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Abstract

Rationale

Probe-based confocal endomicroscopy provides real time videos of autoflourescent elastin

structures within the alveoli. With it, multiple changes in the elastin structure due to different

diffuse parenchymal lung diseases have previously been described. However, these evalu-

ations have mainly relied on qualitative evaluation by the examiner and manually selected

parts post-examination.

Objectives

To develop a fully automatic method for quantifying structural properties of the imaged alve-

oli elastin and to perform a preliminary assessment of their diagnostic potential.

Methods

46 patients underwent probe-based confocal endomicroscopy, of which 38 were divided

into 4 groups categorizing different diffuse parenchymal lung diseases. 8 patients were

imaged in representative healthy lung areas and used as control group. Alveolar elastin

structures were automatically segmented with a trained machine learning algorithm and

subsequently evaluated with two methods developed for quantifying the local thickness and

structural connectivity.

Measurements and main results

The automatic segmentation algorithm performed generally well and all 4 patient groups

showed statistically significant differences with median elastin thickness, standard deviation

of thickness and connectivity compared to the control group.
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Conclusion

Alveoli elastin structures can be quantified based on their structural connectivity and thick-

ness statistics with a fully-automated algorithm and initial results highlight its potential for

distinguishing parenchymal lung diseases from normal alveoli.

Introduction

Diagnostics of diffuse parenchymal lung disease (DPLD) is to this day a complex task performed

using the collective information from clinical, radiological and histological criteria and analysed

in a multidisciplinary discussion [1–3].

However, even gold standard imaging methods such as high resolution computer tomogra-

phy (HRCT) [4,5] struggle to yield consensus with regards to diagnosis in DPLD with a large

interreader variability [5], advocating a need for additional diagnostic information in equivo-

cal cases [6]. For this reason, pathological specimens are sometimes necessary in the diagnostic

workup, such as surgical lung biopsy and more recently bronchoscopic cryobiopsy [7]. How-

ever, invasive tissue sampling methods, risk causing complications such as pneumothorax,

haemorrhage and acute exacerbation of the DPLD. To address this issue, probe-based confocal

laser endomicroscopy (pCLE) has been presented as a novel technique for providing imaging

of the respiratory tract and alveolar ducts in real time [8] based on the microstructures’ auto-

fluorescence [9].

Image acquisition is done by introducing the pCLE probe through a flexible bronchoscope

during standard examination. The probe captures 12 images/second with the following image

parameters: Distal diameter = 1.4 mm, Field of view = 600 μm, imaging depth = 0 − 50 μm, lat-

eral resolution = 3.5 μm, axial resolution = 15 μm. The probe diameter of 1.4 mm ensures that

it can be pushed deep into the lung. It emits laser light with a wavelength of 488 nm which

excites autofluorescence from the elastin content in the alveoli structures. With a multitude of

technical improvements over the last 15 years to overcome the low specificity of autofluores-

cence defects [10,11], pCLE has shown promise as a diagnostic method to visualize lung tissue

in vivo [12,13]. Multiple studies [14–17] have investigated the structural changes of lung tissue

caused by different DPLDs and specifically highlighted increased elastin fibre thickness, den-

sity of fibres and number of cellular structures as important features. The aim of this study was

to develop a fully automatic workflow for quantifying these structural properties using pCLE

measurements and to perform a preliminary assessment of their diagnostic potential.

Materials and methods

Patient characteristics

46 patients were included in this study (mean age±standard deviation = 70.1 ± 8.2, 30 male

and 16 female, 29 ex-smokers (since more than 10 years), 15 non-smokers and 2 without info).

All patients were newly diagnosed in accordance with histological, radiological and clinical

results based on a multidisciplinary discussion. Each patient was assessed according to current

guidelines including HRCT, biopsy, pulmonary function test with blood gas analysis and

6-minute-walk test. All were referred for examination as part of workup of newly diagnosed

DPLD and in stable clinical condition. Of these, 11 were diagnosed with cryptogenic organiz-

ing pneumonia (COP), 8 with non-specific interstitial pneumonia (NSIP), 11 with idiopathic

pulmonary fibrosis (IPF) and 8 with hypersensitive pneumonia (HP). 5 patients with
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Sarcoidosis (without histological lung pulmonary involvement) were classified as normal

parenchyma. Additionally, pCLE was performed on the contralateral healthy lung of one

patient with an allergic bronchopulmonary aspergillosis as well as one with bronchial pneumo-

nia. HRCT showed no abnormality in these unaffected lungs. Lastly, pCLE was performed on

a patient with metastases from breast cancer in unaffected parts of the lung. Altogether, this

made for 8 patients classified as having normal elastin structure. Exclusion occurred based on

severe restriction (vital capacity or total lung capacity below 50% pred.), severe hypoxaemia

(pO2< 55 mmHg), congenital or acquired disorder of the coagulation system, signs of pulmo-

nary hypertension, signs of infection, exacerbation or inability to undergo bronchoscopy for

any medical or legal reason. The study was approved by the local ethics committee of the

Ludwig Maximilians University Munich, Germany, (Record number 048/13). All patients

obtained information by a pulmonologist and gave their written informed consent to use the

pCLE mini probe during the bronchoscopy 24 hours prior to examination.

Image acquisition

The patients underwent bronchoscopy examination in combination with pCLE (Cellvizio,

Mauna Kea Technologies, France, Paris) with varying duration. The bronchoscopy examina-

tion was performed according to guidelines in rigid technique with patients under general

anaesthetic using a flexible bronchoscope (BF-Q 180, Olympus, Japan) to collect mucus sam-

ples for microbiological and cytological assessment as well as examine the bronchial tree. Next,

the pCLE probe was pushed through the working channel of the bronchoscope and further

into the peripheral compartment of the bronchial tree with fluoroscopic guidance until elastin

fibres of alveoli ducts were reached. PCLE was performed in regions of the lung which showed

clear signs of pathology from the HRCT images. Neighbouring sub-segments were also exam-

ined in cases where no obvious pathological structure could be observed. No exogenous fluor-

ophores were required for this procedure. The pCLE recordings were taken during extractive

motion of the probe to limit contact pressure of the probe onto the tissue surface. Using Cellvi-

zio Viewer Software v.1.6.0 (Mauna Kea Technologies, Paris, France), snapshots from the

recordings that displayed characteristic alveoli elastin structure without elastin tension or pro-

cedure related changes were selected by two pulmonologist experienced in interventional rigid

bronchoscopy to be quantified (Fig 1A). The pulmonologists were unaware of the results of

other performed diagnostic tests.

Image processing

A machine learning model [18] was trained for the fully automatic segmentation. Model train-

ing and pixel classification were performed in ‘Trainable Weka Segmentation’ [19] called

from ImageJ (Fiji) [20] as a plugin. 23 snapshots were manually labelled by the pulmonologists

(resulting in 267 elastin areas and 232 background areas constituting a total of 1060543-pixel

instances). The snapshots were randomly selected resulting in a set of 4 NSIP cases, 15 IPF

cases and 2 normal cases. 21 of the snapshots were used for training and tuning the classifier.

Since there were approximately 2.5 times more instances of background than elastin structure

in the labels, random undersampling [21] was performed to rebalance the classes. Features

were generated from a multitude of image filtering methods available in Trainable Weka Seg-

mentation that extract different spatial characteristics from an image. Classifiers were trained

on instances with an added correlation-based feature selection step [22] to minimize their

intraclass correlation while improving upon prediction accuracy. Features were ranked based

on their information gain ratio. The last 2 snapshots (with 77650 instances) were used as a test

set for comparing the classifiers. A random forest classifier with 200 trees yielded highest
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receiver operating characteristics on the test images (area of 98.8% under the curve) and was

thus selected for segmentation. A total of 131 representative screenshots from the 46 patients

were segmented (Fig 1B) using this model. Representative shots entailed those that showed

characteristic elastin structure for pathological or normal healthy structure in accordance with

described criteria [14]. The segments were subsequently visually assessed by the two pulmo-

nologists to ensure that elastin structures of interest were included, and background textures

removed. In some instances, pixel classification was not able to determine with certainty if

some regions were holes or structure and could generate small regions that looked like pixel

noise with a mixture of both. To prevent an artificial increase of holes, those with a distance

between each other smaller than 2 μm were merged and holes smaller than 30 μm filled in.

Numerical values were chosen empirically by pulmonologists. Due to an imbalanced number

of snapshots per patient, only the first snapshot from each examination was processed and

used for the statistical evaluation. Due to low signal to noise ratio (SNR) in some acquired

snapshots leading to segmentation irregularities, one HP measurement was excluded and in

two measurements the second snapshot was instead used for evaluation. The segments were

then evaluated based on their structural tissue connectivity Cs (Fig 1C), median and standard

deviation of local thickness (Tmed and σT, respectively) (Fig 1D).

Image processing—Connectivity calculation. Cs aimed to detect increases of intricacies

in the elastin structure associated with DPLDs by quantifying the number of holes of the seg-

mented elastin structure normalized with respect to the structure’s size. Firstly, to estimate a

Fig 1. Workflow for structural evaluation of alveoli elastin. A) Example of acquired NSIP patient snapshot from pCLE screening. B) Resulting

segmentation generated by pixel classification based on a machine learning approach. C) Generated skeleton of structure used when calculating local

thickness. D) Visualization of local thickness for whole structure.

https://doi.org/10.1371/journal.pone.0232847.g001
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structure’s size, a skeleton was generated by applying a thinning algorithm (skeletonization)

[23], creating a one pixel thick topology-preserved medial axis structure (Fig 1C). The skeleton

was considered a better value to scale with compared to the binary segmented area, since this

was not affected by pixelated edge effects. The number of holes was calculated from the Euler

number of the binary snapshots [23]. This quantifies the number of structures and the amount

of holes these structures inhibit. Cs was then generated from the number of holes normalized

by the total length of the skeleton Lskeleton.

Image processing—Local thickness estimation. To estimate the local thickness Tlocal of a

structure, the distance from the local centre of the structure to the closest edge was used. Since

the generated skeleton represents local midpoint estimations, only the distance to the closest

neighbouring pixel dnp for all skeleton points must be determined. The nearest neighbour

pixel was found with a k-nearest neighbour algorithm [24] where the pixel with minimum

Euclidean distance was selected. Tlocal was then calculated by doubling dnp. Pathology groups

were then compared against the characteristically normal group for each parameter resulting

in 12 comparisons.

Statistical evaluation

For statistical comparison the Wilcoxon rank sum test (two-tailed) [25] was used. Differences

were considered to be statistically significant for p-values of less than 0.05 after applying Bon-

ferroni correction [26] (number of tests = 12).

Results

Image processing

The automatic segmentation algorithm performed well on the patient data in accordance with

the pulmonologists’ inspection. One HP-patient’s snapshots were removed from the evalua-

tion as only small parts of the structure remained after segmentation. Fig 2 depicts three exam-

ples of results generated by the alveoli structure evaluation. Fig 2A displays a normal alveoli

structure imaged in low SNR with resulting values Tmed = 17.2 μm, σT = 8.6 μm and Cs = 0.4

mm−1. Fig 2E displays an IPF patient with characteristic distortion and increased intricacies of

the alveolar structure. This resulted in higher values than in the normal tissue example: Tmed =

37.4 μm, σT = 21.4 μm and Cs = 5.2 mm−1. Fig 2I displays an NSIP patient where an apparent

large density was observed. The segmented image distinguished the characteristic crystalline

coating and included that as a structure to be evaluated. This too resulted in higher calculated

values compared to the normal case: Tmed = 24.3 μm, σT = 11.6 μm and Cs = 4.9 mm−1.

Statistical evaluation

Significant differences were found when comparing the pathological cases against the normal

in all of values (Fig 3). When comparing group median of all variables, COP-, HP-, NSIP and

IPF- measurements all showed significant increases for Tmed, σT and Cs with p<0.05.

Table 1 summarizes the group median difference of the three values between all pathology

snapshots and the normal snapshots. Tmed differences varied between 4.3 − 12.6 μm (p< 0.05).

σT differences varied between 5.8 − 1.4 μm (p< 0.05). Cs differences varied between 1.70 − 3.76

mm−1(p< 0.05).

Discussion

We are presenting a follow up study to a previous review article [27], that first suggested a

semi-automatic method for the structural evaluation of alveoli elastin. Comparatively, this
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work presents a fully automatic workflow and demonstrated that the evaluation of elastin

structure from pCLE snapshots can distinguish significant differences in elastin thickness and

tissue connectivity between normal and DPLD alveoli. When evaluating the structural connec-

tivity, median thickness and standard deviation of thickness COP, HP, NSIP and IPF showed

Fig 2. Three examples from every step of evaluation workflow. A-D) represent normal alveoli elastin structure with Tmed =

17.5 μm, σT = 8.5 μm and Cs = 0.4 mm−1, E-H) represents IPF elastin structure with Tmed = 37.8 μm, σT = 21.9 μm and Cs = 5.1

mm−1. I-L) represents NSIP structure with Tmed = 24.7 μm, σT = 11.7 and Cs = 4.9 mm−1.

https://doi.org/10.1371/journal.pone.0232847.g002

Fig 3. Value distributions of DPLD and normal structure evaluations for structural connectivity and thickness statistics. Box-and-whisker plots

displaying value ranges for Tmed, σT and Cs. Red line specifies group median. Bottom and top edges indicate the 25th and 75th percentiles, respectively

and whiskers covers ± 2.698σ. �: p-value<0.05, ��: p-value<0.01.

https://doi.org/10.1371/journal.pone.0232847.g003
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significant differences in all three values compared to normal elastin structure. This suggests that

the presented method for quantifying elastin of the alveoli can differentiate normal from diseased

structures and can support fully automatic assistance in diagnosis of DPLD. Furthermore, since

the method offers multiple parameters for differentiating between normal and pathological

groups, more complex methods could potentially be developed for a holistic characterization.

In the presented study we opted for the conservative [28] Bonferroni p-value correction

due to a small patient sample size. Since the scope of this study was to show that the presented

methods can be of interest as a support tool when looking for DPLDs, we left further validation

to future studies with larger sample sizes.

The presented method aims to quantify features that have previously been reported to

change due to different DPLDs, such as increase/decrease of elastic fibres, disorganization of

elastic network and enlarged axial elastic fibre bundle diameter [14–17]. Similar elastin thick-

ness values were found here as in other work [29], albeit with a higher variability. This is to be

expected considering that the presented method takes all of the structure in the FOV into con-

sideration instead of only manually selected parts. To date, we know of no other quantitative

analyses for the intricacies of a structure such as the presented structural connectivity value.

Other observed structural changes [30] such as alveolar mouth size and increase of fluorescent

were not taken into consideration in the presented methods.

Previous studies have focused on expert observer evaluation [14] or manual post processing

methods [30,31] when comparing different elastin of the alveoli. The presented method

instead offers quantitative values where the whole structure inside the FOV can be evaluated.

Using the presented method when evaluating local thickness for example, offers an average of

2734 ± 1278 measurement points per patient which greatly reduces variability from outliers

compared to manual thickness estimates.

A machine learning approach was used for the pixel classification to fully automate the seg-

mentation step of the workflow, based on 21 snapshots from all patient measurements. Despite

the small number, the segmentation algorithm succeeded in separating structures in noisy snap-

shots (Fig 2A and 2B) while still ignoring background structures (Fig 2I and 2J). Since DPLD has

shown to decrease elastin’s autofluorescence [13,32] it is of high interest to ensure that structures

can be extracted even in low SNR snapshots. With the whole workflow running automatically,

the opportunity emerges for quantitative assistance in real time during bronchoscopy examina-

tion. The presented method could be called upon in real time as a pulmonologist moves the

pCLE probe through the lung and identifies a region of interest. The generated quantitative val-

ues can then be used to support the diagnosis of DPLD. Additionally, the suggested guiding capa-

bilities of pCLE during cryobiopsy [33] can also benefit from the presented method’s ability to

highlight DPLD-structures by offering further objective validation before sampling.

Since the algorithm used for segmentation is open source, its functions can easily be called

from other script languages. As more data is collected, the training model’s segmentation capa-

bilities can certainly be improved but also allows for the use of more complex methods. With

deep learning approaches for example, structures could furthermore be fully automatically

Table 1. Calculated median values for all measurement groups and difference between DPLDs and normal.

Tmed−avg[μm] σT−avg[μ m] Cs−avg[mm−1] ΔTmed−avg[μ m] ΔσT−avg[μ m] ΔCs−avg[mm−1]

Normal 17.4 8.9 1.66 N/A N/A N/A

COP 24.8 17.2 3.61 7.4 (p = 6.1 � 10−3) 8.3 (p = 5.4 � 10−3) 1.95 (p = 9.3 � 10−3)

HP 24.0 14.7 3.36 6.6 (p = 3.7 � 10−3) 5.8 (p = 7.5 � 10−3) 1.70 (p = 0.013)

IPF 30.0 22.3 5.42 12.6 (p = 0.016) 13.4 (p = 0.014) 3.76 (p = 0.3 � 10−3)

NSIP 21.8 12.1 3.78 4.3 (p = 0.015) 3.2 (p = 0.019) 2.12 (p = 0.013)

https://doi.org/10.1371/journal.pone.0232847.t001
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selected, segmented [34] before analysis with the presented method. This would further the

methods real-time capability and offer attending physicians suggestions of interesting ROI

rather than confirmation.

There are some limitations in this study. The primary factors are the absence of a histological

comparison to pCLE snapshots from the same regions in the lungs resulting in some uncertainty

as to whether pCLE can offer ‘optical biopsy’. Although the automatic segmentation’s perfor-

mance was satisfactory on most snapshots a larger measurement set is required to assess its capa-

bilities on different DPLDs and still unseen descriptors by the machine learning algorithm.

Given that the snapshots are taken from a very small fraction of the whole lung this could lead

to a poor morphological consistency of the evaluation method [16]. However, this is mitigated

already by the use of a guiding tool such as HRCT to select representative areas of diseased tissue.

Variability can also be decreased by utilizing average parameter values generated from multiple

snapshots of different representative areas for every patient. Since pCLE is an in-vivo imaging

technique complementing bronchoscopy, it does not suffer the same increase of risk associated

with invasive techniques such as biopsy and could be used to examine multiple sections. So far,

procedures performed in multiple studies have shown no severe side effects other than minor

bleeding in 3 out of 42 patients [13,30] making it ideal for longitudinal studies.

As the presented method evaluates 3D structures on 2D images, unattached structures such

as macrophages in the alveolar space could potentially overlap and appear to be part of the

structure of interest. Furthermore, the workflow relies on the operating pulmonologist to

ensure a proper orientation of the probe relative to the area of interest. The first problem was

partly mitigated in this study by training the machine learning method to distinguish back-

ground structures from structures of interest, but more data would likely be required to test

the model’s generality. Future studies can further incorporate macrophages as a third segmen-

tation class to expand on the analysis potential of the method. Consideration can also be taken

by the performing pulmonologists if structures are overlapping or probe orientation needs

adjustment when selecting snapshot. Validation cohorts would be required to confirm the

clinical relevance of this method. In this initial study we have focused on the distinction

between normal and DPLD alveoli due to the small sample size. A next step would be to estab-

lish respective value ranges for different types of pathologies aiming to further assess the pre-

sented methods’ diagnostic potential.

Conclusion

In this study we presented a method for the quantitative evaluation of alveolar elastin structure

using pCLE images. We demonstrated that quantifying structural properties of the alveoli elas-

tin, such as thickness and connectivity, allows for the differentiation of DPLD and normal

lung tissue. We furthermore presented a framework for a fully automated workflow that can

be easily implemented into pCLE examinations. This can offer further assistance by providing

quantitative values to pulmonologists for the diagnosis of DPLDs.
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