
Nodes were defined according to the same 200 ROI parcellation 
used in the functional connectivity template (registered to diffusion 
space using ANTs). Edges were defined as the SIFT2-filtered num-
ber of streamlines. When assigning the streamlines to the nodes, we 
allowed a radial search of 3 mm and scaled each contribution to the 
connectome edge by the length of the streamline. Note that the 
major advantage of SIFT2 filtering is the generation of biologi-
cally plausible connectomes where the streamline density in each 
voxel matches the fiber orientation distribution estimated from the 
diffusion-weighted images (60). From the resulting 1000 structural 
connectivity matrices, we created the mean to serve as the structural 
connectivity template.

Transforming tau-PET SUVRs to tau positivity probability
Previous studies have shown that the AV1451 tau-PET tracer shows 
considerable off-target binding across the brain, causing signal in 
brain regions that do not harbor pathological tau (29). Since our 
main aim was to model the spread of pathological tau, we adopted a 
previously described approach that applies Gaussian mixture mod-
eling to PET data to separate target from off-target binding (28, 46). 
The underlying rationale is that most subjects should not show 
pathological tau in most brain regions; hence, pathological tau-PET 
signal should show a skewed distribution. In contrast, off-target 
binding should be unspecific and thus show a normal distribution. 
A mixture of on-target and off-target signal should thus result in a 
bimodal distribution that can be separated using Gaussian mixture 
modeling. To separate on-target from off-target AV1451 signal, we 
extracted AV1451 tau-PET SUVRs the 200 ROIs included in the brain 
atlas (Fig. 1) (31) and applied Gaussian mixture modeling to ROI-
specific tau-PET values across the ADNI or BioFINDER sample. We 
fitted one- and two-component models and determined the model 
with the best fit using Akaike’s information criterion, revealing a better 
two-component fit for all 200 ROIs within the ADNI and BioFINDER 
sample (Fig. 1B). For each subject and ROI, we then determined the 
probability of falling on the right-most distribution of the two fitted 
Gaussians. Since this right-most distribution likely reflects abnor-
mal AV1451 tau-PET signal, the probability score expresses the 
proximity of a subject to the pathological distribution, which can 
thus be interpreted as a probabilistic measure of tau positivity.

Mapping Braak stages in Schaefer 200 atlas space
To determine tau-PET uptake within Braak stage–specific ROIs, we 
mapped the Schaefer 200 brain atlas to a previously published Braak 
staging scheme (3). Specifically, we determined for each of the 
200 ROIs the maximum spatial overlap with the previously established 
Braak stage ROIs (3), thereby assigning each ROI to a given Braak 
stage. In line with previous studies, we excluded Braak stage 2 (i.e., 
hippocampus) because of severe off-target binding within this region.

ICA of tau-PET data
In the large ADNI cohort of 444 subjects, we applied ICA to the 
spatially normalized voxel-wise tau-PET SUVR data to stratify the 
sample into spatially heterogeneous subtypes of tau deposition. ICA was 
performed using the GIFT toolbox in MATLAB (https://trendscenter.
org/software/gift/). The number of components to extract was set to 23, 
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as determined via the minimum description length algorithm. To 
ensure that the ICA-based clustering of subjects was not driven by 
disease stage or overall tau levels, the ICA approach included an 
initial grand mean scaling step so that the spatial pattern of tau-PET 
and not the absolute tau-PET SUVR was the main determining fac-
tor for clustering. To identify AD-related components, we adopted 
a previously described approach (27) and compared subject-specific 
component loadings between A+ and A− groups. ICs with sig-
nificantly higher loadings in A+ subjects (P < 0.001) were identified 
as AD-related components, and A+ were subsequently assigned 
to the AD-related components on the basis of maximum compo-
nent loadings.

Statistics
Within each sample, subject characteristics were compared between 
groups using chi-square tests for categorical and ANOVAs for nu-
meric variables. All analyses were performed using tau positivity 
probabilities, which were derived from Gaussian mixture modeling 
of ROI-specific AV1451 tau-PET SUVR data. We determined cross-
sectionally estimated tau spreading sequences for each sample by 
concatenating ROI-specific tau positivity probabilities across A+ 
subjects to a 2D matrix. Matrix rows (subjects) and columns (ROIs) 
were subsequently rank ordered by row and column means, yield-
ing tau spreading matrices (see Fig. 1D). The tau spreading sequence 
was estimated on the basis of the columns of the tau spreading ma-
trix. Epicenters were defined as those 10% ROIs (i.e., n = 20) that 
showed the earliest tau positivity. Mean connectivity-based distance 
across the epicenter ROIs was determined on the basis of resting-state 
fMRI data of the human connectome project. The association be-
tween the tau positivity sequence and connectivity-based distance 
of the epicenters was determined via linear regression. In the A+ 
subjects of the ADNI sample, we used the same above-described 
approach to determine tau spreading matrices and the association 
between estimated tau spreading sequences and epicenter connec-
tivity within the nine IC-defined subtypes of tau pathology. To 
model subject-specific tau spreading, we used longitudinal data of 
A+ subjects available in ADNI (n = 106) and BioFINDER (n = 41). 
Here, we first determined subject-specific epicenters, defined as 
ROIs surpassing a tau positivity threshold of 30% at baseline. Sub-
jects without evidence of tau epicenters at baseline (i.e., where none 
of the 200 ROIs surpassed a baseline tau positivity threshold of 
30%) were excluded, leaving a total of n = 57 A+ subjects from 
ADNI and n = 37 subjects from BioFINDER for longitudinal analy-
ses. For each remaining subject, we determined mean connectivity-
based distance of the subject-specific epicenters based on human 
connectome project data. Longitudinal change in tau positivity was 
determined within the epicenter ROIs and in remaining ROIs, 
grouped into quartiles of connectivity-based distance to the epicen-
ters (i.e., Q1 to Q4; Fig. 6A). In a similar vein, mean longitudinal 
change in tau positivity was assessed within Braak-specific ROIs 
and across all 200 ROIs (i.e., whole-brain gray matter). To evaluate 
whether there was a gradient of tau accumulation from epicenters 
throughout connected regions, we compared longitudinal tau change 
between epicenters and Q1 to Q4 ROIs for each sample using paired 
Wilcoxon tests. To test whether assessing tau change in the patient-
tailored Q1 ROI is more sensitive to capture longitudinal tau change 
than Braak stage–specific or whole-brain gray matter assessments, 
we compared longitudinal tau changes between subject-specific Q1 
ROIs, Braak stage specific, and whole-brain gray matter using 

paired Wilcoxon tests. Last, we determined sample size estimates 
for tau targeting interventions with hypothetical intervention ef-
fects of 20/30/40% using the R package pwr (settings: two-sample 
t test, two-tailed, type I error rate = 0.05, power = 0.8). Analyses 
were conducted for Q1 and Braak stage specific and whole-brain 
gray matter.

All statistical analyses were performed in R statistical software. 
Brain surface renderings were created in connectome workbench. 
All effects were considered significant at a two-tailed alpha thresh-
old of 0.05.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/48/eabd1327/DC1

View/request a protocol for this paper from Bio-protocol.
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