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AbsTrACT
background There are few validated fluid biomarkers 
in frontotemporal dementia (FTD). glial fibrillary acidic 
protein (gFaP) is a measure of astrogliosis, a known 
pathological process of FTD, but has yet to be explored 
as potential biomarker.
Methods Plasma gFaP and neurofilament light 
chain (nfl) concentration were measured in 469 
individuals enrolled in the genetic FTD initiative: 
114 C9orf72 expansion carriers (74 presymptomatic, 
40 symptomatic), 119 GRN mutation carriers (88 
presymptomatic, 31 symptomatic), 53 MAPT mutation 
carriers (34 presymptomatic, 19 symptomatic) and 
183 non- carrier controls. Biomarker measures were 
compared between groups using linear regression 
models adjusted for age and sex with family membership 
included as random effect. Participants underwent 
standardised clinical assessments including the Mini- 
Mental state examination (MMse), Frontotemporal 
lobar Degeneration- clinical Dementia rating scale and 
Mri. spearman’s correlation coefficient was used to 
investigate the relationship of plasma gFaP to clinical 
and imaging measures.
results Plasma gFaP concentration was significantly 
increased in symptomatic GRN mutation carriers 
(adjusted mean difference from controls 192.3 pg/ml, 
95% ci 126.5 to 445.6), but not in those with C9orf72 
expansions (9.0, –61.3 to 54.6), MAPT mutations (12.7, 
–33.3 to 90.4) or the presymptomatic groups. gFaP 
concentration was significantly positively correlated 
with age in both controls and the majority of the 
disease groups, as well as with nfl concentration. in 
the presymptomatic period, higher gFaP concentrations 
were correlated with a lower cognitive score (MMse) and 
lower brain volume, while in the symptomatic period, 
higher concentrations were associated with faster rates 
of atrophy in the temporal lobe.
Conclusions raised gFaP concentrations appear to 
be unique to GRN- related FTD, with levels potentially 
increasing just prior to symptom onset, suggesting that 

gFaP may be an important marker of proximity to onset, 
and helpful for forthcoming therapeutic prevention trials.

INTroduCTIoN
Frontotemporal dementia (FTD) is a progressive 
neurodegenerative condition with around a third 
of cases caused by an autosomal dominant gene 
mutation in progranulin (GRN), chromosome 9 
open reading frame 72 (C9orf72) or microtubule- 
associated protein tau (MAPT).1 As clinical trials 
in genetic FTD are fast approaching, robust 
biomarkers that allow accurate measurement of 
disease onset and progression are becoming increas-
ingly important. In particular, many trials will focus 
on the presymptomatic stage of disease where 
neuropathological alterations are already present2 
and yet few biomarkers have been shown to be 
abnormal in this phase.3–5

Cerebrospinal fluid (CSF) or plasma/serum 
progranulin levels in GRN mutation carriers4 6 
and CSF (poly)GP dipeptide repeat concentrations 
in C9orf72 expansion carriers5 7 8 are markers of 
specific protein abnormalities in genetic FTD, but 
both are abnormal from early in the presymptom-
atic period (and potentially from birth). In contrast, 
neurofilament light chain (NfL) is a marker of 
neuronal death and axonal degeneration (measur-
able in CSF3 9 10 as well as both plasma11 and 
serum12 13) that is not specific to FTD14 and has 
only been shown to be abnormal in the very late 
presymptomatic period prior to conversion to the 
symptomatic phase.3 Glial fibrillary acidic protein 
(GFAP) is a marker of astrogliosis, the abnormal 
proliferation of astrocytes due to neuronal 
damage15 and has previously been shown to be 
increased in frontal cortical tissue in FTD,16 and 
raised in both the CSF and serum of patients with 
symptomatic FTD.17–19 However, it has yet to be 
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Table 1 Demographic, cognitive and biomarker data from study participants

Controls

Presymptomatic mutation carriers symptomatic mutation carriers

C9orf72 GRN MAPT C9orf72 GRN MAPT

Number of participants 183 74 88 34 40 31 19

Sex: number male (%) 81
(44.3)

29
(39.2)

34
(38.6)

13
(38.2)

27*†
(67.5)

16
(51.6)

11
(57.9)

Median (IQR) age (years) 43.8
(36.3–55.1)

44.1
(34.4–52.9)

42.4
(34.6–52.7)

36.2*
(31.6–44.9)

66.0*†
(60.7–71.4)

64.3*‡
(59.9–70.2)

58.3*§
(53.9–64.3)

Mean (range) age at onset 
(years)

N/A N/A N/A N/A 59
(34–71)

61
(49–76)

53
(37–66)

Median (IQR) disease 
duration (years)

N/A N/A N/A N/A 5.6
(3.6–6.9)

2.6
(1.6–4.3)

4.3
(2.5–9.3)

Diagnosis N/A N/A N/A N/A 30 bvFTD, 8 ALS/FTD- 
ALS, 1 PPA, 1 PSP

15 bvFTD, 14 
PPA, 1 CBS, 1 
other

19 bvFTD

Median (range) MMSE 30
(26–30)

30
(25–30)

30
(26–30)

30
(27–30)

26*†
(7–30)

22*‡
(0–29)

24*§
(6–30)

Median (range) FTLD- 
CDR- SOB

0.0
(0.0–3.0)

0.0
(0.0–3.0)

0.0
(0.0–2.5)

0.0
(0.0–2.5)

10.0*†
(0.0–22.0)

10.5*‡
(2.0–21.0)

8.5*§
(1.0–21.0)

Median (IQR) plasma NfL 
(pg/mL)

9.3
(6.8–13.0)

11.3
(8.3–17.0)

9.2
(7.0–12.8)

8.4
(6.3–9.7)

46.0
(22.8–62.6)

92.7
(54.8–130.1)

20.5
(15.4–37.6)

Median (IQR) plasma 
GFAP (pg/mL)

105.8
(80.4–146.1)

116.1
(88.3–180.0)

113.4
(80.5–168.1)

89.1
(70.9–151.0)

165.7
(124.8–245.3)

272.2
(211.5–417.8)

123.3
(85.2–206.7)

For sex, age, MMSE and FTLD- CDR- SOB, significant differences are shown at p<0.05:
*Compared with controls.
†In C9orf72 group between symptomatic and presymptomatic carriers.
‡In GRN group between symptomatic and presymptomatic carriers.
§In MAPT group between symptomatic and presymptomatic carriers.
ALS, amyotrophic lateral sclerosis; bvFTD, behavioural varaint frontotemporal dementia; CBS, corticobasal syndrome; FTLD- CDR- SOB, Frontotemporal Lobar Degeneration- Clinical 
Dementia Rating scale- Sum Of Boxes; GFAP, glial fibrillary acidic protein; MMSE, Mini- Mental State Examination; N/A, not applicable; NfL, neurofilament light chain; PPA, primary 
progressive aphasia; PSP, progressive supranuclear palsy.

explored using ultrasensitive blood- based assays in genetic FTD 
mutation carriers.

In this study, we aimed to investigate within the Genetic FTD 
Initiative (GENFI) cohort whether plasma GFAP was abnormal 
in each of the different genetic FTD groups during the symptom-
atic period, and whether we could detect any presymptomatic 
changes. We also aimed to explore the relationship of GFAP with 
plasma NfL, cognitive, and neuroimaging measures.

MeThods
Participants
Participants were recruited from GENFI, a natural history study 
of genetic FTD involving 23 research centres across Europe and 
Canada ( www. genfi. org. uk)2 involving symptomatic carriers of 
mutations in GRN, MAPT or C9orf72, and those at risk of carrying 
a mutation because a first- degree relative was a known symp-
tomatic carrier. Four hundred sixty- nine consecutively recruited 
individuals from the GENFI study were included: 114 C9orf72 
expansion carriers (74 presymptomatic, 40 symptomatic), 119 
GRN mutation carriers (88 presymptomatic, 31 symptomatic), 
53 MAPT mutation carriers (34 presymptomatic, 19 symptom-
atic) and 183 non- carriers who acted as a control group. Demo-
graphic information is shown in table 1: age and sex differed 
significantly between groups. All people in the study under-
went a clinical assessment consisting of a medical history with 
the participant and informant, and physical examination, with 
symptomatic status diagnosed by a clinician who was an expert 
in the FTD field20–24 (specific diagnoses are shown in table 1). 
All participants underwent a standardised examination including 
the Mini- Mental State Examination (MMSE) and the Fronto-
temporal Lobar Degeneration- Clinical Dementia Rating scale 
(FTLD- CDR).25 Participants also performed three- dimensional 

T1- weighted MRI of the brain: 432 scans were available for 
cross- sectional analysis, of which a subgroup of 243 participants 
had a follow- up scan (on the same scanner) for analysis (mean 
(SD) interval 1.12 (0.29) years between baseline and follow- up). 
Volumetric measures of whole brain and cortical regions were 
calculated using a previously described method that uses the 
geodesic information flow (GIF) algorithm, which is based on 
atlas propagation and label fusion (online supplementary table 
1).3 26 An annualised longitudinal rate of atrophy was found by 
calculating the difference in each specific measure between the 
baseline and longitudinal scan and expressing it as a percentage of 
the baseline volume over 1 year (online supplementary table 2).

Measurement of plasma markers
Plasma was collected, processed and stored in aliquots at −80°C 
according to standardised procedures. Samples were measured 
using the multiplex Neurology 4- Plex A kit (102153, Quanterix, 
Lexington, USA) on the SIMOA HD-1 Analyzer following manu-
facturer’s instructions. The lower limit of detection of the assay 
for GFAP and NfL were 0.221 and 0.104 pg/mL, respectively. 
Measurements were carried out at the same study site on consecu-
tive days and the operator was blinded to all clinical information, 
including genetic status. To keep sample processing and plating 
consistent, plasma samples were thawed at room temperature 
for 2 hours and subsequently centrifuged at 10 000 g for 5 min; 
150 µL samples were aliquoted in a 96- well plate (Quanterix) and 
frozen at −80°C until analysis. Quality control samples had a 
mean intra- assay and interassay coefficient of variation of <10%.

statistical analysis
Fisher’s exact test was used to compare sex frequencies between 
groups. Distributions for demographic and biomarker data 
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Figure 1 (a) Plasma glial fibrillary acidic protein (gFaP) and (B) 
plasma neurofilament light chain (nfl) concentrations (pg/ml) in control, 
presymptomatic and symptomatic frontotemporal dementia mutation 
carriers for each gene: C9orf72, GRN and MAPT. Median designated by 
blue line; iQrs indicated by orange error bars. *significant differences—
only differences from controls and within the same genetic group are 
shown on the graph. note that 29 data points fall outside the upper or 
lower limit using the iQr method, with factor k=1.5 (ie, outside the upper 
limit Q3+1.5×iQr or lower limit Q1−1.5×iQr): excluding these outliers 
does not change the significance of the results.

were investigated graphically using histograms and quantile- 
quantile plots and tested for normality using the Shapiro- Wilk 
test. As demographic data did not follow a normal distribution, 
group differences for age at sample collection and FTLD- CDR- 
Sum Of Boxes were compared using the Kruskal- Wallis test. A 
linear regression adjusting for age was used to compare MMSE 
scores between groups. The primary analysis in the study was to 
investigate whether there were any differences in plasma GFAP 
concentration from controls in the different genetic mutation 
groups both symptomatically and presymptomatically, as well as 
between genetic groups. As biomarker values were not normally 
distributed, group means were compared by performing a linear 
mixed regression model with 95% bias- corrected bootstrapped 
CIs with 2000 repetitions in STATA (V.14; StataCorp, College 
Station, Texas, USA), adjusting for age and sex with family 
membership included as a random effect. Diagnostic perfor-
mance of GFAP was assessed by areas under the curve (AUC) 
obtained by receiver operating characteristic (ROC) analyses, 
with optimal cut‐off levels at the highest Youden’s index (sensi-
tivity+specificity−1) using GraphPad Prism (V.6; GraphPad 
Software, San Diego, California, USA). In order to investigate 
the relationship of GFAP concentration to demographic, cogni-
tive and imaging measures as well as NfL concentrations, Spear-
man’s correlation coefficient was used.

resulTs
Plasma GFAP concentration
Plasma GFAP concentration was significantly higher in the 
symptomatic GRN mutation carriers compared with controls 
(adjusted mean difference 192.3 pg/mL, 95% CI 126.5 to 445.6), 
but not in either the symptomatic C9orf72 (9.0, –61.3 to 54.6) 
or MAPT (12.7, –33.3 to 90.4) groups (figure 1, tables 1 and 2). 
Within the symptomatic groups, concentrations in GRN were 
significantly higher than both C9orf72 (183.3, 106.1 to 427.2) 
and MAPT (179.6, 99.8 to 348.1) mutation carriers.

A ROC curve analysis measuring the ability of GFAP to distin-
guish symptomatic GRN mutation carriers from controls showed 
a sensitivity of 90.3% and specificity of 82.0% with a cut- off 
point of 163.2 pg/mL and an AUC of 0.90. For distinguishing 
symptomatic GRN mutation carriers from C9orf72 mutation 
carriers there was a sensitivity of 71.0% and specificity of 70.0% 
with a cut- off point of 226.2 pg/mL and an AUC of 0.74, while 
for distinguishing symptomatic GRN mutation carriers from 
MAPT mutation carriers there was a sensitivity of 79.0% and 
specificity of 77.4% with a cut- off point of 209.1 pg/mL and an 
AUC of 0.80 (online supplementary figure 1).

In the presymptomatic groups, concentrations were not signifi-
cantly increased in any of the groups compared with controls: 
GRN (14.2, −2.4 to 38.3), C9orf72 (21.1, −18.8 to 66.5), 
MAPT (−7.0, −61.8 to 7.8) (figure 1, tables 1 and 2). There 
were also no differences across the presymptomatic groups.

Comparing symptomatic and presymptomatic carriers, a 
significantly higher concentration was also seen in the symptom-
atic versus the presymptomatic GRN mutation carriers (178.1, 
114.3 to 365.2), but not in the other groups (figure 1, tables 1 
and 2).

Correlation with age
GFAP concentration was significantly correlated with age at 
sample collection in controls (r=0.55, p<0.001), presymptom-
atic mutation carriers (all groups combined: r=0.53, p<0.001; 
GRN: r=0.58, p<0.001; C9orf72: r=0.50, p<0.001; MAPT: 
r=0.36, p=0.036) and symptomatic mutation carriers for all 

genetic groups together (r=0.38, p<0.001) and the GRN group 
alone (r=0.65, p<0.001) (figure 2). No significant correlation 
was seen for the symptomatic C9orf72 (r=0.27, p=0.088) or 
MAPT mutation carriers (r=0.00, p=0.989).

Correlation with plasma Nfl
Plasma NfL was increased in all three symptomatic groups 
compared with controls (figure 1, tables 1 and 3): GRN muta-
tion carriers (adjusted mean difference 70.5 pg/mL, 95% CI 51.6 
to 92.6), C9orf72 mutation carriers (29.7, 18.7 to 47.5) and 
MAPT mutation carriers (12.6, 3.3 to 26.1). Within the symp-
tomatic groups, concentrations in GRN were significantly higher 
than both C9orf72 (40.7, 16.5 to 62.2) and MAPT (57.9, 36.8 
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Table 2 Adjusted mean differences in plasma GFAP concentrations between groups with 95% bias- corrected bootstrap CIs

GFAP C9orf72 Ps C9orf72 s GRN Ps GRN s MAPT Ps MAPT s

Controls 21.1
(−18.8 to 66.5)

9.0
(−61.3 to 54.6)

14.2
(−2.4 to 38.3)

192.3**
(126.5 to 445.6)

−7.0
(−61.8 to 7.8)

12.7
(−33.3 to 90.4)

C9orf72 PS 12.1
(−64.1 to 85.1)

−6.9
(−51.0 to 43.0)

171.2**
(88.5 to 433.7)

−28.1
(−83.3 to 8.0)

8.4
(−87.5 to 74.5)

C9orf72 S −5.2
(−79.4 to 39.4)

183.3**
(106.1 to 427.2)

−16.0
(−84.3 to 32.9)

−3.7
(−104.5 to 56.1)

GRN PS 178.1**
(114.3 to 365.2)

−21.2
(−78.3 to 1.5)

1.5
(−75.4 to 49.1)

GRN S   −199.3**
(–439.2 to –124.9)

−179.6**
(–348.1 to –99.8)

MAPT PS     19.6
(−30.8 to 114.4)

Significant differences in bold: **p<0.01.
GFAP, glial fibrillary acidic protein; PS, presymptomatic; S, symptomatic.

Figure 2 correlation between plasma glial fibrillary acidic protein (gFaP) 
concentrations (pg/ml) and age: (a) presymptomatic and (B) symptomatic 
mutation carriers.

to 81.5) mutation carriers, and C9orf72 mutation carriers were 
higher than MAPT mutation carriers (17.2, 2.9 to 35.7). Concen-
tration was also increased in presymptomatic C9orf72 mutation 
carriers compared with controls (9.0, 1.3 to 26.8), but not in 
the GRN or MAPT presymptomatic groups (figure 1, tables 1 
and 3). Comparing symptomatic and presymptomatic carriers, a 
significantly higher concentration was also seen in the symptom-
atic versus the presymptomatic mutation carriers in each of the 
groups (figure 1, tables 1 and 3): GRN mutation carriers (70.5, 
52.5 to 92.2), C9orf72 mutation carriers (20.7, 3.2 to 36.1) and 
MAPT mutation carriers (11.7, 0.8 to 23.4).

Plasma GFAP and NfL concentrations were significantly 
correlated in controls (r=0.66, p<0.001), presymptomatic 
mutation carriers (GRN: r=0.66, p<0.001; C9orf72: r=0.75, 
p<0.001; MAPT: r=0.41, p=0.017) and symptomatic mutation 

carriers (GRN: r=0.38, p=0.036; C9orf72: r=0.57, p<0.001; 
MAPT: r=0.76, p<0.001).

Correlation with cognitive measures
A significant negative correlation between GFAP concentrations 
and MMSE was seen in the presymptomatic GRN (r=−0.24, 
p=0.033) and C9orf72 (r=−0.40, p<0.001) but not MAPT 
(r=0.05, p=0.801) mutation carriers. No significant correla-
tion was seen during the symptomatic period in any of the 
genetic groups (GRN: r=−0.29, p=0.153; C9orf72: r=−0.24, 
p=0.146; MAPT: r=−0.48, p=0.080).

No significant correlations were seen between GFAP concen-
tration and FTLD- CDR sum of boxes score in either the 
presymptomatic or symptomatic period in any group: GRN: 
r=−0.04, p=0.768 presymptomatic, r=0.18, p=0.409 symp-
tomatic; C9orf72: r=−0.17, p=0.234 presymptomatic, r=0.21, 
p=0.321 symptomatic; MAPT: r=−0.17, p=0.446 presymp-
tomatic, r=0.14, p=0.736 symptomatic.

Correlation with cross-sectional imaging data
A significant negative correlation was seen between GFAP 
concentrations and both GRN and C9orf72 presymptomatic 
carrier brain volumes for frontal cortex (r=−0.23, p=0.039; 
r=−0.35, p=0.002), temporal cortex (r=−0.35, p=0.001; 
r=−0.27, p=0.024), cingulate cortex (r=−0.24, p=0.027; 
r=−0.44, p<0.001) and insular cortex (r=−0.27, p=0.016; 
r=−0.26, p=0.029) as well as whole brain (r=−0.45, p<0.001) 
and parietal cortex (r=−0.33, p=0.005) for the C9orf72 group 
(online supplementary table 3). No significant correlations were 
seen in the presymptomatic MAPT mutation carrier group or any 
of the symptomatic genetic groups.

Correlation with longitudinal imaging data
No significant positive correlation of GFAP concentration with 
longitudinal rates of atrophy were seen in any of the groups 
except for in the temporal cortex of symptomatic GRN muta-
tion carriers (r=0.66, p=0.010) (online supplementary table 4). 
However, within the same symptomatic GRN group there was 
also a trend in relationship between GFAP concentration and 
atrophy rates in the cingulate cortex (r=0.55, p=0.052).

dIsCussIoN
In this study, we found that plasma GFAP concentration was 
significantly increased in genetic FTD but only in GRN mutation 
carriers, and not in those with C9orf72 expansions or mutations 
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Table 3 Adjusted mean differences in plasma NfL concentrations between groups with 95% bias- corrected bootstrap CI

Nfl C9orf72 Ps C9orf72 s GRN Ps GRN s MAPT Ps MAPT s

Controls 9.0*
(1.3 to 26.8)

29.7**
(18.7 to 47.5)

0.0
(−3.1 to 3.3)

70.5**
(51.6 to 92.6)

0.9
(−2.2 to 6.4)

12.6*
(3.3 to 26.1)

C9orf72 PS   20.7*
(3.2 to 36.1)

−9.0*
(−27.5 to −1.4)

61.4**
(37.7 to 82.7)

−8.1*
(−27.0 to −0.6)

3.6
(−15.6 to 17.0)

C9orf72 S     −29.8**
(−47.7 to −18.7)

40.7**
(16.5 to 62.2)

−28.9**
(−46.2 to −16.9)

−17.2*
(−35.7 to −2.9)

GRN PS       70.5**
(52.5 to 92.2)

−0.9
(−5.9 to 2.9)

12.6*
(2.9 to 25.2)

GRN S         −69.6**
(−91.7 to −50.6)

−57.9**
(−81.5 to −36.8)

MAPT PS           11.7*
(0.8 to 23.4)

Significant differences in bold: *p<0.05; **p<0.01.
NfL, neurofilament light chain; PS, presymptomatic; S, symptomatic.

in the MAPT gene. In the presymptomatic period, higher concen-
trations were correlated with a lower cognitive score (MMSE) 
and lower brain volumes (in regions characteristically affected 
in FTD), potentially suggesting GFAP is increased in the late 
presymptomatic period. In the symptomatic period, higher 
concentrations were associated with faster rates of atrophy, 
suggesting GFAP levels are associated with disease intensity, and 
therefore progression and survival.

GFAP is a major constituent of the astrocytic cytoskeleton 
and its expression pattern is highly brain- enriched.27 Its levels 
increase following acute damage to astrocytes such as after a 
stroke28 or traumatic brain injury,29 but also in relation to more 
chronic insults, such as in neurodegeneration, when astrocytes 
become reactive, increasing in size and proliferating, a process 
called astrogliosis.27 In neurodegeneration, increased GFAP 
concentrations in biofluid have been reported in Alzheimer’s 
disease30 (in both CSF17 19 and serum19) and amyotrophic lateral 
sclerosis18. Previous studies in FTD have found increased CSF 
concentrations in symptomatic patients within combined clin-
ical17 19 and genetic cohorts18 but have not previously found 
changes in blood,19 nor investigated individual genetic groups 
previously. Our results suggest that there are differential increases 
within FTD, with concentrations being higher in people with 
GRN mutations than in other groups. GRN encodes the progran-
ulin protein, which is a secreted growth factor and known to be 
involved in many biological processes including inflammation, 
wound healing and cell proliferation.31 32 However, progranulin 
is also taken up by astrocytes for storage or transportation to the 
lysosomal compartment,33–35 and studies of GRN- deficient mice 
have shown the presence of astrogliosis.35–37 In vitro, progran-
ulin seems to have a role of inactivating astrocytes with evidence 
that progranulin attenuates a pro- inflammatory phenotype of 
astrocytes.35 This suggests that deficiency of progranulin in GRN 
mutation carriers may lead to activation of pro- inflammatory 
phenotypes of astrocytes and subsequent astrogliosis, with 
increased levels of GFAP expression. People with GRN muta-
tions have evidence of astrogliosis pathologically, including 
within areas of white matter damage38 (visible in a proportion of 
people in vivo as white matter hyperintensities on MR imaging, 
which have been previously shown to be unique to GRN muta-
tions within familial FTD).39 Such damage increases as the 
neurodegeneration progresses,39 consistent with the pattern of 
increased plasma GFAP in our study. In contrast, levels were not 
increased in plasma in individuals with C9orf72 expansions or 
MAPT mutations. While astrogliosis is seen in animal models and 

at postmortem in both C9orf72- related40 and MAPT- related41 42 
FTD, this may well be a late feature of the disease, or the extent 
of astrogliosis may be less. Future work will be required to inves-
tigate this further.

It is well established that multiple biomarkers of neurode-
generation increase in concentration with age, attributed to the 
reduction of neural integrity in the ageing brain.43 CSF GFAP 
concentrations have previously been shown to increase as one 
gets older,44 with multiple studies showing proliferation of astro-
cytes, increased GFAP immunoreactivity and elevated levels of 
GFAP mRNA with age.45–49 Consistent with this, we also found 
a significant positive correlation of plasma GFAP concentration 
with age in the majority of the groups. This highlights the impor-
tance of adjusting plasma GFAP concentrations for age in statis-
tical analyses: symptomatic mutation carriers in the C9orf72 and 
MAPT groups (as well as the GRN group) in this study showed 
increased levels of plasma GFAP compared with controls and 
their presymptomatic counterparts, but significance was lost 
once adjusting for age.

NfL, part of the axonal cytoskeleton, is released following 
cellular damage. A previous study has shown that NfL concen-
trations are increased in both the CSF and blood of symptom-
atic genetic FTD in all three mutation groups, C9orf72, GRN 
and MAPT.3 The results in this study replicate these findings in 
plasma, although we also found elevated levels in presymptom-
atic C9orf72 mutation carriers. In this latter group, NfL concen-
trations correlated negatively with MMSE (r=−0.33, p=0.004: 
online supplementary table 5) and with brain volumes (whole 
brain, r=−0.53, p<0.001 and cortical regions: frontal, −0.51, 
<0.001; temporal, −0.37, 0.001; parietal, −0.51, <0.001; 
occipital, −0.33, 0.005; cingulate, −0.49, <0.001; insula, 
−0.47, <0.001: online supplementary tables 6 and 7), suggesting 
that NfL increases particularly towards the end of the presymp-
tomatic period with increasing neurodegeneration. Although 
GRN NfL concentration was not significantly increased presymp-
tomatically, a similar pattern of negative correlation with brain 
volumes was seen in this group (in whole brain and all cortical 
regions except the occipital lobe, r=−0.30 to −0.48, p≤0.006). 
NfL and GFAP concentrations were significantly correlated in all 
groups including controls, although the correlation coefficient 
varied from 0.38 to 0.76. A similar correlation has been shown 
in CSF previously.44 As both increase with age (online supple-
mentary table 8 for NfL correlations with age), the correlation 
is not unexpected, but other unexplained factors are likely to 
affect the different patterns within genetic FTD; interestingly, 
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the lowest correlation (r=0.38) was in the symptomatic GRN 
mutation carriers, suggesting that in this group astrogliosis and 
neurodegeneration are not so closely related.

Correlation of GFAP concentration with cognitive and 
imaging measures revealed a negative correlation, that is, higher 
concentration with a lower cognitive score and lower cross- 
sectional brain volumes in FTD- related regions in presymp-
tomatic GRN mutation carriers. This suggests that GFAP levels 
start to increase as the brain starts to decrease in volume, and 
as cognition starts to become affected thus in the later stages of 
the presymptomatic period in proximity to symptom onset. This 
would be an important biomarker for GRN- related FTD, as an 
increase in concentration from baseline during the presymptom-
atic period would identify a time around the onset of neurode-
generation, and potentially a time when therapeutic intervention 
may be optimal. Despite the lack of a significant increase in 
concentration in C9orf72 mutation carriers, a similar pattern 
of negative correlation with cognition and brain imaging was 
seen in the presymptomatic period—it would be useful in future 
studies to investigate the subset of C9orf72 expansion carriers 
that have increased GFAP concentrations, and how they differ 
from those with a lower concentration. In particular, it would 
be helpful to compare carriers with and without concomitant 
ALS. We also assessed whether GFAP correlated with the rate 
of brain atrophy measured with longitudinal brain imaging and 
found a significant positive correlation only in the symptomatic 
GRN carriers (in the temporal lobe), implicating an association 
of GFAP levels with the intensity of the disease process, that is, 
how fast the disease is progressing. With longitudinal follow- up 
of participants, it would therefore be hypothesised that higher 
GFAP concentration would be associated with shorter survival 
in GRN- related FTD.

While the multicentre nature of the GENFI study allows 
collection of samples from a large genetic cohort of FTD world-
wide, there remains a relatively small number of cases in each 
group (leading to low statistical power to detect differences), 
particularly in the symptomatic carriers, and replication in a 
larger dataset would be helpful. Due to the nature of the disease 
process, the mean age of the controls overall is lower compared 
with the symptomatic mutation carriers, but nonetheless the 
same results are found whether performing an age- adjusted 
comparison (as presented above in Plasma GFAP concentration) 
or when symptomatic mutation carriers are compared with an 
age- matched and gender- matched subset of older controls (see 
online supplementary figure 2). The advantage of studying 
levels in plasma is that blood is more easily accessible and a rela-
tively cost- efficient way to access bodily fluids in comparison to 
performing a lumbar puncture; in this study, the use of the ultra-
sensitive SIMOA assay allowed detection at a level in blood that 
other assays do not. However, it will be important to study CSF 
levels in more detail in this group, as concentrations can differ 
between blood and CSF.18 Lastly, despite significant differences 
between the groups, there is a substantial overlap in concentra-
tions between carriers and controls: longitudinal study of GFAP 
concentration over time, particularly in participants that convert 
from presymptomatic to symptomatic status, will therefore be 
important to truly evaluate whether changes do occur towards 
the end of the presymptomatic period and how levels change 
with progression of disease.

In summary, plasma GFAP levels appear to be uniquely 
increased in GRN mutation carriers in the current study, and 
importantly, concentrations may well be abnormal during the 
late presymptomatic period, suggesting that GFAP might act as 
marker of proximity to symptom onset.
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