Early symptoms in symptomatic and preclinical genetic frontotemporal lobar degeneration

Tamara Paulo Tavares,1 Derek G V Mitchell,2 Kristy KL Coleman,3 Brenda L Coleman,4,5 Christen L Shoesmith,6 Christopher R Butler,7 Isabel Santana,8,9 Adrian Danek,10 Alexander Gerhard,11,12 Alexandre de Mendonca,13 Barbara Borroni,14 Maria Carmela Tartaglia,15,16 Caroline Graff,17 Daniela Galimberti,18,19 Fabrizio Tagliavini,20 Fermin Moreno,21,22 Giovanni B Frisoni,23 James Benedict Rowe,24,25 Johannes Levin,26 John Cornelis Van Swieten,27 Markus Otto,28,29 Matthias Synofzik,29,30 Raquel Sanchez-Valle,31,32 Rik Vandenburghe,33,34 Robert Jr Laforce,35 Roberta Ghidoni,36 Sandro Sorbi,37 Simon Ducharme,38,39 Mario Maselli,40,41 Jonathan D Rohrer,42 Elizabeth Finger,43,44 on behalf of the Genetic FTD Initiative, GENFI

Objective(s)

The clinical heterogeneity of frontotemporal dementia (FTD) complicates identification of biomarkers for clinical trials that may be sensitive during the prediagnostic stage. It is not known whether cognitive or behavioural changes during the preclinical period are predictive of genetic status or conversion to clinical FTD. The first objective was to evaluate the most frequent initial symptoms in patients with genetic FTD. The second objective was to evaluate whether preclinical mutation carriers demonstrate unique FTD-related symptoms relative to familial mutation non-carriers.

Methods

The current study used data from the Genetic Frontotemporal Dementia Initiative multicentre cohort study collected between 2012 and 2018. Participants included symptomatic carriers (n=185) of a pathogenic mutation in chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN) or microtubule-associated protein tau (MAPT) and their first-degree biological family members (n=588). Symptom endorsement was documented using informant and clinician-rated scales.

Results

The most frequently endorsed initial symptoms among symptomatic patients were apathy (23%), disinhibition (18%), memory impairments (12%), decreased fluency (8%) and impaired articulation (5%). Predominant first symptoms were usually discordant between family members. Relative to biologically related non-carriers, preclinical MAPT carriers endorsed worse mood and sleep symptoms, and C9orf72 carriers endorsed marginally greater abnormal behaviours. Preclinical GRN carriers endorsed less mood symptoms compared with non-carriers, and worse everyday skills.

Conclusion

Preclinical mutation carriers exhibited neuropsychiatric symptoms compared with non-carriers that may be considered as future clinical trial outcomes. Given the heterogeneity in symptoms, the detection of clinical transition to symptomatic FTD may be best captured by composite indices integrating the most common initial symptoms for each genetic group.
different symptoms relative to biologically related non-carriers during the preclinical period.

METHOD
Participants
The current study used data from the Genetic Frontotemporal Dementia Initiative (GENFI) multicentre cohort study, which consists of research centres across Europe and Canada (http://genfi.org.uk/). This dataset comprises (1) known symptomatic carriers of a pathogenic mutation in the GRN or MAPT genes or with a pathogenic expansion in the C9orf72 gene (>30 repeats) with clinical diagnoses based on the international consensus diagnostic criteria and (2) first-degree biological family members of a known GRN, MAPT or C9orf72 mutation carrier who are at risk for developing FTD and were not yet demonstrating evidence of progressive cognitive or behavioural symptoms (including both preclinical carriers and non-carriers). All eligible and interested participants were enrolled in the study. Importantly, the majority of at-risk family members in the GENFI study, and the local GENFI research teams, were not aware of their genetic status at the time of the assessments. After their baseline visit, participants were followed for up to five annual visits. All participants had an identified informant who completed clinical scales (see below). Participants with completed study measures were included in the analysis; information on other demographic variables was complete for all participants in the study. The data were part of the GENFI data freeze 4 collected at 22 GENFI sites (2012–2018).

Study measures
GENFI symptom list
The initial 37-symptom list was designed to include a variety of FTD-related symptoms based on standardised rating scales (e-method 1.0, online supplementary tables e–1, e–2 and e–results 2). Informants of symptomatic patients (typically a spouse or sibling) described the initial symptom and trained research coordinators selected the corresponding symptom from the list. For at-risk family members, clinicians completed the GENFI symptom list with the at-risk family member and their study informant, and evaluated the presence of each symptom using a 5-point Likert scale (0=absent, 0.5=questionable/very mild, 1=mild, 2=moderate, 3=severe). Symptom ratings of questionable/very mild, mild, moderate, severe were coded as symptom endorsement and absent coded as symptom absent.

Cambridge Behavioural Inventory-Revised Questionnaire
Informants of at-risk family members completed the Cambridge Behavioural Inventory-Revised Questionnaire (CBI-R). This questionnaire was used to evaluate the at-risk groups’ symptoms within the past 4 weeks. Each question is evaluated on a 5-point scale, where higher scores indicate greater symptom endorsement and severity. Symptom domains included memory and orientation, everyday skills, self-care, abnormal behaviour, mood, beliefs, eating habits, sleep, stereotypic and motor behaviours and motivation. Each domain includes two to eight subitems.

Years from expected onset was used to determine whether participants who were closer to the age of anticipated clinical onset endorsed greater symptoms. Years from expected onset was calculated by subtracting the mean age of clinical onset within the family from the participant’s current age. Negative values denote that the participant is at an age prior to expected clinical onset; positive values indicate that the participant is at an age after expected clinical onset.

Statistical analysis
GENFI symptom list
Descriptive statistics were used to illustrate the most frequent symptoms endorsed at participants’ initial visits. Differences among the three genetic groups in the frequency of the most prevalent subsymptoms were examined using χ² test or Fisher’s exact test for the symptomatic patients and at-risk individuals, and separately comparing preclinical mutation carriers and non-carriers for each gene mutation. Mixed models were not used to account for potential clustering effects of family membership and site, due to the low symptom endorsement (creating small samples) by patients and at-risk family members.

For symptomatic and at-risk family members, a composite index was created for each gene based on three most frequently endorsed initial symptoms for each of the symptomatic genetic groups (C9orf72 and MAPT: disinhibition, apathy, memory; GRN: apathy, articulation, fluency). For each composite, participants attained a score of 1 if they endorsed at least one symptom within each composite (0=no symptoms endorsed, 1=at least one symptom endorsed). Note only the predominant initial symptom was recorded in the GENFI intake for affected participants. To evaluate the effectiveness of this composite to differentiate between mutation carriers and non-carriers, sensitivity and specificity values were computed (https://www.medcalc.org/calc/diagnostic_test.php).

To evaluate changes in symptom endorsement over time in at-risk family members who had at least one follow-up visit, a difference score was calculated by subtracting symptom endorsement at the final visit from symptom endorsement at the first visit (0=not endorsed, 1=symptom endorsed). This resulted in three categories for each symptom: decrease in symptom endorsement over time (score of −1), no change in symptom endorsement over time (score of 0), increase in symptom endorsement over time (score of 1). Calculating change scores enabled all participants to be included in the analysis, regardless of the number of follow-up visits. Fisher’s exact/χ² tests were completed to assess group differences.

To evaluate whether the initial symptoms were similar among patients from the same family, a congruency score was calculated as the number of pairwise comparisons in which family members shared an initial symptom, divided by the total number of possible pairwise comparisons. A congruency score was also calculated to evaluate the congruency of initial predominant symptoms for specific GRN and MAPT mutations.

Cambridge Behavioural Inventory Questionnaire-Revised
A generalised linear mixed model with a Laplace likelihood approximation function was used to examine differences in the total CBI-R scores between preclinical mutation carriers and non-mutation carriers at the initial GENFI visit as a function of years from expected clinical onset. This analysis accounted for potential clustering effects based on family membership. Plots of the CBI-R total scores suggested a Poisson distribution; however, due to overdispersion as indicated through the Pearson’s χ²/df, a negative binomial distribution with a log link function was used. No participant had studentized residuals >±3, and thus all data points were included in the analysis. Predictor variables included random effects (family membership) and fixed effects (genetic status (preclinical vs non-carriers), years from expected onset and an interaction between genetic status and years from expected onset to account for potential clustering effects of family membership and site, due to the low symptom endorsement (creating small samples) by patients and at-risk family members.
expected onset). Examination of the residuals suggested the use of weights to account for the within-family correlation in the model. Given the variability in contribution of family membership to predicting age of onset by mutation group, a confirmatory analysis was conducted substituting years from expected onset with the participant’s age. Of note, as age was highly correlated with years from expected onset \((r=0.84, p<0.001)\), participant’s age could not be included in the model due to multicollinearity. However, when age was substituted for estimated years from expected onset, the pattern of results was similar (online supplementary table e–3).

Change scores (symptom score at final visit–score at first visit/ time interval) were calculated to compare longitudinal data. Participants with studentized residuals \(>\pm 3\) were removed (online supplementary table e–4), and a linear mixed model was used (see online supplementary e-methods 3.0 on the description of the model formation). Predictor variables included random effects (family membership) and fixed effects (genetic status (preclinical vs non-carriers), years from expected onset or participant’s age, CBI total score at baseline and an interaction between genetic status and years from expected onset). A confirmatory analysis was run substituting participant’s age at baseline for the years from expected onset (online supplementary table e–3). As differences between the preclinical and non-carriers in the total CBI scores may be obscured by opposed group differences in the subscale scores, we also examined group differences at baseline and longitudinally for each of the subscales by using the model developed for the total score. For these models, the same parameters were used with one exception: the subscale score at baseline was used as a fixed effect instead of the CBI total score at baseline. For both the baseline and change score analysis, the potential influence of specific FTD-causing mutations was examined by assessing the impact of genetic mutation type as the grouping variable (C9orf72, GRN, MAPT, mutation non-carriers) and post hoc comparisons were conducted between each genetic group and non-carriers. For brevity, the results from the models with the genetic mutation group are reported in the manuscript.

Symptom congruency

Fourteen families had at least two related patients in the study cohort; among these families, the average percentage congruency for first symptom similarity was 19% (online supplementary table e–6). Five families with a MAPT mutation and seven families with a GRN mutation had at least two related symptomatic patients in the study cohort and the specific genotype was known. Of the specific genotypes, the average congruency score was 33% for MAPT and 20% for GRN mutations (online supplementary table e–7).

Symptom endorsement in at-risk family members (GENFI symptom list)

There were no significant differences between at-risk individuals (preclinical C9orf72, GRN, MAPT vs non-carriers) or between preclinical genetic groups in the proportion of participants who endorsed the initial symptoms most commonly reported in affected patients (i.e., apathy, disinhibition, decreased fluency, impaired articulation and memory impairments) (figure 2 and online supplementary tables e–5, e–8). Overall, at-risk genetic groups (preclinical C9orf72, GRN, MAPT vs non-carriers) showed a similar pattern of symptom endorsement over time, with a very low proportion of participants reporting changes in the most common initial symptoms (online supplementary table e–9).

Composite scores

The sensitivity and specificity values indicate the composite indices differentiate between symptomatic FTD and non-mutation carriers for each of the gene groups with sensitivities from 94% to 97% and specificities of 80%. For at-risk family members, the composite indices showed low sensitivity (8%–33%), with medium specificity (76%–91%) to differentiate between preclinical mutation carriers from non-carriers beginning from \(-5\), to 2 and 0 years to expected age of onset (online supplementary tables e–10, e–11).

Symptom endorsement and severity in at-risk family members (CBI-R Questionnaire)

CBI-R scores at baseline

As participants approached the anticipated time of onset there was a significant increase in the reported total symptom score, memory and orientation, sleep, motivation, eating habits and stereotypic and motor behaviours scores. When adjusting for expected years to onset and relative to non-carriers, post hoc contrasts showed that MAPT carriers experienced greater mood, sleep and motivation symptoms; C9orf72 carriers endorsed greater abnormal behaviour and stereotypic and motor symptoms and GRN carriers had lower mood scores (table 2; figure 3).

Longitudinal CBI scores

Improved symptoms over time (negative change scores) were associated with greater symptom scores at baseline when adjusted for expected years to onset and carrier status across all participants. There were also significant associations between expected years to onset and memory and orientation scores, stereotypic and motor behaviours, but also for eating habits (table 2). Within the subscales, GRN and C9orf72 preclinical carriers demonstrated worse everyday skills over time relative to mutation non-carriers, but only the GRN carriers’ scores met statistical significance (figure 4).

RESULTS

Participants

One hundred eighty-five patients diagnosed with FTD (C9orf72 \(n=87\), GRN \(n=65\), MAPT \(n=33\)) were included in the analysis. Additionally, 637 at-risk family members (317 preclinical mutation carriers, 320 mutation non-carriers) and 588 at-risk individuals (294 preclinical carriers, 294 non-carriers) completed the GENFI symptom list and CBI-R scales, respectively (table 1).

Predominant initial symptoms in symptomatic patients

Across the entire cohort the most frequently endorsed initial symptoms were apathy (23%), disinhibition (18%), memory impairments (12%), decreased fluency (8%) and impaired articulation (5%; figure 1, online supplementary table e–5). When the most frequent initial symptoms were compared among the mutation groups, patients with MAPT mutations presented with disinhibition more frequently relative to C9orf72 and GRN carriers, and displayed memory impairments more frequently than GRN carriers. GRN carriers exhibited impaired articulation and decreased fluency more often than C9orf72 and MAPT carriers. No group differences were observed for apathy.
Neurodegeneration

As the first study to compare initial symptoms in symptomatic and at-risk mutation carriers, our findings demonstrate important differences previously reported where 93% of C9orf72 carriers (8%) is similar to group GRN carriers (15%) and MAPT carriers (46%) endorsing disinhibition as the initial complaint relative to patterns emerged. The relative proportion of MAPT carriers (46%) endorsing disinhibition as the initial complaint relative to C9orf72 carriers (15%) and GRN carriers (8%) is similar to group differences previously reported where 93% of MAPT carriers exhibited poorer everyday skills. The direct comparison of symptoms across the mutation groups, some gene-related symptoms. While apathy and disinhibition were the most frequent initial symptoms among mutation groups may be important in the consideration of basket-design clinical trials where, for example, patients with TDP-43 pathology arising from different mutations (C9orf72 and GRN) may be grouped together.

DISCUSSION

The study as the first to compare initial symptoms in symptomatic and at-risk patients with genetic FTD across the three main genetic mutations MAPT, C9orf72 and GRN, our findings demonstrate the overlap and differences in the presence and frequencies of specific FTD-related symptoms. We also report the first longitudinal differences between preclinical mutation carriers in comparison to familial non-carriers in the endorsement of symptoms prior to diagnosis. Important to the interpretation of symptom reports and design of clinical trials, we found that preclinical MAPT and C9orf72 mutation carriers endorsed greater symptoms at the initial assessment (approximately 14 years prior to anticipated age of onset), and over time GRN and C9orf72 mutation carriers exhibited poorer everyday skills. The direct comparison of symptoms among mutation groups may be important in the consideration of basket-design clinical trials where, for example, patients with TDP-43 pathology arising from different mutations (C9orf72 and GRN) may be grouped together.

Symptomatic period

While apathy and disinhibition were the most frequent initial symptoms across the mutation groups, some gene-specific patterns emerged. The relative proportion of MAPT carriers (46%) endorsing disinhibition as the initial complaint relative to C9orf72 carriers (15%) and GRN carriers (8%) is similar to group differences previously reported where 93% of MAPT carriers

Table 1 Demographics table for symptomatic and at-risk family members

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic patients</th>
<th>At-risk family members</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>C9orf72</td>
<td>GRN</td>
<td>MAPT</td>
<td>Contrasts</td>
</tr>
<tr>
<td>Total</td>
<td>185</td>
<td>87</td>
<td>65</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>174</td>
<td>80</td>
<td>65</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ambidextrous</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Handedness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>108</td>
<td>57</td>
<td>30</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>77</td>
<td>30</td>
<td>35</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9orf72</td>
<td>117</td>
<td>115</td>
<td>104</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>GRN</td>
<td>144</td>
<td>144</td>
<td>132</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>MAPT</td>
<td>56</td>
<td>61</td>
<td>52</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Maximum number of visits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>121</td>
<td>118</td>
<td>124</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>98</td>
<td>80</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>58</td>
<td>60</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>27</td>
<td>22</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>7</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bvFTD</td>
<td>62</td>
<td>33</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPA</td>
<td>4</td>
<td>28</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTD-ALS</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALS</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSP</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBS</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dementia-NOS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time interval for change score (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (SD)</td>
<td>62.3 (8.5)</td>
<td>63.7 (8.3)</td>
<td>63.5 (6.9)</td>
<td>56.2 (9.5)</td>
<td></td>
</tr>
<tr>
<td>Age at onset (SD)</td>
<td>58.1 (8.8)</td>
<td>58.8 (9.0)</td>
<td>60.6 (7.2)</td>
<td>51.1 (7.7)</td>
<td></td>
</tr>
<tr>
<td>Education, years (SD)</td>
<td>12.2 (4.0)</td>
<td>12.6 (4.0)</td>
<td>11.2 (4.0)</td>
<td>13.2 (3.6)</td>
<td></td>
</tr>
<tr>
<td>Years from expected symptom onset (SD)</td>
<td></td>
<td>−14.4 (11.8)</td>
<td>−13.2 (14.1)</td>
<td>−14.5 (12.0)</td>
<td>−12.9 (14.2)</td>
</tr>
</tbody>
</table>

Fisher’s exact test (if expected cell count was <5), independent sample t-tests or one-way analysis of variance were used to discern group differences for relevant variables.

AGE, Alzheimer’s Disease; ALS, amyotrophic lateral sclerosis; bvFTD, behavioural variant frontotemporal dementia; CBI-R, Cambridge Behavioural Inventory Questionnaire-Revised; CBS, corticobasal syndrome; C9orf72, chromosome 9 open reading frame 72; GENFI, Genetic Frontotemporal Dementia Initiative; GRN, progranulin; MAPT, microtubule-associated protein tau; NOS, not otherwise specified; PPA, primary progressive aphasia; PSP, progressive supranuclear palsy.

Neurodegeneration

Figure 1 Symptom endorsement in symptomatic patients and at-risk family members. Percentage of patients and at-risk individuals that endorsed symptoms identified as the most frequent symptoms in symptomatic patients. *C9orf72*, chromosome 9 open reading frame 72; *GRN*, progranulin; *MAPT*, microtubule-associated protein tau.

Figure 2 Baseline symptom endorsement by genotype in at-risk family members. Percentage of preclinical and non-mutation carriers that endorse each of the subsymptoms identified as the most frequent symptom in symptomatic patients. *C9orf72*, chromosome 9 open reading frame 72; *GRN*, progranulin; *MAPT*, microtubule-associated protein tau.

exhibited signs of disinhibition over the course of their disease relative to 63% of *C9orf72* and 56% of *GRN* carriers. *GRN* carriers endorsed impaired articulation and decreased fluency most often, which corresponds with the language-based clinical presentation found in some patients in this mutation group. *C9orf72* expansion carriers reported motor symptoms most often which is consistent with reports of amyotrophic lateral sclerosis found only in *C9orf72* carriers and absent in *GRN* and *MAPT*. Although the symptoms discussed above are characteristic of the specific gene affected, it is critical to recognise that these symptoms are not endorsed by all the participants in each genetic group. Using the top three most frequently endorsed symptom to create a composite index for each genetic group differentiated symptomatic genetic carriers from non-carriers. Future research assessing the severity of these frequently endorsed initial symptoms may aid in the differentiation between the genetic groups, and thus may be considered as an outcome measure or clinical end point in future clinical trials for early stage FTD.

Preclinical period

Overall, and counter to our predictions, the rates of initial symptoms as endorsed by affected patients (apathy, disinhibition, memory impairments, decreased fluency and impaired articulation), were similar between preclinical mutation carriers and non-carriers. As well, the composite indices did not differentiate...
Table 2 CBI-R total and subscale scores at baseline and over time for at-risk family members by genetic group (no outliers included)

<table>
<thead>
<tr>
<th></th>
<th>Baseline*</th>
<th></th>
<th>Change score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Estimate (95% CI) P value</td>
<td>N</td>
</tr>
<tr>
<td>Total score</td>
<td>588</td>
<td>1.34 (0.78 to 2.31) 0.29</td>
<td>336</td>
</tr>
<tr>
<td>C9orf72</td>
<td>104</td>
<td>0.95 (0.52 to 1.73) 0.86</td>
<td></td>
</tr>
<tr>
<td>GRN</td>
<td>138</td>
<td>1.96 (0.88 to 4.38) 0.1</td>
<td></td>
</tr>
<tr>
<td>MAPT</td>
<td>52</td>
<td>1.02 (1 to 1.03) 0.02</td>
<td></td>
</tr>
<tr>
<td>Baseline score</td>
<td></td>
<td>−0.15 (−0.21 to −0.1) <0.0001</td>
<td></td>
</tr>
<tr>
<td>C9orf72* YEO</td>
<td>1 (0.98 to 1.03) 0.8</td>
<td></td>
<td>0.01 (−0.08 to 0.05) 0.63</td>
</tr>
<tr>
<td>GRN* YEO</td>
<td>1 (0.97 to 1.03) 0.87</td>
<td></td>
<td>0.02 (−0.08 to 0.05) 0.63</td>
</tr>
<tr>
<td>MAPT* YEO</td>
<td>1 (0.96 to 1.05) 0.85</td>
<td></td>
<td>−0.01 (−0.12 to 0.1) 0.86</td>
</tr>
<tr>
<td>Memory and orientation</td>
<td>588</td>
<td>0.88 (0.51 to 1.52) 0.65</td>
<td>334</td>
</tr>
<tr>
<td>C9orf72</td>
<td>104</td>
<td>1.03 (0.56 to 1.89) 0.92</td>
<td></td>
</tr>
<tr>
<td>GRN</td>
<td>138</td>
<td>0.89 (0.39 to 2.03) 0.78</td>
<td></td>
</tr>
<tr>
<td>MAPT</td>
<td>52</td>
<td>1.03 (1.01 to 1.04) 0.001</td>
<td></td>
</tr>
<tr>
<td>Baseline score</td>
<td></td>
<td>−0.18 (−0.23 to −0.13) <0.0001</td>
<td></td>
</tr>
<tr>
<td>C9orf72* YEO</td>
<td>1 (0.96 to 1.01) 0.29</td>
<td></td>
<td>0.003 (−0.02 to 0.02) 0.74</td>
</tr>
<tr>
<td>GRN* YEO</td>
<td>1 (0.98 to 1.04) 0.47</td>
<td></td>
<td>0.002 (−0.02 to 0.01) 0.78</td>
</tr>
<tr>
<td>MAPT* YEO</td>
<td>0.99 (0.95 to 1.03) 0.59</td>
<td></td>
<td>0.0002 (0 to 0.01) 0.95</td>
</tr>
<tr>
<td>Everyday skills</td>
<td>588</td>
<td>0.77 (0.09 to 6.56) 0.81</td>
<td>335</td>
</tr>
<tr>
<td>C9orf72</td>
<td>104</td>
<td>0.71 (0.1 to 4.92) 0.72</td>
<td></td>
</tr>
<tr>
<td>GRN</td>
<td>138</td>
<td>1.08 (0.05 to 22.27) 0.96</td>
<td></td>
</tr>
<tr>
<td>MAPT</td>
<td>52</td>
<td>1.03 (0.97 to 1.09) 0.34</td>
<td></td>
</tr>
<tr>
<td>Baseline score</td>
<td></td>
<td>−0.5 (−0.55 to −0.45) <0.0001</td>
<td></td>
</tr>
<tr>
<td>C9orf72* YEO</td>
<td>1 (0.89 to 1.13) 0.96</td>
<td></td>
<td>0.003 (0 to 0.01) 0.21</td>
</tr>
<tr>
<td>GRN* YEO</td>
<td>1 (0.93 to 1.2) 0.42</td>
<td></td>
<td>0.003 (0 to 0.01) 0.75</td>
</tr>
<tr>
<td>MAPT* YEO</td>
<td>0.96 (0.82 to 1.11) 0.57</td>
<td></td>
<td>0.0002 (0 to 0.01) 0.95</td>
</tr>
<tr>
<td>Abnormal behaviour</td>
<td>588</td>
<td>2.16 (1.09 to 4.26) 0.03†</td>
<td>334</td>
</tr>
<tr>
<td>C9orf72</td>
<td>104</td>
<td>0.83 (0.36 to 1.91) 0.67</td>
<td></td>
</tr>
<tr>
<td>GRN</td>
<td>138</td>
<td>2.07 (0.8 to 5.38) 0.14</td>
<td></td>
</tr>
<tr>
<td>MAPT</td>
<td>52</td>
<td>1.03 (0.97 to 1.02) 0.9</td>
<td></td>
</tr>
<tr>
<td>Baseline score</td>
<td></td>
<td>−0.23 (−0.28 to −0.18) <0.0001</td>
<td></td>
</tr>
<tr>
<td>C9orf72* YEO</td>
<td>1 (0.98 to 1.06) 0.37</td>
<td></td>
<td>0.006 (−0.02 to 0.01) 0.47</td>
</tr>
<tr>
<td>GRN* YEO</td>
<td>1 (0.96 to 1.04) 0.99</td>
<td></td>
<td>0.007 (−0.02 to 0.01) 0.23</td>
</tr>
<tr>
<td>MAPT* YEO</td>
<td>0.99 (0.95 to 1.04) 0.77</td>
<td></td>
<td>0.0033 (−0.02 to 0.01) 0.71</td>
</tr>
<tr>
<td>Mood</td>
<td>587</td>
<td>1.22 (0.7 to 2.12) 0.49</td>
<td>334</td>
</tr>
<tr>
<td>C9orf72</td>
<td>104</td>
<td>0.46 (0.23 to 0.93) 0.03</td>
<td></td>
</tr>
<tr>
<td>GRN</td>
<td>137</td>
<td>2.75 (1.29 to 5.89) 0.01</td>
<td></td>
</tr>
<tr>
<td>MAPT</td>
<td>52</td>
<td>1.01 (0.99 to 1.03) 0.26</td>
<td></td>
</tr>
<tr>
<td>Baseline score</td>
<td></td>
<td>−0.23 (−0.28 to −0.18) <0.0001</td>
<td></td>
</tr>
<tr>
<td>C9orf72* YEO</td>
<td>1 (0.97 to 1.03) 0.80</td>
<td></td>
<td>0.018 (−0.04 to 0.0) 0.11</td>
</tr>
<tr>
<td>GRN* YEO</td>
<td>0.97 (0.94 to 1) 0.05</td>
<td></td>
<td>−0.003 (−0.02 to 0.01) 0.73</td>
</tr>
<tr>
<td>MAPT* YEO</td>
<td>1.01 (0.97 to 1.05) 0.58</td>
<td></td>
<td>0.0031 (−0.02 to 0.03) 0.81</td>
</tr>
<tr>
<td>Beliefs</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9orf72</td>
<td>49</td>
<td>−0.004 (−0.02 to 0.01) 0.56</td>
<td></td>
</tr>
<tr>
<td>GRN</td>
<td>86</td>
<td>−0.01 (−0.02 to 0.0014) 0.097</td>
<td></td>
</tr>
<tr>
<td>MAPT</td>
<td>33</td>
<td>−0.01 (−0.02 to 0.01) 0.46</td>
<td></td>
</tr>
<tr>
<td>Baseline score</td>
<td></td>
<td>0.00007 (−0.0002 to 0.0004) 0.62</td>
<td></td>
</tr>
<tr>
<td>C9orf72* YEO</td>
<td>−0.38 (−0.41 to −0.34) <0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRN* YEO</td>
<td>−0.0017 (−0.0009 to 0.0005) 0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAPT* YEO</td>
<td>−0.0001 (−0.0009 to 0.0007) 0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eating habits</td>
<td>588</td>
<td>0.61 (0.16 to 2.32) 0.46</td>
<td>335</td>
</tr>
<tr>
<td>C9orf72</td>
<td>104</td>
<td>1.57 (0.46 to 5.39) 0.47</td>
<td></td>
</tr>
<tr>
<td>GRN</td>
<td>138</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
of which ‘converted’ to symptomatic during follow-up had a stronger classification score increase over time relative to non-converting mutation carriers. Overall, these results suggest that for some domains preclinical FTD mutation carriers may remain similar to controls until they are close to symptom onset.

For the caregiver report, relative to non-carriers, preclinical MAPT carriers endorsed poorer mood and sleep symptoms, and C9orf72 carriers exhibited marginally greater abnormal

The model could not be run on some subscales after outliers were removed due to low symptom endorsement. At baseline, for the self-care subscale, three participants (three preclinical) had scores above zero after outliers were removed. For the change score, for the self-care scale, one non-carrier endorsed a change in symptom. For the main effect of genetic group and Gene × EVO interaction-reference group are the non-carriers.

*Baseline data were modelled with a negative binomial distribution with a log link function. Estimates and CIs of fixed effects are exponentiated (base e) and indicate the incident rates. Estimates below one indicate an inverse relationship between the variable and outcome.

†Overall effect of genetic group was not statistically significant at p<0.05 (based on type III tests of fixed effects).

<table>
<thead>
<tr>
<th>Table 2 Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Stereotypic and motor behaviours</td>
</tr>
<tr>
<td>C9orf72</td>
</tr>
<tr>
<td>GRN</td>
</tr>
<tr>
<td>MAPT</td>
</tr>
<tr>
<td>YEO</td>
</tr>
<tr>
<td>Baseline score</td>
</tr>
<tr>
<td>C9orf72 YEO</td>
</tr>
<tr>
<td>GRN YEO</td>
</tr>
<tr>
<td>MAPT YEO</td>
</tr>
<tr>
<td>Motivation</td>
</tr>
<tr>
<td>C9orf72</td>
</tr>
<tr>
<td>GRN</td>
</tr>
<tr>
<td>MAPT</td>
</tr>
<tr>
<td>YEO</td>
</tr>
<tr>
<td>Baseline score</td>
</tr>
<tr>
<td>C9orf72 YEO</td>
</tr>
<tr>
<td>GRN YEO</td>
</tr>
<tr>
<td>MAPT YEO</td>
</tr>
</tbody>
</table>

Statistics are from the Solution for Fixed Effects table. The model could not be run on some subscales after outliers were removed due to low symptom endorsement. At baseline, for the self-care subscale, three participants (three preclinical) had scores above zero after outliers were removed. At baseline, for the beliefs subscale, four participants (one preclinical, two non-carrier) had scores above zero after outliers were removed. For the change score, for the self-care scale, one non-carrier endorsed a change in symptom. For the main effect of genetic group and Gene × EVO interaction-reference group are the non-carriers.

*Baseline data were modelled with a negative binomial distribution with a log link function. Estimates and CIs of fixed effects are exponentiated (base e) and indicate the incident rates. Estimates below one indicate an inverse relationship between the variable and outcome.

†Overall effect of genetic group was not statistically significant at p<0.05 (based on type III tests of fixed effects).

CBI, Cambridge Behavioural Inventory; C9orf72, chromosome 9 open reading frame 72; GRN, progranulin; MAPT, microtubule-associated protein tau; YEO, years from estimated onset.

the groups, further supporting and extending recent findings indicating that some behavioural and cognitive changes in genetic FTD are only detectable in close proximity to conversion to the clinically affected state. Our cohort included biologically related non-mutation carriers which enabled us to control for potential environmental influences that may impact symptom endorsement (eg, worry about inheriting an FTD-causing mutation, stress from a family member with FTD). Although biomarkers in blood and cerebrospinal fluid, grey matter atrophy, white matter hyperintensities and hypometabolism have been detected prior to cognitive impairments during the preclinical period, the present findings indicate that the behavioural and cognitive symptoms endorsed as initial symptoms by patients may not emerge until just a few years prior to clear disease onset. In a recent longitudinal study of 46 preclinical mutation carriers, 8 of which ‘converted’ to symptomatic during follow-up, cognitive decline during the preclinical period was evident but were largely driven by the converters. Additionally, differences in cognitive decline between converters and preclinical mutation carriers was detectable starting only 2 years prior to expected onset. This may suggest that cognitive performance may remain relatively stable during the preclinical period and cognitive decline may begin near or at symptom onset.14 This finding is also consistent with a recent study that used a classification model on longitudinal MRI data (anatomical, diffusion tensor imaging and resting state) and reported that mutation carriers who converted during follow-up had a stronger classification score increase over time relative to non-converting mutation carriers. Overall, these results suggest that for some domains preclinical FTD mutation carriers may remain similar to controls until they are close to symptom onset.

For the caregiver report, relative to non-carriers, preclinical MAPT carriers endorsed poorer mood and sleep symptoms, and C9orf72 carriers exhibited marginally greater abnormal...
behaviours. Moreover, GRN preclinical carriers endorsed less mood symptoms relative to non-carriers. Given the natural co-occurrence of sleep and mood alterations, it is not surprising that MAPT carriers experienced symptoms in both domains. In line with our current findings, depressive disorder not otherwise specified has been found to be more prevalent among MAPT preclinical carriers relative to mutation non-carriers and the general population.16 As well, over a 4-year follow-up, it was reported that MAPT preclinical carriers (n=15) developed more depressive symptoms than GRN carriers (n=31) and healthy controls (n=39).14 In contrast to the current study, other reports have documented inconsistent findings on the prevalence of depressive and other neuropsychiatric symptoms during the preclinical period. For example, a greater lifetime prevalence of major depressive disorder, generalised anxiety disorder and panic disorder has previously been observed in non-carriers (n=46), but not in MAPT mutation carriers (n=12).16 Furthermore, other studies have found that neuropsychiatric features may not emerge until symptom onset. For example, in a Dutch cohort of approximately 80 MAPT and GRN mutation and non-carriers, mutation carriers who ‘converted’ from preclinical to symptomatic status (3 GRN and 5 MAPT) displayed greater depressive and general neuropsychiatric features relative to preclinical mutation carriers and mutation non-carriers at the time of clinical symptom onset.17 In our cohort of preclinical mutation carriers, as mood symptoms did not emerge as participants approached their expected time of disease onset, the endorsement of symptoms by mutation carriers may reflect a developmental predisposition.

When symptom endorsement was examined longitudinally, preclinical GRN carriers endorsed worse everyday skills over time compared with non-mutation carriers. Relative to healthy controls and normative data, asymptomatic GRN carriers demonstrate poorer performance on a variety of cognitive domains including attention/processing speed,18 visuospatial and working memory,19 verbal fluency, emotion recognition,20 attention, mental flexibility and language.21 With this, it is likely that the decline in everyday skills in preclinical GRN carriers reflects subtle changes in a variety of cognitive domains. Therefore, as differences are evident between GRN preclinical mutation carriers and non-carriers, everyday skills as measured through the CBI-R may potentially be used as an end point for clinical trials in GRN preclinical individuals.

Limitations
Potential clustering effects of family membership and testing site could not be accounted for in the clinician-rating scale, due to low symptom endorsement. As well, participant’s knowledge of their genetic status was not obtained and thus this potential effect could not be accounted for. Future clinical trial modelling may need to consider the participants’ knowledge of their
genetic status when considering rates of symptom reporting. Furthermore, although the different scales used in the current study allow for the assessment of symptom endorsement by multiple informants, we could not account for potential differences in reporting style based on the sex of the informant or the relationship of the informant to the at-risk family member. An additional potential limitation is the reliance on retrospective caregiver reports to acquire reports of the initial symptom in symptomatic mutation carriers, although the diagnosis of FTD is reliant on caregiver’s reports.

CONCLUSIONS

In conclusion, we report the frequencies of the most common initial symptoms for the main genetic forms of FTD and suggest that the heterogeneity between gene groups, family members and even specific mutations, composite measures of these symptoms may serve as clinical tools for detection of early conversion to symptomatic FTD. Of interest, we did not find differences between preclinical mutation carriers and non-carriers for the most common initial symptoms in affected patients. Future studies examining initial symptoms with additional longitudinal data points will aid in the understanding of the progression of these symptoms from the preclinical, to affected disease stages and further pinpoint the onset of initial symptoms heralding conversion to symptomatic FTD.

Author affiliations

1Neuroscience, Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
2Psychiatry, Anatomy & Cell Biology, Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
3Cognitive Neurology, St. Joseph’s Health Care, London, Ontario, Canada
4Infectious Disease Epidemiologic Research Unit, Mount Sinai Hospital, Toronto, Ontario, Canada
5Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
6Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
7Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
8Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
9Faculty of Medicine, Centre of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
10Neurologische Klinik und Poliklinik, Ludwig-Maximilians Universität, Munich, Germany
11Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
12Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany
13Laboratory of Neurosciences, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
14Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
15Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
16Canadian Sports Concussion Project, Toronto, Ontario, Canada
17Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
18Neurodegenerative Diseases Unit, Fundación IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
19Centro Dino Ferrari, University of Milan, Milan, Lombardia, Italy
20Neurology and Neuropathology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
21Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital Gipuzkoa Building, San Sebastian, País Vasco, Spain
22Neuroscience Area, Biodonostia Health Research Institute, Donostia-san Sebastian, Guipuzcoa, Spain
23Instituto de Recuperación y Cura a Carácter Científico Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
24Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
25German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
26Department of Neurology, University Hospital, LMU Munich, Munich, Germany
27Neurology, Erasmus MC, Rotterdam, The Netherlands
28Neurology, University of Ulm, Ulm, Germany
29Department of Neurodegenerative Diseases and Center of Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
30German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
31Alzheimer’s Disease and Other Cognitve Disorders Unit, Neurolgy Service, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
32Alzheimer’s disease and Other Cognitve Disorders Unit, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
33Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Flanders, Belgium
34Neurology Service, KU Leuven University Hospitals Leuven, Leuven, Flanders, Belgium
35Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
36Molecular Markers Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
37Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy
38McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
39Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
40Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
41Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada
42Dementia Research Centre, Department of Neurodegenerative Disease, UCI Institute of Neurology, London, UK

Twitter Tamara Paulo Tavares @tamvt1 and Simon Ducharme @sducharme66

Collaborators

Contributors

TPT, BLC: drafting/revising the manuscript, analysis or interpretation of data; DGVM, co-investigator: drafting/revising the manuscript analysis or interpretation of data; KXCL, CLS, CRB, IS, AD, JL, SS: data acquisition; AG, CG, FT, EF, Site Investigator: drafting/revising the manuscript, data acquisition, study concept or design, analysis or interpretation of data; AdM, Site Investigator: data acquisition, study concept or design, analysis or interpretation of data; FM, RG, Site Investigator: data acquisition, study concept or design, analysis or interpretation of data; MG, Site Investigator: drafting/revising the manuscript, data acquisition, study concept or design; JCVS, Site Investigator: drafting/revising the manuscript, data acquisition, study concept or design; JBR, MO, MS: Site Investigator: data acquisition, study concept or design; MCT, JCVS, Site Investigator: drafting/revising the manuscript, data acquisition, study concept or design; AG, CG, FT, EF, Site Investigator: data acquisition, study concept or design; MM, JR, Site Investigator: data acquisition, study concept or design.

Funding

This work was funded by the UK Medical Research Council, the Italian Ministry of Health and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant, and also a Canadian Institutes of Health Research operating grant (MOIP 327387) and funding from the Weston Brain Institute to MM and EF. JDR, DC and KMM are supported by the NIH Queen Square Dementia Biomedical Research Unit, the NIHR UCLH Biomedical Research Centre and the Leonard Wolfson Experimental Neurology Centre (WENC) Clinical Research Facility. JDR is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIH Rare Disease Translationa...
Neurodegeneration

Research Collaboration (BRC149/NS/MH), the MRC UK GENFI grant (MR/M023664/1) and The Bluefield project. KMM is supported by grants from JPND the Bluefield project. CG, LO and CA were supported by grants from JPND the Bluefield project. RG supported by Italian Ministry of Health, Ricerca Corrente. and JVS are supported by the Association for frontotemporal Dementias Research.

Participants provided written informed consent at enrolment.

FT is supported by the Italian Ministry of Health (Grant NET-2011-02346784). LCJ and JVS are supported by the Association for frontotemporal Dementias Research Grant 2009, ZomMW Memorabel project number 733050103 and 733050813 and the Bluefield project. RG supported by Italian Ministry of Health, Ricerca Corrente. The Swedish contributors CG, LO and CA were supported by grants from JPND Prefrontals Swedish Research Council (VR) 529-2014-7504, Swedish Research Council (VR) 2015-02926, Swedish Research Council (VR) 2018-02754, Swedish FTD Initiative Schörling Foundation, Swedish Brain Foundation, Swedish Alzheimer Foundation, Stockholm County Council ALF, Karolinska Institutet Doctoral Funding and StratNeuro, Swedish Dementsfonden, during the conduct of the study.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval Local ethics committees at each site approved the study and all participants provided written informed consent at enrolment.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data may be obtained from a third party and are not publicly available. The data for this study were obtained from the GENFI data freeze 4. Further details on the GENFI protocol, cohorts and data policies can be found at http://genfi.org.uk/samples.html.

ORCID iDs
Tamara Paulo Tavares http://orcid.org/0000-0002-3043-9773
Barbara Borroni http://orcid.org/0000-0001-9340-9814
James Benedict Rowe http://orcid.org/0000-0001-7216-8679
John Cornelis Van Swieten http://orcid.org/0000-0001-6278-6844
Markus Otto http://orcid.org/0000-0002-6647-5944
Elizabeth Finger http://orcid.org/0000-0003-4461-7427

REFERENCES

23 Rabinovici GD, Miller BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs 2010;24:375–98.
Correction: Early symptoms in symptomatic and preclinical genetic frontotemporal lobar degeneration

The Genetic FTD Initiative, (GENFI) should have been listed in the paper.

List of GENFI Consortium Members
► Alazne Gabilondo - Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
► Albert Lladó - Alzheimer’s disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain
► Alessandro Padovani - Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
► Ana Gornostidi - Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
► Ana Verdelho - Department of Neurosciences and Mental Health, Centro Hospitalar Lisboa Norte - Hospital de Santa Maria & Faculty of Medicine, University of Lisbon, Lisbon, Portugal
► Andrea Arighi - Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
► Anna Antonell - Alzheimer’s disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain
► Beatriz Santiago - Neurology Department, Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
► Begonía Indakoetxea - Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain; Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
► Benedetta Naemias - Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
► Benjamin Bender - Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
► Camilla Ferrari - Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
► Carlo Wilke - Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany; Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
► Carolin Heller - Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
► Carolina Maruta - Laboratory of Language Research, Centro de Estudos Egas Moniz, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
► Caroline Greaves - Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
► Carolyn Timberlake - Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
► Catarina B. Ferreira - Laboratory of Neurosciences, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
► Catharina Prix - Neurologische Klinik, Ludwig-Maximilians-Universität München, Munich, Germany
► Chiara Fenoglio - Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
► Christin Andersson - Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
► Cristina Polito - Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, Nuclear Medicine Unit, University of Florence, Florence, Italy
► David Cash - Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
Miscellaneous

► David L Thomas - Neuroimaging Analysis Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK
► David Tang-Wai - The University Health Network, Krembil Research Institute, Toronto, Canada
► Diana Duro - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
► Ekaterina Rogacheva - Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
► Elio Scarpini - Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
► Elisa Semler - Department of Neurology, University of Ulm, Ulm
► Elisabeth Wlasch - Neurologische Klinik, Ludwig-Maximilians-Universität München, Munich, Germany
► Emily Todd - Department of Neurodegenerative Disease, UCL Institute of Neurology, UK
► Enrico Premi - Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
► Gabriel Miltenerberger - Faculty of Medicine, University of Lisbon, Lisbon, Portugal
► Gemma Lombardi - Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
► Georgia Peakman - Department of Neurodegenerative Disease, UCL Institute of Neurology, UK
► Giacomina Rossi - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
► Giorgio Fumagalli - Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
► Giorgio Giaccone - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
► Giuliano Binetti - Istituto di Ricovero e Cura a Carattere Scientifico Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
► Giuseppe Di Fede - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
► Hakon Thonberg - Centre for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
► Hans-Otto Karnath - Division of Neuropsychology, Hertie-Institute for Clinical Brain Research and Centre of Neurology, University of Tübingen, Tübingen, Germany
► Henrik Zetterberg - Dementia Research Institute, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
► Ione Woollacott - Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
► Janne Pappa - Department of Neurology, Erasmus Medical Centre, Rotterdam
► Jason Warren - Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
► Jaume Olives - Alzheimer’s disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain
► Jennifer Nicholas - Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
► Jessica Panman - Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
► Jorge Villanua - OSATEK, University of Donostia, San Sebastian, Gipuzkoa, Spain
► Jose Bras - Dementia Research Institute, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
► Katrina Moore - Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London UK
► Lieke Meeter - Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
► Linn Öijerstedt - Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
► Lize Jiskoot - Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
► Luisa Benussi - Istituto di Ricovero e Cura a Carattere Scientifico Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
► Maria de Arriba - Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
► Maria João Leitão - Centre of Neurosciences and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
► Maria Rosário Almeida - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Martin Rosser - Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Martina Bocchetta - Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Mathieu Vandenbergulcke - Geriatric Psychiatry Service, University Hospitals Leuven, Belgium; Neuropsychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Maura Cosseddu - Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Michela Pievani - Istituto di Ricovero e Cura a Carattere Scientifico Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Michele Veldman - Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Miguel Castelo-Branco - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Miguel Tábuas-Pereira - Neurology Department, Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
- Mikel Tainta - Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
- Mircea Balasa - Alzheimer’s disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain
- Miren Zulaica - Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
- Morris Freedman - Baycrest Health Sciences, Rotman Research Institute, University of Toronto, Toronto, Canada
- Myriam Barandiaran - Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain; Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
- Nick Fox - Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Nuria Bargalló - Imaging Diagnostic Centre, Hospital Clinic, Barcelona, Spain
- Paola Caroppi - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Pedro Rosa-Neto - Translational Neuroimaging Laboratory, McGill Centre for Studies in Ageing, McGill University, Montréal, Québec, Canada
- Philip Vandamme - Neurology Service, University Hospitals Leuven, Belgium; Laboratory for Neurobiology, VIB-KU Leuven Centre for Brain Research, Leuven, Belgium
- Pietro Tiraboschi - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Rachelle Shafer - Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Rhian Convery - Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Ricardo Taipa - Neuropathology Unit and Department of Neurology, Centro Hospitalar do Porto - Hospital de Santo António, Oporto, Portugal
- Rick van Minkelen - Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands
- Rita Guerreiro - Dementia Research Institute, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Robart Bartha - Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada; Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
- Roberto Gasparotti - Neuroradiology Unit, University of Brescia, Brescia, Italy
- Ron Keren - The University Health Network, Toronto Rehabilitation Institute, Toronto, Canada
- Rosa Rademakers - Department of Neurosciences, Mayo Clinic, Jacksonville, Florida, USA
- Rose Bruffaerts - Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Sandra Black - Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Sandra Loosli - Neurologische Klinik, Ludwig-Maximilians-Universität München, Munich, Germany
- Sara Mitchell - Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Sara Prioni - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Sarah Anderl-Straub - Department of Neurology, University of Ulm, Ulm, Germany
- Sebastien Ourselin - School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK