Histological characterization of aldosterone-producing adrenocortical adenomas with different somatic mutations

Yoshikiyo Ono1,2,3,4, Yuto Yamazaki2, Kei Omata1,2,5,6, Tobias Else4, Scott A. Tomlins5,6,7,8, Yara Rhayem9, Tracy Ann Williams9,10, Martin Reincke9, Tobias Carling11, Silvia Monticone10, Paolo Mulatero10, Felix Beuschlein9,12, Sadayoshi Ito1, Fumitoshi Satoh1,13, William E. Rainey3, and Hironobu Sasano2

1) Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan.
2) Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
3) Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
4) Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
5) Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
6) Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
7) Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
8) Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
9) Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
10) Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy.
11) Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, New Haven, CT, USA.
12) Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zurich, Switzerland.
13) Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan.
Key terms: primary aldosteronism, CYP11B2, *ATP1A1*, *ATP2B3*, *CACNA1D*, *KCNJ5*

Address for correspondence and reprint requests to:

Hironobu Sasano, MD, PhD
Department of Pathology, Tohoku University School of Medicine
2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 JAPAN
Tel: +81-22-717-8050
Fax: +81-22-717-8051
E-mail: hsasano@patholo2.med.tohoku.ac.jp
Abstract

Context: Aldosterone-producing adrenocortical adenomas (APAs) are mainly composed of clear (lipid rich) and compact (eosinophilic) tumor cells. The detailed association between these histological features and somatic mutations (KCNJ5, ATP1A1, ATP2B3 and CACNA1D) in APAs is unknown.

Objective: To examine the association between histological features and individual genotypes in APAs.

Methods: Examination of 39 APAs subjected to targeted next-generation sequencing (11 KCNJ5, 10 ATP1A1, 10 ATP2B3, and 8 CACNA1D) and quantitative morphological and immunohistochemical (CYP11B2 and CYP17A1) analyses using digital imaging software.

Results: KCNJ5- and ATP2B3-mutated APAs had clear cell dominant features [KCNJ5: clear 59.8% (54.4%–64.6 %) vs. compact 40.2% (35.4%–45.6 %), P=0.0022; ATP2B3: clear 54.3% (48.2%–62.4 %) vs. compact 45.7% (37.6%–51.8 %), P=0.0696]. ATP1A1- and CACNA1D-mutated APAs presented with marked intratumoral heterogeneity. A significantly positive correlation of immunoreactivity was detected between CYP11B2 and CYP17A1 in tumor cells of KCNJ5-mutated APAs (P=0.0112; ρ=0.7237), in contrast, significantly inverse correlation was detected in ATP1A1-mutated APAs (P=0.0025; ρ=−0.8667).

Conclusion: KCNJ5-mutated APAs, co-expressing CYP11B2 and CYP17A1, were more deviated in terms of zonation-specific differentiation of adrenocortical cells compared with ATP1A1- and ATP2B3- mutated APAs.
Introduction

Primary aldosteronism (PA) is one of the most common forms of secondary hypertension, accounting for approximately 10% of all hypertensive patients (1-6). Aldosterone-producing adenoma (APA) and idiopathic hyperaldosteronism (IHA) are the two major subtypes of PA (1-7). In addition, APAs are well known to harbor marked intratumoral heterogeneity in terms of their morphology, genetics and steroidogenesis (8-10).

Histologically, APAs are mainly composed of two distinctive cell types based on their morphological features: “clear cells” and “compact cells” (8, 9). Clear cells are termed as “lipid-rich cells” or “zona fasciculata (ZF)-like cells” harboring relatively abundant lipid droplets, while “compact cells”, also termed as “lipid-poor cells” or “zona glomerulosa (ZG)-like cells”, are small, spherical shaped cells with eosinophilic cytoplasm (8, 9). However, an association between the morphological and functional features of these tumor cells has remained virtually unknown.

In addition, recent studies using next-generation sequencing (NGS) revealed that the great majority of APAs harbored somatic mutations of genes encoding ion channels and ion transporters (KCNJ5 encoding the inwardly rectifying potassium channel subfamily J, member 5; ATP1A1, Na+/K+ ATPase 1; ATP2B3, Ca2+-ATPase 3 and CACNA1D, voltage-dependent, L-type calcium channel subunit 1D) (11-16). These somatic mutations were detected in approximately 90% of all APAs (14, 16, 17). Among them, somatic APA mutations in KCNJ5 were the most frequently detected in Caucasian as well as Asian patients (11-16) whereas APA mutations in CACNA1D were most frequently detected in Afro-American patients (17).

Possible genotype-phenotype associations, including histological features of APAs, have been proposed especially in APAs carrying KCNJ5 mutations (9, 18, 19). KCNJ5-mutated APAs have a clear cell-dominant histology and a relatively large size. In addition, Monticone et al. reported that CYP11B2 immunoreactivity was significantly more abundant in ZG-like (n=43) than in ZF-like (n=28) APAs and that KCNJ5 somatic mutations were more frequently detected in the latter type (19). However, detailed histological features of KCNJ5-mutated APAs and APAs with the less frequently detected somatic mutations (ATP1A1, ATP2B3 and CACNA1D) are unknown. In addition, the majority of histological studies cited above were performed with manual analyses, which could be associated with marked inter- and intra-observer variance (10, 15, 19). We previously proposed that a quantitative histological analytical approach using digital
imaging software could minimize such variance because of high reproducibility in the analysis of KCNJ5-mutated APAs (9).

Therefore, in this study, we quantitatively analyzed the morphological features and immunoreactivity of CYP11B2 and CYP17A1 in combination with targeted NGS for APA genotyping. Our objective was to apply state-of-the art and quantifiable technology to establish the correlations of histologic features with the distribution of steroidogenic enzymes stratified by genotype.

Materials & Methods

APA cases

We initially retrieved the cases demonstrating KCNJ5 wild type by initial sequencing after screening in 51 cases from all of the participating institutions (University of Michigan, Ludwig Maximilian University of Munich, University of Torino and Yale University) because of the relatively small number of the cases harboring rare frequent mutations. Subsequent further sequencing by NGS validated the genotypes of those cases (KCNJ5: 11 cases, ATP1A1: 14 cases, ATP2B3: 11 cases, CACNA1D: 15 cases). We then exclusively analyzed the 10% formalin fixed and paraffin embedded tissue specimens prepared in the good manner without any artifacts examined by histological evaluation in hematoxylin and eosin stained tissue slides. We then selected those containing the whole area of the tumor at maximum diameter by subsequent histological examination. The screening above yielded the number of the cases examined in this study as follows (KCNJ5: 11 cases, ATP1A1: 10 cases, ATP2B3: 10 cases, CACNA1D: 8 cases).

All the cases examined were clinically diagnosed according to the Endocrine Society Guidelines for PA (1). The clinicopathological variables of these cases were summarized in Table 1. All tumors were pathologically diagnosed as adrenocortical adenomas according to the criteria of Weiss (20). Immunostaining with CYP11B2 antibody was subsequently performed to confirm the histopathological diagnosis of APAs (9, 21). We first screened all available tissue sections (average 4-5 sections) of all the cases examined and did select the representative tissue section containing the largest area of the tumor. The whole tumor areas with maximum dimension, which could reflect intratumoral heterogeneity (Fig. 1) were selected among all the available tissue sections of individual cases. This study protocol was approved by the Institutional Review Board of each institution.
Quantitative morphological analysis using digital imaging analysis (DIA)

Hematoxylin and eosin (H&E) staining was performed as reported previously (9). All H&E stained sections were digitally scanned and captured using Image Scope AT2 (Leica, Wetzlar, Germany). Digital imaging analysis (DIA) was subsequently performed using the software of HALO Area Quantification ver. 1.0 (Indica Laboratories, Corrales, NM) to minimize inter-observer variance and achieve high reproducibility as reported previously (9). In brief, the whole tumor area was first classified into tumor cell and stromal areas based on architectural patterns. We classified tumor cell areas into nuclear and cytoplasm areas based on their color spectrums, and cytoplasm areas within a tumor cell area further subclassified into clear and compact cells based on the gradients of the eosinophilic color spectrum. Two observers analyzed histological parameters in an independent manner (Y.O and Y.Y). The ratio of each histological component against the whole tumor area was then calculated. The percentage of clear and compact cell components within the tumor cell area was also calculated.

Quantitative analysis of CYP11B2 and CYP17A1 immunoreactivity using DIA

IHC analysis was performed using the antibodies against CYP11B2 (mouse monoclonal) (22) and CYP17A1 (rabbit polyclonal) (23) as reported previously (24). All IHC sections were scanned and captured as above (9). The modified H-score system was adopted in this study to evaluate immunoreactivity of CYP11B2 and CYP17A1 in the quantitative fashion (9, 22, 24). The gradient of relative immunointensity was tentatively defined as follows: negative as “0”, weak as “+1”, moderate as “+2”, and marked as “+3”. Threshold of score 1+ and 3+ were determined based on the gradient of the color spectrum in individual cases and the threshold of score 2+ was set as the midpoint between score 1+ and 3+. H-score of the unit area (mm²) was calculated as follows: Σ (Area of the individual gradients in positive cells x Score 1+, 2+ and 3+) / tumor area [the “cytoplasm” area] (9, 22, 24, 25).

Somatic mutation analysis in APAs by next-generation sequencing

Surgically resected PA adrenals were fixed in 10% neutral-buffered formalin and paraffin embedded (formalin fixed paraffin embedded, FFPE) to prepare 5µm serial sections.
Tissue samples were isolated from six unstained sections by dissecting areas corresponding to serial sections of CYP11B2 IHC as previously reported (9, 10, 21, 26, 27). Genomic DNA was extracted using AllPrep DNA/RNA FFPE kit (QIAGEN) as previously reported. (10, 21, 26, 27). In each case, 20 ng of isolated gDNA was used to generate a barcoded library by multiplexed PCR using a custom Ion AmpliSeq Panel and the Ion AmpliSeq Library kit 2.0 (Life Technologies) according to the manufacturer’s instructions. The custom Ion AmpliSeq Panel was designed to target the genes previously reported to be mutated in APA or other adrenal diseases (APA_v2 Panel). The APA_v2 Panel includes 499 independent primer pairs targeting the entire coding regions of genes reported to be somatically mutated in APAs (KCNJ5, ATP1A1, ATP2B3 and CACNA1D). Template preparation and sequencing of multiplexed templates were performed as previously reported (10, 21, 26, 27) using Ion PI Chip on the Ion Torrent Proton sequencer (Life Technologies, Carlsbad, CA).

Statistical analysis

Multi-comparison analyses were performed for the comparison of histological factors among all genotypes of APAs examined (KCNJ5, ATP1A1, ATP2B3 and CACNA1D) using Kruskal-Wallis test. The correlation between the proportion of the area of tumor cell subtypes and H-SCORE of CYP11B2 and CYP17A1 was evaluated using Spearman’s correlation coefficient. P value of <0.05 was considered significant in this study. The software of JMP Pro ver.14.2.0 was used for statistical analysis.

Results

Comparison of histological features among APAs with different somatic mutations

The proportions of tumor and stromal areas were not significantly different among APAs with different genotypes. The proportion of the nuclear area in ATP1A1-mutated APAs was significantly higher than that in ATP2B3-mutated APAs [ATP1A1-mutated: 13.3% (9.3%–16.8 %) vs. ATP2B3-mutated: 8.8% (6.1%–11.1 %), P=0.0376]. CACNA1D-mutated APAs had a significantly higher nuclear/cytoplasm ratio than ATP2B3-mutated APAs [0.20 (0.17–0.26) vs. 0.13 (0.09–0.16), P=0.0295] although the proportion of cytoplasm area was not significantly different among the different genotypes examined (Table 1). The proportion of the clear tumor cell component was significantly higher than that of the compact one in KCNJ5-mutated APAs [59.8% (54.4%–64.6 %) vs. 40.2%...
(35.4%–45.6%), P=0.0022] but not significantly higher in ATP2B3-mutated APAs [54.3% (48.2%–62.4%) vs. 45.7% (37.6%–51.8%), P=0.0696] (Fig. 3). Both ATP1A1- and CACNA1D-mutated APAs harbored more marked histological intratumoral heterogeneity in terms of clear and compact tumor cell distribution, but there was no significant correlation between the proportion of clear or compact tumor cells and specific genotypes of APAs.

Comparison of CYP11B2 and CYP17A1 immunoreactivity among APAs with different somatic mutations

The status of CYP11B2 immunoreactivity (CYP11B2 H score/mm²) was not significantly different among ATP1A1-, ATP2B3-, CACNA1D- and KCNJ5-mutated APAs [ATP1A1: 0.53 (0.13–0.78), ATP2B3: 0.57 (0.41-0.75), CACNA1D: 0.56 (0.10-0.97) and KCNJ5-mutated APA: 0.46 (0.29–0.58)]. However, CYP17A1 immunoreactivity (CYP17A1 H score/mm²) was significantly higher in KCNJ5- than in ATP2B3-mutated APAs [0.34 (0.26–0.38) vs. 0.13 (0.02-0.22), P=0.0057] and in CACNA1D- than in ATP2B3-mutated APAs [0.39 (0.23–0.54) vs. 0.13 (0.02-0.22), P=0.0184] (Fig. 3).

Correlation between histological features and immunoreactivity of CYP11B2 and CYP17A1 in individual genotypes of APAs

In KCNJ5-mutated APAs, the status of CYP11B2 immunoreactivity (CYP11B2 H score/mm²) was significantly inversely correlated with the proportion of the clear tumor cell component (P=0.00289; ρ=−0.6545) but positively with that of compact cells (P=0.00289; ρ=0.6545). There were, however, no significant correlations between CYP11B2 immunoreactivity and clear/compact tumor cell component in ATP1A1-, ATP2B3- and CACNA1D-mutated APAs as well as between the proportion of clear/compact tumor cell component and the status of CYP17A1 immunoreactivity (CYP17A1 H score/mm²) in APAs, regardless of their somatic mutations. Of particular interest, CYP11B2 and CYP17A1 were significantly positively correlated in KCNJ5-mutated APAs (P=0.0112; ρ=0.7237) but inversely in ATP1A1-mutated APAs (P=0.0025; ρ=−0.8667). However, there were no significant correlations between CYP11B2 and CYP17A1 immunoreactivity in both ATP2B3- and CACNA1D-mutated APAs (Fig. 4).

Discussion
This is the first study demonstrating detailed quantitative morphological characteristics of APAs with different somatic mutations identified by targeted next-generation sequencing and including the relatively rare \textit{ATP1A1}, \textit{ATP2B3} and \textit{CACNA1D} somatic mutations.

Histological differentiation between clear and compact tumor cells can be occasionally difficult in APAs (9). In addition, the previously proposed histological classification of APAs as “ZG” or “ZF” did not sufficiently represent the biological or functional features of tumor cells (9). Therefore, in this study, we focused on the histological characterization of tumor cells in APAs including those with relatively rare somatic mutations (\textit{ATP1A1}, \textit{ATP2B3} and \textit{CACNA1D}) based on their morphological and biological or functional features.

The results of our present study revealed that clear tumor cells were indeed predominant in \textit{KCNJ5}-mutated APAs but not in \textit{ATP1A1}-, \textit{ATP2B3}- and \textit{CACNA1D}-mutated APAs, all of which demonstrated marked intratumoral morphological heterogeneity. These findings were consistent with previously reported manual analyses (16, 19, 28-31). \textit{ATP2B3}-mutated APAs had relatively smaller nuclei than \textit{ATP1A1}-mutated APAs and lower nuclear to cytoplasm ratios than \textit{CACNA1D}-mutated APAs, indicating that \textit{ATP2B3}-mutated APAs had smaller nuclei but relatively more abundant cytoplasm containing lipid droplets than APAs with other genotypes. Thus, it has become important to explore the functional significance of these histological differences among different mutated APAs. The status of CYP11B2 immunoreactivity was not significantly different among \textit{KCNJ5}-, \textit{ATP1A1}-, \textit{ATP2B3}- and \textit{CACNA1D}-mutated APAs. These findings did indicate that there were no significant differences concerning intratumoral aldosterone biosynthesis among APAs with different somatic mutations. However, the status of CYP17A1 immunoreactivity in tumor cells was indeed significantly lower in \textit{ATP2B3}-mutated APAs than in \textit{CACNA1D}- and \textit{KCNJ5}-mutated APAs. These findings all demonstrated that \textit{ATP2B3}-mutated APAs could have relatively lower capability of neoplastic aberrant cortisol and aldosterone biosynthesis compared to \textit{KCNJ5}- and \textit{CACNA1D} -mutated APAs. However, further studies including the analysis of co-secretion of cortisol or other glucocorticoids possibly demonstrated by the dexamethasone suppression test and of secretion of hybrid steroids such as 18-oxocortisol in order to explore the biological significance of the findings above.

\textit{KCNJ5}-mutated APAs are larger and more abundant clear cell dominant tumors with a
much higher frequency of neoplastic aldosterone and cortisol co-secretion than non-
KCNJ5-mutated genotypes (32-34). In this study, both CYP11B2 and CYP17A in tumor
cells of *KCNJ5*-mutated APAs were significantly more abundant than in those of APAs
of other genotypes. Hybrid tumor cells which co-expressed CYP11B1+/CYP11B2+
and/or CYP17A+/CYP11B2+, and even triple positive hybrid cells
(CYP17A+/CYP11B1+/CYP11B2+) have been reported in APAs (33, 34). These hybrid
cells were also reported to be specific for APAs, as they were not detected in normal or
hyperplastic aldosterone producing cortical cells (31, 33). Tezuka et al., also recently
reported that these hybrid cells were significantly more abundant and synthesized
increased amounts of hybrid steroids such as 18-oxocortisol in *KCNJ5*-mutated APAs
compared with non *KCNJ5*-mutated APAs (34). These finding also indicated that *KCNJ5-
mutated APAs could represent more deviated features from zonation-based differentiation
of normal adrenocortical cells.

A TP2B3-mutated APAs demonstrated relative clear cell dominant histology but
CYP11B2 and CYP17A in tumor cells did not necessarily show a positive correlation.
A TP1A1-mutated APAs had more compact or eosinophilic tumor cells than other
genotypes despite a more pronounced intratumoral morphological heterogeneity. Of
particular interest, CYP11B2 and CYP17A in tumor cells showed an inverse correlation
in *ATP1A1*-mutated APAs. These findings all indicated that *ATP1A1*- and *ATP2B3-
mutated APAs displayed a more zonation-based or organized differentiation than *KCNJ5-
mutated APAs. In addition, aldosterone biosynthesis in these tumors was more similar to
that in normal or hyperplastic zona glomerulosa. There were no significant correlations
in *CACNA1D*-mutated APAs in contrast to *KCNJ5*-, *ATP1A1*- and *ATP2B3*-mutated
APAs. Therefore, further investigations are required to clarify the mechanistic aspects of
the correlation between individual somatic mutations and the phenotypes revealed by our
present study to achieve a better understanding of neoplastic aldosterone overproduction
in APAs.

Sources of Funding

M Reincke is supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No
[694913]), F Beuschlein, M Reincke and TA Williams are supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) Projektnummer:
Disclosures
The authors have nothing to disclose.

References

Figure Legends

Fig. 1. Representative microphotographs of ATP1A1-, ATP2B3-, CACNA1D- and KCNJ5-mutated APA tissue sections stained with hematoxylin and eosin (H&E), and immunostained using antibodies against CYP11B2 and CYP17A1.

Fig. 2. Comparison of histological features of ATP1A1-, ATP2B3-, CACNA1D- and KCNJ5-mutated APAs (A-G). The proportion of nuclear area was significantly higher in ATP1A1-mutated APAs than in ATP2B3-mutated APAs. [ATP1A1: 13.3% (9.3%–16.8%) versus ATP2B3: 8.8% (6.1%–12.0%), P<0.05]. The nuclear to cytoplasm ratio was significantly higher in CACNA1D-mutated APAs than in ATP2B3-mutated APAs [0.20 (0.17–0.26) versus 0.13 (0.09–0.16); P=0.0696].

Fig. 3. Comparison of clear and compact tumor cell ratios in ATP1A1-, ATP2B3-, CACNA1D- and KCNJ5-mutated APAs (A-D). The ratio of the clear cell component tended to be more abundant than the compact cell component in ATP2B3-mutated APAs [54.3% (48.2%–62.4%); versus 45.7% (37.6%–51.8%); P=0.0696]. In KCNJ5-mutated APAs, the clear cell component was significantly much higher than the compact cell.
Comparison of the H-score of CYP11B2 and CYP17A1 among ATP1A1-, ATP2B3-, CACNA1D- and KCNJ5-mutated APAs (E, F). The status of CYP17A immunoreactivity was significant different between KCNJ5 and ATP2B3 (P=0.0057), as well as between ATP2B3- and CACNA1D-mutated APAs (P=0.0184).

Fig. 4. Correlation between histological components and steroidogenic enzymes in ATP1A1- (A-E), ATP2B3- (F-J), CACNA1D- (K-O) and KCNJ5- (P-T) mutated APAs. Correlation between CYP11B2 immunoreactivity and proportion of clear cell area (A, F, K and P). Correlation between CYP11B2 immunoreactivity and proportion of compact cell area (B, G, L and Q). Correlation between the proportion of clear cell area and CYP17A1 immunoreactivity (C, H, M and R). Correlation between the proportions of compact cell area and CYP17A1 immunoreactivity (D, I, N and S). Correlation between the immunoreactivity of CYP11B2 and CYP17A1 (E, J, O and T). E, Both CYP11B2 and CYP17A1 showed a significant inverse correlation in ATP1A1-mutated APAs (P=0.0025; ρ=−0.8667). P, CYP11B2 immunoreactivity also showed a significant inverse correlation with the proportion of clear cell area in KCNJ5-mutated APAs (P=0.0289; ρ=−0.6545). Q, CYP11B2 immunoreactivity showed a significant correlation with the proportion of compact cell area in KCNJ5-mutated APAs (P=0.0289; ρ=0.6545). T, Both CYP11B2 and CYP17A1 showed a significant correlation (P=0.0112; ρ=0.7237) in KCNJ5-mutated APAs.
Figure 1

ATP1A1

ATP2B3

CACNA1D

KCNJ5

HE

CYP11B2

CYP17A1

Click here to access/download;Figure;Figure1_09252019.pdf
Figure 2

A) Tumor cell area
B) Stroma area
C) Nuclear area
D) Cytoplasm area
E) Nuclear/Cytoplasm ratio
F) Clear cell/Cytoplasm area ratio
G) Compact cell/Cytoplasm area ratio

* \(P = 0.0376 \)
* \(P = 0.0295 \)
Figure 3

- **A** ATP1A1
- **B** ATP2B3
- **C** CACNA1D
- **D** KCNJ5

Box plots for ATP1A1, ATP2B3, CACNA1D, and KCNJ5 showing the distribution of percentages across clear and compact categories.

- **E** CYP11B2 H-score
- **F** CYP17A1 H-score

Box plots for CYP11B2 and CYP17A1 H-score across ATP1A1, ATP2B3, CACNA1D, and KCNJ5 categories.
<table>
<thead>
<tr>
<th></th>
<th>ATP1A1</th>
<th>ATP2B3</th>
<th>CACNA1D</th>
<th>KCNJ5</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Gender (Male/Female)</td>
<td>9/1</td>
<td>8/2</td>
<td>5/3</td>
<td>3/8</td>
</tr>
<tr>
<td>Age at adrenalectomy (years)</td>
<td>50.8 ± 2.7 [41.5-58.5]</td>
<td>54.9 ± 2.6 [52.0-62.0]</td>
<td>47.5 ± 2.0 [42.3-53.5]</td>
<td>42.2 ± 2.8 [35.0-48.0]</td>
</tr>
<tr>
<td>Baseline systolic blood pressure (mmHg)</td>
<td>158.4 ± 6.7 [140.5-172.3]</td>
<td>166.2 ± 5.4 [150.0-178.0]</td>
<td>146.9 ± 5.8 [135.0-154.5]</td>
<td>140.8 ± 7.2 [125.0-153.0]</td>
</tr>
<tr>
<td>Baseline diastolic blood pressure (mmHg)</td>
<td>90.2 ± 4.1 [84.0-97.5]</td>
<td>94.6 ± 2.7 [90.0-100.0]</td>
<td>92.8 ± 4.3 [85.5-100.0]</td>
<td>82.6 ± 5.0 [72.0-100.0]</td>
</tr>
<tr>
<td>Maximal tumor Size (mm)</td>
<td>13.4 ± 1.5 [9.0-15.3]</td>
<td>16.3 ± 1.4 [14.0-19.0]</td>
<td>11.4 ± 1.2 [8.3-14.5]</td>
<td>20.7 ± 1.5 [15.0-24.0]</td>
</tr>
<tr>
<td>Nadir serum K+ (mmol/L)</td>
<td>2.8 ± 0.14 [2.5-3.2]</td>
<td>2.7 ± 0.1 [2.4-3.1]</td>
<td>3.1 ± 0.1 [2.6-3.5]</td>
<td>3.4 ± 0.2 [2.9-3.5]</td>
</tr>
<tr>
<td>Baseline plasma aldosterone concentration (PAC) (ng/dL)</td>
<td>46.8 ± 9.7 [12.4-74.1]</td>
<td>79.8 ± 21.0 [27.5-162.2]</td>
<td>49.0 ± 14.5 [17.4-60.6]</td>
<td>37.1 ± 5.8 [24.7-47.0]</td>
</tr>
<tr>
<td>Baseline active renin concentration (ARC) (mU/L)</td>
<td>4.6 ± 1.6 [1.2-9.1]</td>
<td>7.5 ± 4.7 [0.8-9.0]</td>
<td>8.2 ± 1.6 [5.1-12.2]</td>
<td>n.d.</td>
</tr>
<tr>
<td>Baseline plasma renin activity (PRA) (ng/ml/hr)</td>
<td>0.8 ± 0.1 [0.6-1.0]</td>
<td>0.6 ± 0.4 [0.15-1.4]</td>
<td>0.3 ± 0.1 [0.1-0.5]</td>
<td>0.2 ± 0.1 [0.1-0.2]</td>
</tr>
<tr>
<td>Baseline PAC/ARC ratio (ng/mU)</td>
<td>158.7 ± 78.5 [40.5-175.8]</td>
<td>411.9 ± 116.7 [127.0-682.0]</td>
<td>60.1 ± 22.5 [16.7-114.3]</td>
<td>n.d.</td>
</tr>
<tr>
<td>Baseline PAC/PRA ratio (ng/dL/ng/ml/hr)</td>
<td>68.6 ± 16.0 [33.4-101.6]</td>
<td>152.0 ± 65.6 [40.4-285.0]</td>
<td>188.4 ± 67.0 [58.4-317.5]</td>
<td>270.1 ± 64.8 [133.0-333.0]</td>
</tr>
<tr>
<td>PAC post 240 min. saline infusion test (ng/dL)</td>
<td>26.2 ± 10.8 [10.5-25.7]</td>
<td>43.1 ± 19.8 [11.5-57.7]</td>
<td>22.5 ± 4.5 [11.5-24.7]</td>
<td>30.8 ± 10.8 [18.0-52.3]</td>
</tr>
<tr>
<td>Tumor cell area (%)</td>
<td>80.4 ± 2.9 [71.7-89.3]</td>
<td>74.8 ± 2.7 [67.2-80.1]</td>
<td>70.9 ± 3.1 [60.9-77.8]</td>
<td>73.5 ± 4.0 [67.9-84.4]</td>
</tr>
<tr>
<td>Stroma area (%)</td>
<td>19.6 ± 2.9 [10.7-28.3]</td>
<td>25.2 ± 2.7 [20.0-32.9]</td>
<td>29.1 ± 3.1 [22.2-39.1]</td>
<td>26.5 ± 4.0 [15.7-32.2]</td>
</tr>
<tr>
<td>Nuclear area (%)</td>
<td>13.3 ± 1.7 [9.3-16.8]</td>
<td>8.8 ± 0.8 [6.1-11.1]</td>
<td>11.6 ± 1.4 [9.9-13.6]</td>
<td>10.0 ± 1.2 [6.7-12.6]</td>
</tr>
<tr>
<td>Cytoplasm area (%)</td>
<td>67.2 ± 3.8 [58.8-77.9]</td>
<td>66.0 ± 2.2 [59.8-70.8]</td>
<td>59.3 ± 3.0 [49.6-65.4]</td>
<td>63.5 ± 3.5 [60.3-69.8]</td>
</tr>
<tr>
<td>Nuclear/Cytoplasm ratio</td>
<td>0.21 ± 0.03 [0.15-0.29]</td>
<td>0.13 ± 0.01 [0.09-0.16]</td>
<td>0.20 ± 0.02 [0.17-0.26]</td>
<td>0.16 ± 0.02 [0.11-0.21]</td>
</tr>
<tr>
<td>Clear</td>
<td>32.9 ± 3.9 [23.9-45.8]</td>
<td>35.6 ± 2.4 [31.0-39.2]</td>
<td>27.4 ± 4.8 [17.8-38.2]</td>
<td>38.0 ± 2.9 [32.8-45.2]</td>
</tr>
<tr>
<td>Compact</td>
<td>34.2 ± 5.5 [21.0-40.9]</td>
<td>30.4 ± 3.1 [23.1-33.7]</td>
<td>31.9 ± 3.7 [26.7-40.5]</td>
<td>25.5 ± 2.5 [18.5-28.8]</td>
</tr>
<tr>
<td>Clear/Cytoplasm</td>
<td>50.3 ± 6.0 [39.0-67.4]</td>
<td>54.3 ± 3.4 [48.2-62.4]</td>
<td>45.1 ± 6.8 [30.2-58.9]</td>
<td>59.8 ± 3.1 [54.4-64.6]</td>
</tr>
<tr>
<td>Compact/Cytoplasm</td>
<td>49.7 ± 6.0 [32.6-61.0]</td>
<td>45.7 ± 3.4 [37.6-51.8]</td>
<td>54.9 ± 6.8 [41.2-69.8]</td>
<td>40.2 ± 3.1 [35.4-45.6]</td>
</tr>
<tr>
<td>CYP11B2 positive area (%)</td>
<td>34.2 ± 5.9 [12.9-52.6]</td>
<td>44.7 ± 4.4 [39.0-55.2]</td>
<td>34.4 ± 6.7 [10.4-53.9]</td>
<td>35.5 ± 3.7 [25.9-47.1]</td>
</tr>
<tr>
<td>CYP11B2 H-score</td>
<td>0.53 ± 0.12 [0.13-0.78]</td>
<td>0.57 ± 0.08 [0.41-0.75]</td>
<td>0.56 ± 0.13 [0.1-0.97]</td>
<td>0.46 ± 0.06 [0.29-0.58]</td>
</tr>
<tr>
<td>CYP17A1 positive area (%)</td>
<td>25.4 ± 6.6 [3.4-42.1]</td>
<td>11.8 ± 4.2 [2.4-18.0]</td>
<td>32.5 ± 6.0 [21.7-45.1]</td>
<td>32.2 ± 3.2 [25.4-37.4]</td>
</tr>
<tr>
<td>CYP17A1 H-score</td>
<td>0.27 ± 0.07 [0.04-0.43]</td>
<td>0.13 ± 0.05 [0.02-0.22]</td>
<td>0.39 ± 0.09 [0.23-0.54]</td>
<td>0.34 ± 0.04 [0.26-0.38]</td>
</tr>
</tbody>
</table>

Table. Clinicopathological characteristics of aldosterone-producing adenoma (APA) cases with ATP1A1, ATP2B3, CACNA1D and KCNJ5 mutation examined in this study. Value: Mean ± SEM [25-75th percentile].