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C H A P T E R 12 

Consecutive steps of nucleoside triphosphate 
hydrolysis are driving transport of precursor 

proteins into the endoplasmic reticulum 
PETER KLAPPA, GÜNTER MÜLLER # , GABRIEL SCHLENSTEDT*, 

HANS WIECH and RICHARD ZIMMERMANN 

Zentrum Biochemie/ Abi eilung Biochemie II der Universität, Gosslerstraße 12d, 
W-3400 Götfingen, Germany 

Abstract 

Transport of secretory proteins into the mammalian endoplasmic reticulum can be 
visualized as a sequence of various steps which include membrane association, mem
brane insertion and completion of translocation. I t turns out that this transport 
depends on the hydrolysis of nucleoside triphosphates at various stages: (i) There is 
a GTP requirement in ribonucleoparticle-dependent transport. This GTP effect is 
related to the GTP binding proteins signal recognition particle (SRP) and docking 
protein, (ii) There is an ATP requirement in ribonucleoparticle-independent trans
port. This ATP effect is related to the cytosolic (termed cis-acting) molecular cha-
perone hsp70. (iii) Recently we addressed the question of whether there are 
additional nucleoside triphosphate requirements in protein transport into mamma
lian microsomes. We observed that a microsomal protein which depends on ATP 
hydrolysis is involved in membrane insertion of both, ribonucleoparticle-dependent 
and -independent precursor proteins. The azido-ATP sensitive protein was shown to 
be distinct from the lumenal (termed trans-acting) molecular chaperone BiP. 

1. Introduction 

Every polypeptide has a unique intra- or extracellular location where it fulfills its 
function. The following facts complicate our attempts to understand this situation: 

uPresent address: Hoechst A G , W-6230 Frankfurt am M a i n 80, Germany . 
* Present address: Department of Molecular Biology, Princeton University, Princeton, New Jersey, U S A . 
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(i) most proteins are synthesized in the cytosol, however, non-cytosolic proteins 
must subsequently be directed to a variety of different subcellular locations, and 
(ii) in the case of non-cytosolic proteins the sites of synthesis and of functional 
location are separated by at least one biological membrane. Consequently, mechan
isms exist which ensure the specific transport of proteins across membranes. Here 
we discuss the mechanisms involved in export of newly synthesized secretory pro
teins. 

There appear to be different ATP-dependent transport mechanisms for protein 
export [1]. One can distinguish between transport mechanisms involving signal 
peptides and those that do not. The signal peptide-independent mechanism takes 
place at the plasma membrane. It involves transport components which are related to 
the multiple drug resistance proteins, i.e. a family of ATP-dependent membrane 
proteins. The signal peptide-dependent mechanism, however, operates at the level 
of the membrane of the endoplasmic reticulum. From there, secretory proteins reach 
the extracellular space by vesicular transport. There are at least two different 
mechanisms for the transport of secretory proteins into the mammalian endoplasmic 
reticulum. Both mechanisms depend on the presence of a signal peptide on the 
respective precursor protein and involve a signal peptide receptor on the cytosolic 
surface of the membrane and a membrane component that is sensitive towards 
photoaffinity modification by azido-ATP. The decisive feature of the precursor 
protein with respect to which of the two mechanisms is used is the chain length of 
the polypeptide. The critical size seems to be around 70 amino acid residues (including 
the signal peptide). One mechanism is used by precursor proteins larger than about 70 
amino acid residues and relies on the hydrolysis of GTP and two cytosolic ribonu-
cleoparticles (ribosome and signal recognition particle) and their receptors on the 
microsomal surface (ribosome receptor and docking protein). The other mechanism 
is used by small precursor proteins and involves the hydrolysis of ATP and cytosolic 
molecular chaperones such as hsp70. 

2. Results 

We focus on the following presecretory proteins as tools for gaining insight into the 
molecular details of how proteins are transported into the mammalian endoplasmic 
reticulum: preprocecropin A [2-4], prepromelittin [5-7], and prepropeptide GLa [8]. 
A l l three precursor proteins contain a cleavable signal peptide and about 70 amino 
acid residues (including the signal peptide). We employ in vitro systems which are 
derived from mammalian organisms such as rabbit reticulocyte lysates and dog 
pancreas microsomes. 
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cytosol 

cis-side 

translocase ATP ER-membrene 

trans-side 

chaperone 

F i g . 1. Signal peptide-dependent transport of secretory proteins into the mammalian endoplasmic 

reticulum involves nucleoside triphosphate hydrolysis. Refer to Results for details. 

2.1. Ribonucleopartides versus molecular chaperones 

It is clear that precursor proteins are not transported in their native (i.e. folded) 
state and that signal peptides are involved in preserving the unfolded state as well 
as in facilitating membrane recognition. Furthermore, it appears that there are two 
mechanisms preserving transport competence in the cytosol (Fig. 1, Table I). The 
mechanisms differ in how transport competence is preserved. In the first case pro
tein synthesis is slowed down, in the second case protein folding and/or aggregation 
is slowed down. The first mechanism involves the hydrolysis of GTP and ribonu-
cleoparticles and their receptors on the microsomal surface, the second mechanism 
does not involve ribonucleoparticles and their receptors but depends on the hydro
lysis of ATP and on molecular chaperones. Small presecretory proteins (i.e. precur
sor proteins which contain less than 75 amino acid residues) such as preprocecropin 
A are the best substrates for the latter mechanism. 

The ribonucleoparticle-dependent pathway seems to be used by the majority of 
presecretory proteins and has been analyzed in great detail (refer to Chapters 9 and 10 
for references). I t involves SRP and its receptor in the microsomal membrane, 
docking protein (SRP receptor) and the ribosome and its receptor. In addition, 
ribophorins I and I I seem to be involved in this mechanism [9]. There is a GTP 
requirement in the transport of ribonucleoparticle-dependent precursor proteins [10-
12]. This GTP effect is related to the GTP binding proteins, SRP and docking protein 
[11,13,14]. 

The first observations with respect to ribonucleoparticle-independent transport 
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T A B L E I 

Components involved in protein transport into the mammalian endoplasmic reticulum 

Signal recognition particle 7S R N A 

S R P 72 k D a subunit 

S R P 68 k D a subunit 

S R P 54 k D a subunit 

S R P 19 k D a subunit 

S R P 14 k D a subunit 

S R P 9 k D a subunit 

S R P receptor 

Ribosome 

Ribosome receptor 

cis-Acting chaperone 

Translocase 

D P « subunit 

D P / i subunit 

hsp70 

Signal peptide receptor 

NEM-sens i t ive component 

Azido-ATP-sens i t ive component 

S S R a subunit 

SSRß subunit 

trans-Acting chaperone BiP 

were that the loosely folded (unfolded, denatured) precursor is the best substrate for 
transport and that the hydrolysis of ATP by cytosolic factors is involved in preserving 
this state [2,7,8,15]. In collaboration with M . Lewis and H . Pelham, we were able to 
demonstrate that hsp70 is part of what we had termed a cytosolic ATPase and that a 
second cytosolic protein (which in contrast to hsp70 is NEM-sensitive) is involved 
[16]. Our current working model proposes that hsp90 may be the protein of interest, 
the main reason being that it is enriched in a fraction that contains the desired activity 
(Fig. 2). We find this to be an attractive hypothesis for two reasons: (i) hsp70 and 
hsp90 were shown to cooperate with respect to hormone receptors and (ii) BiP (grp78, 
a member of the hsp70 family) and grp94 (a member of the hsp90 family) are present 
in the microsomal lumen. 

The decisive feature of the precursor protein with respect to which of the two 
mechanisms is used is the chain length of the polypeptide. This conclusion was based 
on the observation that carboxy-terminal extension of a small precursor protein in 
size, typically leads to the phenotype of a large precursor protein [6,8]. I f one takes 
into account that approximately 40 amino acid residues of a nascent polypeptide 
chain are buried in the ribosome [17-19] and that a signal peptide contains 20-30 
amino acid residues [20-22] and, furthermore, that SRP can bind to signal peptides 
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hsp 70 + p c * >hsp 7 0 / p c * 

hsp 70 + pc 

>hsp 9 0 

-hsp 9 0 < 

cy toso l 

ER-membrane 

BiP + rn* BiP / m * 

ATP-^^grp 9 4 < -

ADP+P<^ v ~>grp 9 4 

BiP + m 

Fig . 2. Molecular chaperones are involved in ribonucleoparticle-independent transport, pc, precursor after 

release from cis-acting molecular chaperone (molten globule state); pc*, precursor during or after release 

from ribosome; m, mature protein after release from trans-acting molecular chaperone (native state); m*, 

mature protein during or after release from translocase. Refer to Results for details. 

only as long as they are presented by a ribosome [23,24], one can imagine that 
precursor proteins with less than 60-70 amino acids cannot make use of the two 
ribonucleoparticles; they are released before SRP can bind to the signal peptide. 
However, the ribonucleoparticle-independent mechanism can also be used by a large 
precursor protein [2]. A synthetic hybrid between preprocecropin A and dihydrofo-
late reductase, translocates post-translationally (without the involvement of signal 
recognition particle and ribosome). This was directly demonstrated by adding 
methotrexate to the translocation reaction. Methotrexate and related drugs bind to 
ppcecDHFR after it is completed and released from the ribosome, stabilize the native 
conformation of the D H F R domain and allow membrane insertion but block 
completion of translocation. 

2.2. Translocase 

We assume that the two pathways converge at the level of a putative signal peptide 
receptor which may be identical to the 45 kDa protein that was characterized as a 
signal sequence binding protein in microsomal membranes [25]. Besides this protein, 
biochemical evidence points to additional membrane proteins as parts of a general 
translocase (Table I ) . 

There is an A TP-requiring step at the microsomal level which is involved in both 
mechanisms and which is not related to the lumenal molecular chaperone BiP [4]. 

After solubilization in DMSO and subsequent dilution into an aqueous buffer, the 
transport of the chemically synthesized and purified precursor protein preprocecro
pin A * occurs in the absence of molecular chaperones but depends on the hydrolysis 
of ATP. The concentration of ATP that leads to half-maximal stimulation is in the 
order of 10 juM. A t this concentration other nucleotides cannot substitute for ATP. In 
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other words, the effect appears to be specific for ATP. Furthermore, non-hydrolyz-
able ATP analogs, such as AMP-PCP or AMP-PNP, cannot substitute for ATP. 
Since these analogs compete with ATP, one can conclude that the hydrolysis of ATP 
is required. Photoaffinity modification of dog pancreas microsomes with 8-azido-
ATP leads to inactivation of the microsomes with respect to membrane insertion of 
preprocecropin A* as well as of prepro-a-factor and preprolactin. Therefore, we 
concluded that a hitherto unknown microsomal protein that depends on ATP 
hydrolysis is involved in membrane insertion of both ribonucleoparticle-dependent 
and -independent precursor proteins (Fig. 1, Table I). We are currently employing a 
combination of two approaches in order to identify the ATP-dependent component 
of interest: photoaffinity modification of microsomal proteins with 3 2P-8-azido-ATP 
and affinity purification of ATP-binding proteins from microsomal extracts. 

Although BiP is an ATP-binding protein and is modified by azido-ATP, it appears 
to be distinct from the azido-ATP sensitive component that is involved in protein 
transport. Treatment of dog pancreas microsomes with octyl glucoside and subse
quent removal of the detergent leads to depletion of the lumenal content. Under these 
conditions more than 90% of BiP is removed. Protein transport, however, is 
unaffected. Since it is very unlikely that photoaffinity modification leads to more 
than 90% derivatization of its targets, BiP cannot be the target of the observed 
inhibition of protein transport after photoaffinity modification of microsomes. 
However, this result does not rule out the possibility that BiP is involved in protein 
transport under these conditions. 

In addition, ribonucleoparticle-independent transport of presecretory proteins 
involves a membrane component which is sensitive to chemical alkylation with N-
ethylmaleimide, i.e. which has an essential sulfhydryl [3]. The sulfhydryl is cytoplas-
mically exposed and is involved in membrane insertion but not in membrane binding 
of the precursor proteins ( M . Zimmermann, unpublished observation). This compo
nent may be identical to an N-ethylmaleimide-sensitive component which acts past 
docking protein and ribosome receptor in ribonucleoparticle-dependent transport 
[26,27]. 

The so-called SSR subunits appear to be part of the translocase and can be 
expected to be generally involved [28-32]. We addressed the question of what stage 
of ribonucleoparticle-dependent transport is affected after photoinactivation of 
microsomes by azido-ATP [33]. Thus, a nascent presecretory protein was em
ployed. We observed that the nascent precursor protein does not become associated 
with the SSR complex after photoaffinity labeling of microsomes with azido-ATP. 
We concluded that the microsomal protein, which is sensitive to photoaffinity 
labeling with azido-ATP, acts prior to the SSR complex. 
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3. Discussion 

3.1. Components involved in protein transport into yeast endoplasmic reticulum 

With respect to yeast microsomes, genetic and biochemical evidence demonstrate a 
role for the cis-acting chaperone hsp70 and a second, NEM-sensitive, protein 
[34,35]. However, there also is ribonucleoparticle-dependent protein transport in 
yeast [36-38]. We assume that the two pathways converge at the level of a putative 
signal peptide receptor [39]. Genetic evidence suggests that the membrane proteins 
sec61, sec62 and sec63 (also termed pt l l or npl l ) are generally involved in protein 
transport [40-43]. Biochemical evidence suggests that the sec61, sec62 and sec63 
proteins transiently form complexes with a 31.5 kDa glycoprotein and a 23 kDa 
protein, i.e. two proteins that are reminiscent of two mammalian ER proteins 
which have been termed SSR a- and ß-subunit [44]. Furthermore, the trans-acting 
chaperone BiP (KAR2 gene product) has been shown to have a role in transport 
[45]. 

3.2. Model for ribonucleoparticle-independent transport 

It is clear that precursor proteins have to be unfolded to be translocated and that 
unfolding has to occur on the cis-side of the respective membrane (Fig. 3). It ap-

" n e t i v e " 

. signal peptide 

x j / cis-acting chaperone 

molten globule 

4 1/ vl \/ 

V̂QO \ A T P <V%$0 cis-side 

translocase ATP translocase ER-membrane 

native molten globule 

trans-side 

trans-acting chaperone 

Fig. 3. Model for ribonucleoparticle-independent transport of presecretory proteins into the endoplasmic 

reticulum. Refer to Discussion for details. 
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pears that the signal peptide interferes with folding of the precursor to the native 
conformation of the mature part to a certain degree. Therefore, precursor proteins 
interact with molecular chaperones at some stage of their synthesis. This interaction 
has to be reversible, however, in order to eventually allow translocation. This may 
represent the point where ATP hydrolysis and the additional component come into 
action. Membrane association of the precursor proteins occurs via a putative signal 
peptide receptor. At this stage the precursor may be in a native-like folding state or 
in the molten globule state; it may be free or bound to a molecular chaperone. 

With the help of the translocase, the signal peptides are then inserted into the 
membrane, most likely in the form of a loop structure which is made up by the signal 
peptide plus the amino terminus of the mature part. The ATP hydrolysis at the 
microsomal level seems to be directly providing the energy for membrane insertion. In 
order to become inserted, the precursor has to unfold at least partially, starting at its 
amino terminus. The question is where does the energy for unfolding come from. 
Practically all precursor proteins carry signal peptides that are cleaved off during or 
after translocation by signal peptidase. Thus, in principle, the differences between the 
free energies of precursor versus mature forms of a protein could be sufficient to drive 
unfolding at the surface. Furthermore, the energy for complete unfolding of a 
precursor protein may be as low as 10 kcal/mol, i.e. the initial hydrolysis of one 
ATP could be sufficient to drive such an unfolding reaction. 

In order for translocation to progress, the protein on the cis-side has to unfold 
further. Again, the question is where does the energy for unfolding come from. A 
possible answer to this question may reside in the recent observation that protein 
transport into yeast microsomes involves the trans-acting molecular chaperone BiP. 
However, a similar requirement for BiP in mammalian microsomes has not yet been 
observed. It is tempting to speculate that binding of the precursor protein in transit to 
the trans-acting molecular chaperone provides the energy. Alternatively, completion 
of translocation may be driven by spontaneous refolding on the trans-side of the 
target membrane. 

3.3. Open questions 

Even 20 years after the signal hypothesis was first put forward, one of the major 
open questions is whether the components of the translocase form a pore, i.e. an 
aqueous channel that the precursor protein in transit passes through or whether the 
translocase is a set of enzymes that facilitates translocation at a lipid/protein inter
face. 
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