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Abstract

The objective investigation of the dynamic properties of vocal fold vibrations demands the

recording and further quantitative analysis of laryngeal high-speed video (HSV). Quantifica-

tion of the vocal fold vibration patterns requires as a first step the segmentation of the glottal

area within each video frame from which the vibrating edges of the vocal folds are usually

derived. Consequently, the outcome of any further vibration analysis depends on the quality

of this initial segmentation process. In this work we propose for the first time a procedure to

fully automatically segment not only the time-varying glottal area but also the vocal fold tis-

sue directly from laryngeal high-speed video (HSV) using a deep Convolutional Neural Net-

work (CNN) approach. Eighteen different Convolutional Neural Network (CNN) network

configurations were trained and evaluated on totally 13,000 high-speed video (HSV) frames

obtained from 56 healthy and 74 pathologic subjects. The segmentation quality of the best

performing Convolutional Neural Network (CNN) model, which uses Long Short-Term Mem-

ory (LSTM) cells to take also the temporal context into account, was intensely investigated

on 15 test video sequences comprising 100 consecutive images each. As performance

measures the Dice Coefficient (DC) as well as the precisions of four anatomical landmark

positions were used. Over all test data a mean Dice Coefficient (DC) of 0.85 was obtained

for the glottis and 0.91 and 0.90 for the right and left vocal fold (VF) respectively. The grand

average precision of the identified landmarks amounts 2.2 pixels and is in the same range

as comparable manual expert segmentations which can be regarded as Gold Standard.

The method proposed here requires no user interaction and overcomes the limitations of

current semiautomatic or computational expensive approaches. Thus, it allows also for the

analysis of long high-speed video (HSV)-sequences and holds the promise to facilitate the

objective analysis of vocal fold vibrations in clinical routine. The here used dataset including

the ground truth will be provided freely for all scientific groups to allow a quantitative bench-

marking of segmentation approaches in future.
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Introduction

In current post-industrial societies a main part of the working population is reliant upon well-

functioning communication skills. A prerequisite for efficient verbal communication is the

production of a proper voice signal which constitutes the carrier signal of speech. Any

impairment of the voice production process has a direct impact on the perceivability of speech

affecting the communication ability. A cross-sectional survey study carried out by Roy et al. in

2005 showed a lifetime prevalence of a voice disorder of up to 29.9% interfering with verbal

communication [1]. Work-related absences due to voice disorders as well as medical consulta-

tions causing significant socioeconomic costs. Therefore, the early diagnosis and effective ther-

apy of voice disorders is of great importance.

The two opposing vocal folds within the larynx serve as voice generating structures. During

voice production (phonation) they constitute a constriction for the exhaled respiratory airflow

provided by the lung. Due to the interaction between the driving aerodynamic forces and

myoelastic restoring forces of the tissue, oscillations of the vocal folds are provoked. Although

the vocal fold vibration itself is a passive process, its vibration characteristics as e.g. the funda-

mental frequency f0 (pitch) and intensity can be altered by adapting the provided air pressure

and laryngeal muscle activities [2]. Due to the different sizes of the laryngeal structures in

males and females the fundamental frequency f0 of vocal fold vibrations is sensitive to gender.

The mean f0 is around 120Hz for men and around 200Hz for women [3].

Understanding the underlying formation mechanism of voice disorders requires an in-

depth investigation and analysis of vocal fold vibration patterns. In healthy subjects vocal fold

vibrations are characterized by symmetric and highly periodic oscillations [2, 4, 5]. On the

contrary, in the presence of voice disorders disturbances of the symmetric and periodic oscilla-

tion patterns arise induced by morphological asymmetries or inappropriate muscle tensions

[6–8]. In order to quantify the degree of vibration disturbances the vocal fold (VF) oscillation

patterns need to be investigated during phonation using laryngeal imaging techniques.

In clinical practice videostroboscopy is widely used for the examination of vocal fold (VF)

vibrations [9]. Since the sampling rate of videostroboscopic systems is however far below the

fundamental frequency of voice signals, they fail to adequately capture the real vocal fold (VF)

vibration characteristics. Currently, laryngeal high-speed videoendoscopy (HSV) is the only

technique to record the true intracyclic vibratory behavior of vocal folds [10–12]. Today’s

HSV-systems operate at temporal resolutions of up to 20, 000 fps (frames per second) [13],

facilitating a real-time analysis of the VFs vibrations. The high-speed recordings allow to

derive various information about the spatio-temporal vibration characteristics and enable a

profound analysis of periodic as well as highly disturbed, aperiodic vocal fold (VF) vibrations

[10, 13–15]. HSV-systems therefore provide the basis for an objective quantification and diag-

nosis of voice pathologies (dysphonia) [16, 17] and likewise help to develop and improve bio-

mechanical models of voice production [18–22].

Analysis of vocal fold vibrations

In today’s clinical practice, diagnosis of voice disorders is commonly based on a subjective

evaluation of stroboscopic video recordings [23]. Perceptually judging clinically relevant fea-

tures as lateral amplitude and phase asymmetries, irregularities of oscillation cycles and the

degree of vocal fold closure time is however a challenging and time consuming subjective task

[24, 25]. Moreover, due to the subjectiveness of the rating the visual assessment is subject to

inter- and intra-rater variability.

An objective clinical examination of laryngeal pathologies demands for a quantitative anal-

ysis of vocal fold dynamics. To achieve this, the time-varying opening (glottis) between the
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oscillating vocal folds is typically extracted from subsequent images of a high-speed video

sequence, further denoted as glottal area waveform (GAW) [26]. From the GAW(t) time signal

quantitative measures describing the stability of the vibration pattern in respect to its vibration

amplitude and cycle-periodicity as well as information about the duration of vocal fold contact

time can be derived [23, 27–30]. The GAW-analysis provides first valuable information about

glottal vibration characteristics but does not enable lateral comparisons of the vibration pat-

tern of the left and right vocal fold.

The individual vibration patterns of left and right vocal fold (VF) can be derived by extract-

ing one-dimensional (1D) trajectories from the video data for each vocal fold individually [31].

The trajectory approach allows the detection of lateral vibration asymmetries but its applica-

tion is restricted to a single vocal fold position [32, 33]. Further extended approaches achieve

an analysis of the visible two-dimensional (2D) vibration patterns comprising information

about the spatio-temporal dynamics along the entire vocal folds length [12, 34, 35]. Thus, on

the basis of a 2D-analysis even information about the anterior-posterior vibration modes can

be derived [12, 34, 36].

All above described approaches have in common that the initial analysis step requires a pre-

cise segmentation of the glottal area from the high-speed video data. Erroneous or imprecise

segmentations result inevitably into invalid interpretations of the underlying vibration pat-

terns and consequently into incorrect measures. Since high-speed videos comprise thousands

of images, a manual segmentation of the image data is not feasible. Therefore, automated seg-

mentation algorithms are needed allowing an accurate, robust and efficient segmentation of

the glottal area.

Image processing of laryngeal high-speed videos

Up to the present the quantitative analysis of vocal fold dynamics bases for the very most part

on the segmentation of the glottal area from the digital high-speed videos. This is because the

relatively dark glottal area is clearly silhouetted against the surrounding vocal fold tissue,

which facilitates a proper glottal segmentation. In the recent years, various approaches for glot-

tis segmentation have been proposed. Widely used approaches employ thresholding tech-

niques [26, 37–41], which show however partially an insufficient performance, especially in

case of low image quality [23]. Other approaches include techniques based on gray-level deriv-

atives [42], seeded region-growing procedures [6, 43, 44], active contour models [45–47], or

use watershed transform for the segmentation task [48].

A successful integration of a quantitative high-speed analysis system into clinical practice

would preferably allow the identification of the best performing segmentation procedure

based on a thorough literature review. For the following three reasons the systematic compari-

son of segmentation performances of different approaches is, however, problematic:

Firstly, approaches presented in literature are mainly developed on the basis of just a limited

number of individual images (12 − 840 images per study) [44–46, 48] or high-speed video

(HSV) sequences (1-90 HSVs per study) [26, 37, 42–46, 48]. Information about the real num-

ber of analyzed images is even missing in some studies [26, 37, 38, 42, 43]. Due to the limited

or unspecified sample size it is difficult to assess if the used image data really constitute repre-

sentative samples as expected in clinical practice. Thus, the generalization of statements con-

cerning segmentation performances is limited.

Secondly, the performances of the segmentation approaches are frequently just subjectively

assessed [26, 37, 38, 42–46, 48] and quantitative comparisons to a ground truth segmentation

do hardly exist. So far, to best of our knowledge there are only two studies where the segmenta-

tion accuracies were quantitatively evaluated. Within the first study Schenk et al. used salient

Segmentation of glottis and vocal folds using a deep Convolutional LSTM Network

PLOS ONE | https://doi.org/10.1371/journal.pone.0227791 February 10, 2020 3 / 29

https://doi.org/10.1371/journal.pone.0227791


regions and 3D geodesic active contours for glottis segmentation [47]. The Dice Coefficient

(DC) was applied to quantify the segmentation accuracy. For evaluation purposes 25 individ-

ual frames were randomly chosen from a variety of HSVs. Due to the limited number of

evaluated images the generalization of the presented segmentation performance (median

~DC ¼ 0:76) is however quite limited. Within the second study Lohscheller et al. presented a

semi-automatic region-growing approach which was validated on a large-scale clinical dataset

comprising 372 high-speed video recordings [6]. From each video a sequence comprising 500

subsequent frames was processed resulting into 186, 000 segmented images. From these data

630 images were randomly selected for evaluation purposes. The precision of the segmentation

results was quantitatively measured by comparing computed positions of four anatomical

landmarks—namely the anterior and the posterior ending of the glottal area, as well as the

medial glottal positions—to manual segmentations of ten experts, which served as gold stan-

dard. Totally, 25, 200 manually segmented landmark positions were evaluated. It was shown

that the precision of the computed landmarks (1.2 to 3.5 pixels) was at least as good as the vari-

ability of the manual segmentations (3.2 to 3.4 pixels) of the ten experts.

Thirdly, up to the present there is no established freely-available scientific reference high-

speed dataset, which can be used to compare different approaches with each other in an objec-

tive way. The lack of quantitative data aggravates a profound identification of a current gold

standard concerning the computerized segmentation of high-speed videos.

Besides the segmentation of the glottal area likewise the segmentation of the vocal folds tis-

sue itself would be of great clinical interest to identify automatically for instance vocal fold

inflammation. Due to the wide variability in individual shape, size, color and reduced contrast

the automatic segmentation of vocal folds tissue is however much more challenging than the

segmentation of the glottal area. To the best of our knowledge, the segmentation of oscillating

vocal fold tissue from high-speed videos has not been reported in literature yet.

Neural networks

In the recent years, deep learning has been enhancing the performance of multiple computer

vision applications like object detection [49, 50], classification [51–54], and segmentation

problems [55, 56]. Advances became particularly possible thanks to the development of deep

Convolutional Neural Networks (CNNs) [57], which were introduced in 1989 [58]. Popular

Convolutional Neural Network (CNN) architectures used for image classification are the Alex-
Net [51], the ConvNet [59], the GoogLeNet [60], the ResNet [61], and the SegNet [62]. Also in

the field of medical image analysis, advances have been made by applying artificial Neural Net-

works (NNs) [63–66], which learn features directly from medical images. Neural Networks

were for example used for skin cancer classification [54], segmentation of retinal optical coher-

ence tomography scans [56], and the classification of lung patterns for interstitial lung diseases

[67].

In 2015, Ronneberger et al. proposed the U-Net architecture [68], which is nowadays a

widely used network architecture from the encoder-decoder class for segmentation purposes.

By combining high resolution features from the contracting path (encoder) with upsampled

features from the expanding path (decoder), it allows the segmentation of even detailed image

structures on a fine scale. The U-Net has been proven to be appropriate for various semantic

segmentation tasks. Ronneberger et al. initially used it for segmentation of neuronal structures

in electron microscopy stacks as well as for segmentation of HeLa cancer cells in differential

interference contrast microscopy images [68]. Amongst others, it was further used for retinal

vessel segmentation [69], for pancreas segmentation in computer tomography images [70],

and segmentation of radical prostatectomies from histological images [71].
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Although the application of deep CNNs has achieved highly reliable results for various

semantic segmentation tasks on medical images, CNNs have hardly been investigated on their

suitability for the analysis of laryngeal high-speed videos. Up to the present only very few pub-

lications dealing with the segmentation of laryngeal structures using artificial Neural Networks

can be found in literature [72–74]. The few presented approaches have in common that the

images of video sequences are processed independently from each other. Thus, they apply

Convolutional Neural Network (CNN) architectures as U-Net, SegNet, ENet, or ErfNet for

segmentation of 2D images and concatenate the individual segmentation results subsequently.

Here, stroboscopy and video recordings with a frame rate of 25 frames per seconds are used as

data material [75]. Up to the present there is no work dealing with the segmentation of the fast

oscillating vocal folds tissue from high-speed video recordings using CNNs. Likewise, to the

best of our knowledge no approaches have been presented which take advantage of the spatio-

temporal context of a high-speed video.

Suitable network architectures for the propagation of temporal information through a net-

work are Recurrent Neural Networks (RNNs), which contain feed-back connections to propa-

gate information from one cell to another making it particularly suitable for processing time

signals such as video recordings [75]. An improvement over Recurrent Neural Networks

(RNNs) can be achieved by Long Short-Term Memory Networks (LSTMs), which are capable

of learning even long-term dependencies [76]. A variety of publications report the successful

application of LSTMs for segmentation tasks, in which the spatio-temporal information is

propagated through the network to enhance the segmentation quality [77–80]. Besides LSTM

there are Gated Recurrent Units (GRU), which are likewise used to process time varying data

[81].

In this work, we present for the first time a fully automatic glottis and vocal fold tissue seg-

mentation procedure based on an extended version of the U-Net architecture, which provides

single image segmentation. As high-speed videos represent a time signal, we integrate LSTM

and GRU cells respectively at different positions within the contracting and expanding path of

U-Net architecture to propagate temporal information throughout the network. We investigate

and compare extensively the performance of eighteen different network configurations in

combination with different data preprocessing steps in order to identify the best performing

network architecture. Further, we investigate whether segmentation accuracy can be enhanced

by data augmentation. The segmentation accuracy of the best performing network is evaluated

in detail. It will be shown that once the Convolutional Long Short-Term Memory Network

(CLSTM) is trained, it holds the promise to overcome the limitations of current glottis seg-

mentation approaches which require manual user intervention. Furthermore, it will be

demonstrated for the first time that even oscillating vocal fold tissue can be automatically seg-

mented from high-speed videos. The here used dataset, including the ground truth and seg-

mentation results, will be provided freely for all scientific groups to allow quantitative

comparison of different types of segmentation approaches. Further information can be found

at www.hochschule-trier.de/go/quantitative-laryngoscopy.

Materials and methods

Clinical data

For the development and training of the system, we use clinical data obtained from the Depart-
ment of Otorhinolaryngology and Head and Neck Surgery at the University of Munich (Munich,
Germany) and the Department of Otorhinolaryngology at the Saarland University Hospital
(Homburg/Saar, Germany). Ethical approval was obtained from the local ethics committees

(Ethikkommission bei der Medizinischen Fakultät der LMUMünchen and Ethik-Kommission
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bei der Ärztekammer des Saarlandes) and the participants gave written consent prior to partici-

pation. All video recordings were captured using the rigid endoscopy system HRES ENDO-
CAM 5562 from Richard Wolf GmbH (Knittlingen, Germany) that captures HSVs at a spatial

resolution of 256 × 256 px with a frame rate of 4, 000 fps. To evaluate whether the presence of

pathologies, i.e. a polyp, influences the segmentation accuracy, videos from 130 subjects were

used comprising NH = 56 recordings from healthy (#m: 21, #f: 35) and NP = 74 recordings

from pathologic subjects (#m: 39, #f: 35). The pathologic subjects were further subdivided into

two groups. The group organic (NO = 37) comprises recordings from 22 polyps (#m: 12, #f: 10)

and 15 carcinomas (#m: 10, #f: 5). Dysphonia without neoplasm were summarized under the

term functional (NF = 37). This group contains 17 subjects diagnosed with muscle tension dys-

phonia (#m: 9, #f: 8) and 20 subjects diagnosed with paresis (#m: 8, #f: 12). All subjects were

examined during sustained phonation of the vowel /ae/ at comfortable pitch and loudness for

at least 1 s. From each of these HSVs, a sequence of 100 frames was extracted for further analy-

sis. Fig 1(a) exemplarily shows five frames extracted from a single oscillation cycle of a healthy

subject. The vocal folds as well as the intermediate time-varying opening (glottis) are subject of

the segmentation approach presented here.

Ground truth segmentations

The supervised training and the evaluation of the different CNN architectures require corre-

sponding reference segmentations serving as Ground Truth (GT). For this purpose the fol-

lowing four classes were defined: glottis, left vocal fold, right vocal fold, and background. For

all 13, 000 images comprised within this study, reference segmentations were obtained by the

following two-stage procedure: At first, the glottal area was segmented using the supervised

region-growing procedure presented by Lohscheller et al. [6]. The approach was chosen since

it is the only reported procedure whose segmentation precision has been quantitatively inves-

tigated within an extensive study [6]. Furthermore, it allows the computation of four relevant

landmark positions (anterior and the posterior ending of the glottal area, left/right medial

glottal positions) which are later used for evaluation purposes. All glottal segmentation

results were visually inspected and manually corrected if required. In the second step, the

ground truth segmentations of the vocal fold tissue was generated. Since up to the present

there are no computerized procedures, the vocal fold tissue segmentation was performed

completely manually. All other remaining pixels were considered as background. As a result

of this two-stage procedure each pixel was assigned to one of the four classes constituting the

Ground Truth (GT). Fig 1(b) exemplarily shows a reference segmentation for the last frame

of the presented sequence.

Fig 1. Laryngeal high-speed video data. (a) Frames from a single oscillation cycle of a healthy female subject (26 yrs, F0 = 215 Hz). (b) Reference segmentation for the

last frame (# 29).

https://doi.org/10.1371/journal.pone.0227791.g001
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Datasets

In total, 130 HSVs comprising 13,000 individual images were used for training, validating and

testing. Using a stratified sampling, 100 recordings were randomly selected serving as training

data, while 15 videos were selected to build the validation and test dataset respectively. Each

dataset contains recordings from healthy subjects as well as pathologic subjects with functional

impairments and organic lesions. The training data include 50 healthy and 50 pathologic sub-

jects, while the functional and organic subgroups were balanced. Validation and test datasets

include each 15 recordings in total with 3 recordings for each group. The quantification of the

segmentation accuracy is thus performed on the basis of 1,500 test images.

Network architectures

For the here aspired glottal area and VF tissue segmentation the U-Net, proposed by Ronne-

berger et al., serves as basis architecture [68]. As shown in Fig 2 the U-Net represents an

encoder-decoder approach and basically consists of a contracting path for downsampling and

an expanding path for upsampling. By concatenating the features from both paths, even fine-

scale segmentation maps can be achieved. In our work we refine the original architecture by

using exponential linear units (eLU) instead of rectified linear units (ReLU) for activation as

suggested by Clevert et al. [82]. Furthermore, batch normalization is introduced as suggested

by Ioffe and Szegedy [83] as well as padded-convolutions to allow for identical input and out-

put size of the images. In this work, the refined architecture will further be referred to as

U-Net. The U-Net can be parameterized by the number of downsampling and upsampling lev-

els which directly influences the segmentation performance. Depending on the number of

applied levels L the particular architecture is denoted as U-NetL.

Vocal fold vibrations as well as the glottal opening and closing process constitute continu-

ous motion processes. Due to the high sampling rate of the camera system, there is little change

of the shape and location of these structures in-between subsequent images. Therefore,

Fig 2. Schematic diagram of the applied Convolutional Neural Network architectures. Individual grayscale, RGB or HSV frames of the high-speed video sequence to

be analyzed serve as input. Feature-maps’ spatial dimensions are provided inside the boxes, while the number of extracted feature maps is shown above. During the

contracting path the pixel information is downsampled. Extracted features are further propagated to higher levels in the expansive path and concatenated, which is

represented by arrows. B-CLSTM cells propagate the temporal information through the network. A 256 × 256 px sized segmentation result is returned, where the value

‘1’ represents the class glottis, while the right and the left vocal fold are indicated by ‘2’ and ‘3’ respectively. The best performing network operates on sequences of ten

native RGB video frames as input and has a depth of five levels with C-BLSTM cells in contracting and expanding path.

https://doi.org/10.1371/journal.pone.0227791.g002
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knowledge about their positioning’s obtained from an image at a certain time constitutes valu-

able information which can be further used for a proper segmentation of temporally adjacent

images. In this work the incorporation of temporal information is achieved by integrating

additional convolutional Long Short-Term Memory Network (LSTM) cells [76, 84] into the

U-Net architecture. Since the segmentation is performed on video sequences loaded from

hard-disk the application of even bi-directional LSTM cells (C-BLSTM) is feasible, which pro-

cess information in both temporal directions [78]. In this work C-BLSTM layers are imple-

mented by stacking two C-LSTM layers (3 × 3 convolutions) on-top of each other. The first

layer processes the video sequence in forward the other in backward direction. The concatena-

tion of the feature maps of both layers constitute the output of the resulting C-BLSTM layer.

According to Gao et al. [79] the C-BLSTM layers can be integrated at different positions

within the U-Net architecture. To identify the best performing integration, C-BLSTM layers

are optionally positioned in the contracting (C), expanding (E) or in both paths (CE) simulta-

neously (see Fig 2). Depending on the positioning of the LSTM-layers the resulting architec-

tures are denoted as U� LSTMC;E;CE
L . In the above described architectures the weights of the

U-Net and the LSTM-layers are trained simultaneously which makes the training process com-

putationally more demanding.

Besides integrating C-BLSTM layers directly within a U-Net they can also be added as an

individual LSTM-network on top of an already trained U-Net. Thus, both networks can be

trained independently from each other which reduces the training workload. In our work the

input of the LSTM-network consists of the 64 feature maps of the first level. For this purpose

the U-Net gets truncated at the particular position as indicated in Fig 2. The architecture with

an LSTM add-on (AO) strategy is further referred to as U� LSTMAO
L .

Frequently GRU cells are used to process time-varying data. To investigate whether GRU

cells can further enhance segmentation accuracy over C-BLSTM layer, the best performing

U-LSTM architecture is compared to an equivalent configuration equipped with GRU cells

and denoted as U-GRU.

Identifying the best performing network architecture

In order to identify the most suitable network for high-speed video segmentation, the perfor-

mances of the different architectures were compared to each other. Particular focus was on the

performance of the U-LSTM networks which integrate temporal information into the segmen-

tation process. Since the correct segmentation of the glottis is the primary goal for later clinical

voice analysis, the Sørensen–Dice coefficient (DC) computed for the class glottis served as met-

ric to assess the segmentation performances. Besides the network architecture likewise the

image representation (color space) as well as preprocessing of the input data influence the seg-

mentation performance. In order to determine the optimal combination of network architec-

ture, color space representation and data preprocessing the following hierarchical selection

strategy was applied:

(1) Within the U-NetL, that constitutes the basis for all investigated architectures, the num-

ber of levels L represents a free design parameter which has a direct impact on the segmenta-

tion performance. The number of U-Net levels can be freely defined within a certain interval

that depends on the spatial resolution of the image data. Here, the performances of five differ-

ent architectures with L = [3, 4,.., 7] levels were compared to each other. The RGB color space

was used to represent the image input data. The DC—computed for the class glottis of the test

dataset—served as metric to assess the segmentation performance. Selection of the best per-

forming U-NetL� architecture (indicated by the asterisk) was made on the basis of the highest

mean Dice Coefficient. ANOVA (α = 0.05) in combination with bonferroni corrected pairwise
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post-hoc t-tests were performed for identification of significant differences between the seg-

mentation performances of the different networks.

(2) Based on the best performing U-NetL� architecture the influence of the following three

image representations (IR) on the segmentation performance was investigated: original RGB

color space (IR = RGB), HSV color space (IR = HSV), and grayscale intensity image (IR = I).
Again, the selection of the best performing configuration, denoted as U � NetIR�L� , was made in

respect to the mean value of the Dice Coefficient. Likewise, ANOVA (α = 0.05) with pairwise

post-hoc t-tests (bonferroni correction) were applied for statistical analysis.

(3) Based on U � NetIR�L� the impact of normalization (Norm) of the input image data was

investigated. For this purpose, the z-transform was applied before training to standardize the

image data of each training batch (Norm = zbatch). The results were compared to the segmen-

tation performance obtained without pre-processing (Norm = none). The best performing con-

figuration (highest mean value of the Dice Coefficient) is denoted as U � NetIR
� ;Norm�

L� .

Statistical analysis was made using a t-test (α = 0.05).

(4) Finally, the selected best performing U-Net configuration was used to incorporate tem-

poral information by integrating C-BLSTM cells at different positions (Pos). Here, four differ-

ent strategies were investigated: Placing the C-BLSTM layers in the contracting (Pos = C), the

expanding (Pos = E), in both paths simultaneously (Pos = CE), or adding the C-BLSTM layers

on top of the pre-trained U-Net (Pos = AO). The configuration with the highest mean DC

value was identified and is further denoted as U – LSTMPos�. A final ANOVA (α = 0.05) with

pairwise post-hoc t-tests (bonferroni correction) was applied for statistical analysis.

Additionally, the identified U-LSTMPos� configuration was compared to an equivalent con-

figuration equipped with GRU cells, which is denoted as U-GRUPos�. Further, data augmenta-

tion was applied on the overall best performing Convolutional Neural Network (CNN)

configuration. For this purpose the training dataset was doubled to 20,000 images by randomly

rotating the individual sequences and corresponding masks at rotation angles 2 [−20˚, 20˚]\0˚.

That followed cropping and rescaling was applied, such that no padding was need and the

resulting frames preserve the initial size of 256 px × 256 px.

Training

In total eighteen CNNs were trained on the input images of the training dataset and corre-

sponding Ground Truth (GT) segmentations. The U-Net architectures without C-BLSTM

cells were trained with a batch-size of 10 images and 20 epochs having 1,000 iterations each.

As loss function cross-entropy with pixel-wise softmax-layer was used. The loss is reduced by

the Adam optimizer [85] with an initial learning rate of 10−4, and the hyper-parameters β1 =

0.9, β2 = 0.999, and �: 10−8. A Xavier Initialization of the Convolutional Neural Network

(CNN) weights was done using Gaussian distribution with a standard deviation of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=Navg

q
to

guarantee that all layers have roughly same variance, with Navg indicating the average sum of

input Nin and output connections Nout [86]. Overfitting was avoided by the application of

dropout layers with probability: 0.6.

The Convolutional Neural Network (CNN) architectures containing C-BLSTM or GRU

cells were trained on sequences of 10 consecutive frames with a batch size of 1 video sequence

for 40 epochs.

Testing

To receive the segmentation result for evaluating the segmentation performance, the final fea-

ture maps of the different architectures were assigned to the four classes by applying
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subsequently four 1 × 1 convolutions in combination with a pixel-wise softmax layer to calcu-

late the class probabilities. The output channel with maximum probability defines the corre-

sponding class.

For evaluation purposes the trained U-Net architectures that process images independently

from each other, this means without integration of temporal information, were applied to all

images of the test dataset. In contrast, for the LSTM and GRU architectures batches of 10 sub-

sequent frames were presented to the Neural Network producing 10 output segmentations

each, which were further considered to assess the segmentation performance. This approach

facilitates smooth and continuous segmentation results over time and can only be applied net-

works comprising temporal information.

Training as well as testing of the Convolutional Neural Network (CNN) was done on the

High Performance Computer ‘Elwetritsch’ (University of Kaiserslautern, Germany) either on

a Host with Intel XEON SP 6126 and up to two 16 GB NVIDIA Tesla V100 GPUs or on the

NVIDIA DGX-2 system. NVIDIA CUDA version 10.0-v7, TensorFlow version 1.13.1 [87] and

Python 3.6.8 was used.

Quantifying the segmentation quality of the best performing network

The following analysis is conducted on the best performing network configuration, to quantify

in detail the overall quality and precision of the obtained segmentation results. In the context

of quantitative quality assessment of high-speed video segmentations the following two differ-

ent aspects are of particular interest.

(1) Accuracy of glottal area segmentation over time. Firstly, the overall time course of

the glottal area needs to be segmented correctly since faulty segmentations of individual

images would make a further analysis of the glottal time signal impossible. To measure the

overall congruency between the segmented glottal area and the ground truth the Dice Coeffi-

cient DC(n) [88] was computed individually for all frames n of the videos contained in the test

dataset according to

DCðnÞ ¼
2jGTðnÞ \ NNðnÞj þ �
jGTðnÞj þ jNNðnÞj þ �

; ð1Þ

where GT(n) denotes the Ground Truth and NN(n) the Neural Network segmentation. The

value � = 2.2204 � 10−16 is added to avoid division by zero in case that both segmentations GT
(n) and NN(n) contain no glottis pixels which may happen during complete glottal closure.

The Dice Coefficient is in the range DC(n) 2 [0, 1] with higher DC values indicating superior

segmentation congruency. An exemplary video frame from the test dataset with corresponding

GT and NN segmentation and calculated Dice Coefficient (DC) is shown in Fig 3(a). Segmen-

tation congruency of the considered sequence was investigated using the mean as well as the

standard deviation of DC(n) computed for all images. According to that, likewise the Dice

Coefficients for the left and right vocal folds were computed to asses the respective segmenta-

tion quality.

(2) Precision of anatomical landmark positions. The analysis of the time varying deflec-

tions of vocal folds demands a precise segmentation of the vocal fold edges. Since the Dice

Coefficient represents just a global measure it does not allow conclusions about the segmenta-

tion precision at specific positions. In order to quantify the segmentation accuracy at relevant

vocal fold positions, the spatial deviation between Ground Truth (GT) and NN segmentation

was computed at four anatomical landmarks Pi(n) with i 2 [1, 4] located at the VFs edges

according to the study of Lohscheller et al. [6]. The considered landmarks are defined in Fig

3(b), which are namely the dorsal (P1(n)) and the ventral glottal ending (P2(n)), as well as the
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right (P3(n)) and left medial glottis positions (P4(n)). The location of the medial line is defined

on the Ground Truth (GT) segmentation and transferred to the NN segmentation to allow

direct comparisons. The spatial deviation Di(n) between both segmentations is measures by

the L2−Norm as

DiðnÞ ¼ kPGT
i ðnÞ � PNN

i ðnÞk2: ð2Þ

Results

Eighteen different network configurations were investigated to identify the best performing

architecture. As metric the Dice Coefficient (DC) computed for the glottal area was used since

the proper segmentation of the glottis is the most relevant outcome for following voice analy-

sis. Subsequently, segmentation accuracy of the best performing network is investigated in

detail.

Identification of the best performing network architecture

The best performing network configurations was identified on the basis of an ordered selection

strategy. For this purpose, the impact of the number of U-Net levels, color space, normaliza-

tion and different positions of C-BLSTM layers were consecutively evaluated. For each config-

uration the epoch was identified yielding the best results in respect to the validation data. The

selection of the best performing network was subsequently done on the performance of the

test dataset using the network weights of the respective epoch. The so selected configurations

were used for the next evaluation step. Differences between the configurations in respect to the

test dataset were investigated using statistical analysis (ANOVA, t-test). In the following the

results of the stepwise selection strategy are presented which are further summarized in Fig 4.

(a) The five level U-NetL = 5 network showed the best performance in respect to the number

of levels with a mean Dice Coefficient of DC ¼ 0:82� 0:114 (± indicates the standard devia-

tion). Statistical analysis revealed significant differences to the L = 3, 6, 7 level architectures.

The four level network showed a comparable performance of DC ¼ 0:811� 0:15 but an

increased standard deviation of approximately 33%. For a higher number of levels the segmen-

tation quality dropped clearly. Therefore, the U-Net5 network was identified as best perform-

ing architecture and further used for the subsequent evaluation step.

Fig 3. Quantifying the segmentation accuracy by comparing ground truth and Neural Network segmentations. (a) Overall segmentation accuracy of the glottis

was measured using the Dice Coefficient. (b) Spatial segmentation precision was quantified by computing the deviation Di(n) at the four landmark positions Pi(n)

using the L2-Norm.

https://doi.org/10.1371/journal.pone.0227791.g003
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(b) In respect to different color spaces, the segmentations based on native RGB data showed

the best performance (DC ¼ 0:82� 0:114). ANOVA with post hoc t-tests revealed significant

differences to the segmentation performances when using grayscale intensity images

(DC ¼ 0:78� 0:20) or the HSV color space (DC ¼ 0:75� 0:25). To investigate whether one

channel of the RGB color space is of outstanding importance for this particular segmentation

task, the NN was additionally trained on intensity values of the individual color channels.

While the R- and G-channel showed segmentation performance comparable to intensity

images (DC ¼ 0:78� 0:20 and DC ¼ 0:79� 0:20 respectively), performance for the B-chan-

nel was reduced (DC ¼ 0:70� 0:25). The use of native RGB data likewise delivers the most

robust segmentation results reflected by the lowest value of the standard deviation of the Dice

Coefficient.

(c) As best performing configuration the U � NetRGB
5

was used to investigate potential

improvements by applying z-normalization as data preprocessing step. Statistical analysis (t-

test) revealed, that normalization has no positive impact on the segmentation performance. In

Fig 4. Identification of the best performing network architecture based on a hierarchical selection strategy. Impact of (a) number of U-Net levels, (b) color space

representation, (c) normalization, and (d) positioning of C-BLSTM layers and GRU cells. Results show the distribution of the Dice Coefficients obtained from 1,500 test

images. Mean DC indicated by blue ‘+’. The best performing configuration is highlighted in gray.

https://doi.org/10.1371/journal.pone.0227791.g004
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our experiments with a mean of DC ¼ 0:74� 0:26 batch standardization even worsen the seg-

mentation accuracy. Thus, the segmentation performance of the U � NetRGB;none
5

served as ref-

erence for the next evaluation step.

(d) Finally, the impact of incorporating temporal information into the network was investi-

gated. For this purpose C-BLSTM layers were added at four different positions to the

U � NetRGB;none
5

network. Statistical analysis revealed, that placing C-BLSTM layers either into

the expanding path (DC ¼ 0:84� 0:123) or simultaneously into the contracting and expand-

ing paths DC ¼ 0:85� 0:119 lead to the best segmentation results.

As GRU cells are likewise used to process time varying data, additionally a U-Net configu-

ration equipped with GRU cells in contracting as well as expanding path was evaluated. How-

ever, this U � GRUCE
5

did not outperform segmentation accuracy achieved by the best

U-LSTM (DC ¼ 0:78� 0:16). Further, data augmentation was applied to the best performing

configuration. However, training the U � LSTMCE
5

on the expanded dataset comprising 20,000

images in total has not enhanced segmentation performance (DC ¼ 0:83� 0:14).

In order to get better understanding of the benefit of the applied LSTM-layers, Fig 5 exem-

plarily compares the segmentation results of the best performing U-Net (c) with the best per-

forming U-LSTM (d). Likewise the original image data (a) and the ground truth (b) are

presented. For both networks the mean Dice Coefficients including the standard deviations

are given, which were computed for each class independently.

Within the first segmented frame of the U-Net, segmentation artefacts are visible marked

by the white arrow. Contrarily, in the U-LSTM segmentation results the artifacts do not occur.

Here, due to the integration of temporal information into the architecture the network was

trained in such a sense, that intermittently occurring artifacts appearing far away from the

glottis cannot belong to the classes left and right vocal fold which suppresses such artifacts.

In the segmentations of the U-Net it can be further seen, that the anterior parts of the vocal

folds (white circles) deform quite heavily during the sequence. This results because the images

are processed independently by the U-Net. Contrarily, the deformations of the vocal fold tissue

segmented by the U-LSTM are much smoother over time. Here, the network learned that

vocal folds do not change their outer shape that rapidly during short time intervals. The better

temporal consistency of the segmentation results obtained by the U-LSTM is likewise reflected

by the high values of the Dice Coefficient, which outperform the U-Net architecture.

Since the U � LSTMCE
5

shows the highest mean Dice Coefficient, and due to its superior

performance in respect to producing temporal consistent segmentations, the architecture was

selected as best performing network configuration.

Segmentation quality of the best performing network

In the following the results of an in-depth analysis of the segmentation performance achieved

by the U � LSTMCE
5

architecture is presented. In this context, the segmentation quality con-

cerning the overall time course of the glottal area and the precision of landmark segmentations

will be shown in detail.

(1) Accuracy of glottal area segmentation over time. The U � LSTMCE
5

was applied to

segment all sequences of the test dataset comprising 100 frames each. For one healthy and one

pathologic subject (carcinoma) the obtained results are exemplarily presented in Fig 6. For

both cases four images were exemplarily selected out of a single oscillation cycle in which the

segmentation results are shown as overlay. Furthermore, for each image of the sequence the

size of the glottal area was computed (number of pixels of the class glottis) which is displayed

as blue curve in the graph below. In literature this curve is referred to as glottal area waveform
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(GAW). To assess the quality of the results likewise the Ground Truth (GT) is displayed serv-

ing as reference. Finally, for each class the Dice Coefficients between NN and GT segmenta-

tions are computed which are plotted for the entire sequence in the lower graph.

In both cases the time course of the GAW obtained by the NN agrees very well with the

Ground Truth. No serious erroneous segmentations occurred within these sequences. For the

healthy subject the NN tends to slightly overestimate the total size of the glottal area even

Fig 5. Comparison of segmentation results of individual images within a single subject. (a) Images of test dataset, (b) Ground Truth, (c) U-Net

segmentation, (d) U-LSTM segmentation. The Dice Coefficients given for each class represent the mean and standard deviation of the entire sequence.

https://doi.org/10.1371/journal.pone.0227791.g005
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though these differences are barely visible in the individual frames (Fig 6). For the carcinoma

case, the GAW signal is determined with a remarkably high precision. Just very slight differ-

ences to the GT segmentation can be perceived. For instance the edge of the affected right

vocal fold (VF) is slightly smoother compared to Ground Truth (GT) segmentation.

Fig 6. Accuracy of glottal area segmentation over time. (a) Healthy subject. (b) Pathologic subject (carcinoma).

From top down: HSV frames extracted from a single oscillation cycle. Upper row: GT segmentations, Lower row: NN

segmentations. The upper graph shows the glottal area waveforms (green: GT, blue: NN) while the lower one

represents the Dice Coefficients which are computed for each class individually (red/blue: right/left vocal fold, black:

glottis).

https://doi.org/10.1371/journal.pone.0227791.g006
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For the pathologic case the Dice Coefficient (DC) for the glottal area is almost constant

throughout the entire sequence DC ¼ 0:85 � 0:02. For the healthy subject the mean DC
is slightly reduced while the standard deviation is more than three times increased

(DC ¼ 0:83 � 0:07). The relatively pronounced changes of the Dice Coefficient over time

are caused in the healthy subject by the almost complete glottal closures during the closing

phases, which do not occur in the pathological case. If the glottal area of the Ground Truth

comprises just a few pixels even marginal deviations of the NN segmentation lead to signifi-

cantly reduced Dice Coefficients.

The Dice Coefficients computed for the three classes for the entire test dataset are

presented as boxplots in Fig 7 (left). For all 1,5000 images the average DC amounts for the

glottis class DC ¼ 0:85� 0:12. For the classes right VF (DC ¼ 0:90� 0:05) and left VF
(DC ¼ 0:91� 0:03) the segmentation accuracy was even higher. To investigate whether the

presence of pathologies influence the segmentation accuracy, the Dice Coefficients are subdi-

vided into the clinical groups healthy, functional, and organic (Fig 7, right). The mean DCs of

all groups exceed the value of 0.8 except for glottis class of the healthy subjects. As shown in

Fig 6 healthy voices are characterized by a distinct glottal closure. Therefore, in a variety of

Fig 7. Segmentation accuracy measured by the dice coefficient for the test dataset. Dice Coefficients are individually displayed as

boxplots for the classes glottis, left VF, and right VF. Left: Entire dataset. Right: Clinical groups healthy, functional, and organic. The mean

values and standard deviations are given below.

https://doi.org/10.1371/journal.pone.0227791.g007
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images of the healthy group the glottal area becomes small. For the healthy group the mean

size of the glottal area amounts only GAW ¼ ð218:0 � 144:5Þ px while it is increased

for the functional and for the organic groups. For these groups the glottal area amounts

GAW ¼ ð454:4 � 388:4Þ px and GAW ¼ ð423:64 � 311:0Þ px respectively. Since the

Dice Coefficient is systematically influenced by the size of the glottis, a reduced Dice Coeffi-

cient (DC) and does not necessarily indicate a lower segmentation accuracy.

(2) Precision of anatomical landmark positions. To investigate the spatial segmentation

accuracy of the best performing network, its precision was measured at the four landmarks P1-

P4 defined in Fig 3. To get a first impression of the accuracy of landmark detection, segmenta-

tion results obtained from three different clinical cases (paresis, dysphonia, carcinoma) are

exemplarily presented in Fig 8. The positions of the landmarks P1-P4 are marked by ‘+’, while

Di indicates the deviations between Ground Truth (GT) and Neural Network (NN). To

emphasize the differences between GT and NN segmentations more clearly a color-coded seg-

mentation overlay is presented in the bottom row. The meaning of the color coding scheme is

given in the caption. For all cases the spatial deviations of the landmarks P1, P3 and P4 between

the Ground Truth (GT) and NN segmentations are below 3 pixels. Due to a closed state at the

middle of the vocal folds, the medial landmarks P3 and P4 are not defined for the functional

dysphonia case. The unsegmented glottal part is further responsible for the relatively high

deviation of D2 = 39.20 px of the ventral landmark.

The precisions Di of the landmark positions Pi computed from the Neural Net segmenta-

tions for all 1,500 test images are given as boxplots in Fig 9. The corresponding mean

values including the standard deviations are listed in the embedded table in the left column.

For the two medial landmarks P3,4, located at the vocal edges, very high mean segmentation

precisions of D3 ¼ ð0:59 � 0:66Þ px and D4 ¼ ð0:92 � 1:00Þ px were achieve. For

the posterior and anterior landmarks mean precisions of D1 ¼ ð1:54 � 1:44Þ px and

D2 ¼ ð5:76 � 9:70Þ px were obtained. Except for the landmark P2 the deviations between

the segmentation results and the ground truth are in the range of one pixel.

Discussion

Quantification of the VFs vibrational behavior is essential for the investigation and diagnosis

of voice disorders. Up to the present the objective analysis of vocal fold dynamics bases, almost

without exception, on the segmentation of the glottal area from laryngeal high-speed videos

[12, 34, 35]. Techniques that are presently used thereto share the drawbacks of being computa-

tionally expensive or need frequently user-interaction [24, 25] which limits their application in

e.g. large-scale studies. In this work we present for the first time a fully automatic segmentation

not only of the glottal area but also of the vocal fold tissue itself. For the identification of the

most suitable network architecture the performances of eighteen different Convolutional Neu-

ral Network configurations were investigated comparatively.

Identification of the best performing network architecture

A refined version of the U-Net proposed by Ronneberger et al. [68] was used as basis architec-

ture for high-speed videos segmentation. The following ordered selection strategy was used to

identify the best performing network configuration. Initially, the best performing U-Net con-

figuration concerning the number of levels, color space and image normalization was identi-

fied. Finally, the model was equipped with additional LSTM cells to investigate the benefit of

integrating temporal information. In the following the respective results of the stepwise model

selection will be discussed in detail.
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(a) Statistical analysis revealed that the segmentation performance, measured by the Dice

Coefficient (DC) of the glottis, significantly changes in respect to the number of U-Net levels.

Up to five U-Net levels the segmentation performance increases steadily. Further increase

beyond that, however, leads to a drop of the segmentation performance, cf. Fig 4(a). A reason

for this might be the exceptional high number of additional feature maps generated for the

higher levels, since the number of feature maps is exponentially related to the number of levels

Fig 8. Comparison of landmark positions in three subjects (paresis, dysphonia, carcinoma). The landmarks P1-P4 are marked with ‘+’. (a) Ground Truth

(GT) segmentation. (b) Best performing Neural Network (NN) segmentation. Within the functional dysphonia case the landmarks P3 and P4 could not be

identified due to an insufficient segmentation. (c) Color-coded segmentation overlay. Yellow: True Positive (TP), green: False Negative (FN), red: False

Positive (FP), black: True Negative (TN). Measured deviations D1-D4 are given in pixels. The high deviation for P2 = 39.2 px results from the not properly

segmented ventral part of the glottis.

https://doi.org/10.1371/journal.pone.0227791.g008
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within the U-Net architecture. Thus, for a seven level network 64 feature maps of the first level

(high spatial resolution) face 4096 features maps of the final level (low spatial resolution), the

latter representing, however, just macroscopic image properties. Therefore, the ratio of the

number of feature maps representing high and low spatial image characteristics, becomes

increasingly unfavorable regarding fine image details, i.e. small glottal areas and thus worsens

the segmentation performance. For high-speed video frames with a resolution of 256 × 256

pixels a five level U-Net turned out to be the best performing model.

(b) The segmentation performance of the U-Net is further sensitive to the applied color

space. Statistical analysis showed significant changes of the Dice Coefficient between RGB,

HSV and grayscale representations of the input images. Here, the U-Net configuration trained

on RGB images showed the best performance, cf. Fig 4(b). This can be explained by consider-

ing the color of the anatomical structures. The intensity of the image is dominated by the red

channel, showing different grades of saturation and brightness. As structure of interest the

glottis appears much darker while the vocal fold (VF) tissue is lighter-colored exhibiting also a

slightly different hues. Subjective evaluation of the separate channel intensity images revealed

that this high contrast between glottis and surrounding structures is especially distinct in R-

and G-channel and therefore might have enhanced NN performance over the NN trained on

B-channel images. The NN trained on G-channel images showed a slightly higher mean and

smaller variation of the Dice Coefficient (DC) compared to R-channel. Presumably this effect

results from the Bayer pattern of the camera sensor, where the green channel is mapped by a

higher spatial resolution. However, no improvement of segmentation quality based on a single

RGB channel over full RGB images was found. In comparison to a pure intensity based gray-

scale representation, the coloring provides further valuable additional information which

Fig 9. Accuracy of segmented landmarks P1-P4 computed for all test images measured by D1-D4. The boxplots represent the

results of this study using the Neural Network (NN) approach. Mean values are marked with ‘+’ and are further listed in the table

including the standard deviation. For comparison purposes the supplementary error bars show the variability of manual landmark

segmentations performed by ten experts. The comparative data are taken from a study conducted by Lohscheller et al. [6]. Again,

means and standard deviations are listed in the table. All values are given in pixels.

https://doi.org/10.1371/journal.pone.0227791.g009
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supports the proper distinction between glottis and vocal fold tissue. For the HSV color space,

hue is encoded within an individual channel. Here, red as dominant color of soft tissue is rep-

resented by hue values around 0 and 2π respectively. Thus, slight variations of the coloring of

red tissue lead to discontinuous measurements concerning the corresponding hue values

which adversely affects the training process.

Our findings are in accordance with other studies which have shown that the used color

space has an influence on the segmentation accuracy of a Convolutional Neural Network

(CNN) [89, 90]. Cheng et al. provide an comprehensive overview on the use of different color

spaces for various segmentation approaches, discussing also the drawbacks and advantages

[91]. They conclude that there is no color space fitting best for all segmentation tasks and a

convenient color space has therefore to be chosen for each segmentation task individually.

(c) Subsequent investigation of the potential impact of a z-normalization as data prepro-

cessing step was done based on the U � NetRGB
5

. Other studies demonstrated the enhancement

of NN performances by applying batch-normalization on various applications [61, 83, 92, 93].

They discuss that batch-normalization demands a sufficiently large batch-size such that the

batch-statistics can be estimated adequately. In our experiments the implemented models were

designed is such a way that even the U-Net with a maximum number of seven levels could be

further equipped with additional LSTM layers at various positions. Due to the considerable

size of the resulting models and computational limitations, our experiments were restricted to

a batch-size of 10 images. In our experiments a positive affect of batch-normalization could

not be found (cf. Fig 4c) which might be a result of the limited batch-size. To enhance the per-

formance of the here presented NN based segmentation, further investigations might be done

using other normalization-techniques, i.e. Instance Normalization [94], Layer Normalization

[95], or Group Normalization [92].

(d) Finally, it was investigated if the segmentation of high-speed videos can be further

improved by integrating B-CLSTM cells at different position into the NN to incorporate tem-

poral information during the segmentation process. Statistical analysis revealed, that two of

the four U-LSTM models indeed showed a significantly improved segmentation accuracy, cf.

Fig 4(d). The best segmentation accuracy was obtained by the U � LSTMCE
5

network. Here,

not only the mean performance but likewise the segmentation stability could be improved

which is reflected by the considerably reduced interquartile range of the Dice Coefficient (see

boxplot). Intermittently appearing artifacts far away from the glottis were suppressed, leading

to the presumption that the NN has learned mandatory spatial proximity of vocal folds and

glottis. In this study segmentation performance could neither be improved by the use of GRU

cells nor by data augmentation.

A further subjective rating of the segmentation results showed that the segmentation results

became temporally more consistent. The LSTM based networks learned that besides a spatial

there is also a temporal continuity of the segmented structures within a video sequence. Due to

the use of bi-directional CLSTM cells the two segmented images located in the middle of the

sequence receive information concerning the spatial localization of the glottis and of the vocal

fold tissue from both temporal directions, which supports the segmentation process. Fig 10

demonstrates the benefit of incorporating temporal information using B-CLSTM cells. Within

a video of the test dataset an (black) empty image is artificially introduced. The outcome of the

segmentation using the U � LSTMCE
5

network is shown in the lower row. Even for the empty

image the Neural Network produced a temporally consistent segmentation outcome which is

derived from the information propagated forward and backward from the remaining images

of the sequence. The segmentation of the center image can be regarded as a bi-directional tem-

poral interpolation which generates consistent results.
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The architecture with LSTM cells placed just in the contracting path showed inferior seg-

mentation. A reason for this might be that the propagated temporal information got lost due

to max-pooling during downsampling in the contracting path of the U� LSTMC
5
. Likewise the

add-on U� LSTMAO
5

results do not reach the performance of the U-Net5. This might be

because just the feature maps of the first level were applied to the LSTM-network and the

information concerning the higher levels were not further considered.

Accuracy of glottal area segmentation over time

Segmentation results were quantitatively evaluated according spatial and temporal segmenta-

tion congruency. High-quality segmentations were achieved throughout the entire sequences

which is represented by a high conformity measured by the Dice Coefficient between the tem-

poral structure of the segmented glottal area respectively the VFs and the Ground Truth (GT)

segmentations, where the Convolutional Neural Network (CNN) tended to slightly overesti-

mate the glottal area. Likewise, a study of Zijdenbos et al. found systematical differences

between manual and automatic segmentation and explained their observation by the different

perception of edges in medical images between humans and computerized segmentation

approaches [96]. High DCs over the course of time indicate that no serious erroneous segmen-

tations occurred. However, slightly lower Dice Coefficient (DC) values were observed around

the closed state. These variations in the Dice Coefficient (DC) between different images within

the sequence result not only from qualitatively differing segmentations, but are rather system-

atically influenced by the size of the segmented glottis. Smaller glottal areas lead systematically

to lower Dice Coefficient (DC) values, which can be confirmed by a weak but significant corre-

lation (r = 0.30, n = 1, 500, p = 0) between the size of the glottal area and the Dice Coefficient

(DC). Therefore, a single misclassified pixel in a frame around the closed state has a higher

impact on the resulting Dice Coefficient (DC) than around opened state. Another reason for

Fig 10. Exploiting temporal information by the introduced U-LSTM network to produce spatially and temporally consistent segmentation

results. (a) Test dataset with an artificially included empty (black) image. (b) Segmentation result of the best performing U � LSTMCE
5

model.

https://doi.org/10.1371/journal.pone.0227791.g010
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the variations of the Dice Coefficient (DC) is, that low contrast as well as blurring around the

closed state makes a differentiation between glottis and surrounding vocal fold pixels more

difficult. Therefore, recordings from subjects with a pronounced glottal closure, which is

characteristic particularly for healthy voices, show a higher variability of the Dice Coefficient

(DC) compared to vibrations exhibiting insufficient glottal closure. The influence of glottal

closure on the DC variability is exemplarily shown in Fig 6. Additionally, the NN tends to seg-

ment the vocal fold (VF) edges slightly smoother compared to the Ground Truth (GT) seg-

mentation, i.e. for the in Fig 6(b) shown carcinoma. This can be explained by the fact that the

NN has learned rather a smooth shape of the vocal fold (VF) edges caused by the lower scale

levels.

With a median of ~DC ¼ 0:88 correctly classified glottis pixels for all investigated images,

the trained Convolutional Neural Network (CNN) has been proven to be suitable for an

automated glottis segmentation as indicated by values of DC> 0.7, which are generally seen as

an “excellent agreement” [96, 97] and surpasses furthermore the segmentation accuracy of

~DC ¼ 0:767 achieved by Schenk et al. using salient regions and 3D geodesic active contours

[47]. Regarding the segmented glottis, between the three investigated groups variation of the

mean DCs was smaller than Dice Coefficient (DC) variation within the groups, indicating that

pathologies do not affect the overall segmentation performance. Segmentation accuracy for

both VFs was even higher, resulting on the one hand from the higher number of pixels for this

classes and on the other hand from their temporal stability, since the VFs do not change their

outer shape rapidly during short time intervals.

Precision of anatomical landmark positions

To further evaluate the accuracy of the obtained segmentations, the precisions at four anatomi-

cally relevant landmark positions P1-P4 were investigated in detail. The landmarks were cho-

sen in accordance with a comparable study conducted by Lohscheller et al. which is up the

present the only study dealing with a comprehensive evaluation of the accuracy of high-speed

video segmentations [6]. In that study the landmarks were manually segmented by a group of

ten experts to obtain ground truth segmentations which can be regarded as gold standard.

There it was shown that all manual segmentations underlie a comparable variability of about 3

px which can be regarded as a general imprecision of the gold standard.

In our study, for all landmark positions, except for P2, the mean deviations Di obtained

from the NN segmentations are far below the mean deviations of the expert group. Particu-

larly, for the landmarks P3 and P4 a very high precision of less than one pixel was obtained

which highly outperforms the gold standard accuracy. For the anterior landmark position P2 a

mean precision of DNN
2
¼ 5:76 px was achieved which is a bit more imprecise compared to the

expert group. This is caused if small ventral parts of the glottal area, which partially arise dur-

ing the closing or opening phase of a vibration cycle, are not properly segmented by the Neural

Network as exemplarily shown in Fig 8. This results into high deviation outliers of up to 63 px

that strongly effect the mean value. Considering the median, which is more robust against out-

liers, a value of ~DNN
2
¼ 2:50 px was obtained which is comparable to the manual segmenta-

tion accuracy of the expert group.

Due to the lack of further quantitative studies a concrete comparison to other approaches

could not be performed. Since a public available reference dataset of annotated laryngeal high-

speed videos would be useful for a profound quantitative comparison of different approaches

in future the here used dataset including the Ground Truth (GT) segmentations will be pro-

vided freely for all scientific groups. Further information can be found at www.hochschule-

trier.de/go/quantitative-laryngoscopy.
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Besides the segmentation of the glottis we further achieved for the first time an automatic

and precise segmentation of the vibrating vocal fold tissue from laryngeal high-speed videos.

Knowledge about the length and width of the vocal folds might be helpful in a clinical setting

to derive indirect information about the internal state of vocal fold tension, which is relevant

to assess particularly muscle tension dysphonia. Furthermore, subsequent analysis of the color

and texture of vocal fold tissue can deliver valuable information about inflammatory processes

or organic changes.

Based on the results of the comparable study it can be stated that the here proposed proce-

dure allows a very stable and high quality segmentation of both the glottal area and the vocal

folds. Once the Neural Network is trained, high-speed video (HSV) recordings can be seg-

mented without any user-interaction, which is an essential prerequisite for the use in clinical

practice. Parallelization of the segmentation process likewise enables the analysis of even long

high-speed video (HSV) sequences comprising several thousand frames. Although data aug-

mentation showed no benefit on segmentation accuracy, further optimization and generaliza-

tion of the obtained model might be achieved by enlarging the dataset comprising a higher

number of subjects, ideally acquired at several clinics with different high-speed camera sys-

tems. Further, an improvement of the network architecture itself might facilitate segmentation

performance of the Neural Network as well as potentially speed-up training and testing.

Hence, future work will focus on the investigation of alternative models, i.e. the One-Shot

Video Object Segmentation (OSVOS) Convolutional Neural Network (CNN) [98], Dilated

Residual Networks [99] models or further variations of the U-Net like proposed by Li et al.

[100], or the Recurrent Residual U-Net (R2U-Net) [101]. Another approach to achieve better

generalization might be the construction of a model from a heterogeneous collection of Neural

Networks (NNs) as suggested by Kaminitas et al. [102], since the so trained NN is insensitive

to independent failures of the individual Convolutional Neural Network (CNN) components.

Conclusion

The precise segmentation of the VFs edges from high-speed video (HSV) is an essential pre-

requisite for a quantitative analysis of VFs vibrations. In this work, for the first time a fully

automated segmentation of the glottis and the vibrating vocal fold tissue was presented using a

deep Convolutional LSTM Network. It could be shown that integrating temporal information

into the segmentation process, by adding bi-directional convolutional LSTM cells into a

refined U-Net architecture, significantly improves the segmentation performance. The results

of an extensive evaluation of the segmentation accuracy reveal that, both in pathologic as well

as in healthy subjects, the obtained segmentation precisions are comparable to manual seg-

mentations or even superior. The comparison with other approaches is currently hardly possi-

ble due to the lack of appropriate reference datasets. To resolve this deficiency the data used in

this study will be made freely available on demand. Since the procedure is fast, fully automated

and does not need any user-interaction, the presented approach holds the potential to facilitate

a quantitative analysis of vocal fold dynamics in clinical practice.

Supporting information

S1 Animation. Laryngeal high-speed video sequence of a healthy subjects vocal fold vibra-

tion. (a) Glottal area segmentation congruency over time. Corresponding Ground Truth and

Neural Network segmentation for glottis and vocal folds are shown. The size of the segmented

glottal area as well as the achieved segmentation congruency over time measured by the Dice

coefficient is illustrated underneath (black: glottis, red: right VF, blue: left VF). (b) Precision of

anatomical landmark positions. Landmarks indicated by ‘+’. Corresponding deviations over
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the course of time are displayed underneath (yellow: P1, green: P2, red: P3, blue: P4).

(GIF)

S2 Animation. Laryngeal high-speed video sequence of a pathologic subjects (carcinoma)

vocal fold vibration. (a) Glottal area segmentation congruency over time. Corresponding

Ground Truth and Neural Network segmentation for glottis and vocal folds are shown. The

size of the segmented glottal area as well as the achieved segmentation congruency over time

measured by the Dice coefficient is illustrated underneath (black: glottis, red: right VF, blue:

left VF). (b) Precision of anatomical landmark positions. Landmarks indicated by ‘+’. Corre-

sponding deviations over the course of time are displayed underneath (yellow: P1, green: P2,

red: P3, blue: P4).

(GIF)
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7. Döllinger M, Braunschweig T, Lohscheller J, Eysholdt U, Hoppe U. Normal Voice Production: Compu-

tation of Driving Parameters from Endoscopic Digital High Speed Images. Methods of Information in

Medicine. 2003; 42(03):271–276. https://doi.org/10.1055/s-0038-1634360 PMID: 12874661

8. Patel RR, Liu L, Galatsanos N, Bless DM. Differential Vibratory Characteristics of Adductor Spasmodic

Dysphonia and Muscle Tension Dysphonia on High-Speed Digital Imaging. Annals of Otology, Rhinol-

ogy & Laryngology. 2011; 120(1):21–32. https://doi.org/10.1177/000348941112000104

9. Mehta DD, Hillman RE. Current role of stroboscopy in laryngeal imaging. Current Opinion in Otolaryn-

gology & Head and Neck Surgery. 2012; 20(6):429–436. https://doi.org/10.1097/MOO.

0b013e3283585f04

10. Hertegård S. What have we learned about laryngeal physiology from high-speed digital videoendo-

scopy? Current Opinion in Otolaryngology & Head and Neck Surgery. 2005; 13(3):152–156. https://

doi.org/10.1097/01.moo.0000163451.98079.ba

11. Kendall KA, Browning MM, Skovlund SM. Introduction to high-speed imaging of the larynx. Current

Opinion in Otolaryngology & Head and Neck Surgery. 2005; 13(3):135–137. https://doi.org/10.1097/

01.moo.0000162262.26868.df

12. Lohscheller J, Eysholdt U. Phonovibrogram Visualization of Entire Vocal Fold Dynamics. The Laryngo-

scope. 2008; 118(4):753–758. https://doi.org/10.1097/MLG.0b013e318161f9e1 PMID: 18216742

13. Deliyski DD, Hillman RE. State of the Art Laryngeal Imaging: Research and Clinical Implications. Cur-

rent Opinion in Otolaryngology & Head and Neck Surgery. 2010; 18(3):147–152. https://doi.org/10.

1097/MOO.0b013e3283395dd4

14. Lohscheller J, Švec JG, Döllinger M. Vocal fold vibration amplitude, open quotient, speed quotient and

their variability along glottal length: Kymographic data from normal subjects. Logopedics Phoniatrics

Vocology. 2012; 38(4):182–192. https://doi.org/10.3109/14015439.2012.731083

15. Unger J, Schuster M, Hecker DJ, Schick B, Lohscheller J. A generalized procedure for analyzing sus-

tained and dynamic vocal fold vibrations from laryngeal high-speed videos using phonovibrograms.

Artificial Intelligence in Medicine. 2016; 66:15–28. https://doi.org/10.1016/j.artmed.2015.10.002

PMID: 26597002

16. Hirose H. High-speed digital imaging of vocal fold vibration. Acta Oto-Laryngologica. 1988; 105(Suppl.

458):151–153. https://doi.org/10.3109/00016488809125120

17. Sataloff RT, Spiegel JR, Hawkshaw MJ. Strobovideolaryngoscopy: results and clinical value. Annals

of Otology, Rhinology & Laryngology. 1991; 100(9):725–727. https://doi.org/10.1177/

000348949110000907

18. Story BH, Titze IR. Voice simulation with a body-cover model of the vocal folds. The Journal of the

Acoustical Society of America. 1995; 97(2):1249–1260. https://doi.org/10.1121/1.412234 PMID:

7876446

19. Alipour F, Berry DA, Titze IR. A finite-element model of vocal-fold vibration. The Journal of the Acousti-

cal Society of America. 2000; 108(6):3003–3012. https://doi.org/10.1121/1.1324678 PMID: 11144592

20. Warhurst S, McCabe P, Heard R, Yiu E, Wang G, Madill C. Quantitative Measurement of Vocal Fold

Vibration in Male Radio Performers and Healthy Controls Using High-Speed Videoendoscopy. PLoS

ONE. 2014; 9(6):e101128. https://doi.org/10.1371/journal.pone.0101128 PMID: 24971625
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