Asymmetry of fibrillar plaque burden in amyloid mouse models

Christian Sacher¹, Tanja Blume¹,², Leonie Beyer¹, Gloria Biechele¹, Julia Sauerbeck¹, Florian Eckenweber¹, Maximilian Deussing¹, Carola Focke¹, Samira Parhizkar³, Simon Lindner¹, Franz-Josef Gildehaus¹, Barbara von Ungern-Sternberg¹, Karlheinz Baumann⁴, Sabina Tahirovic², Gernot Kleinberger³,⁵,⁶, Michael Willem³, Christian Haass²,³,⁵, Peter Bartenstein¹, Paul Cumming⁷,⁸, Axel Rominger¹,⁷, Jochen Herms²,⁵,⁹, Matthias Brendel¹,⁵

¹Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich Germany
²DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
³Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
⁴Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
⁵Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
⁶ISAR Bioscience GmbH, Planegg, Germany
⁷Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
⁸School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Australia
⁹Center of Neuropathology and Prion Research, University of Munich, Munich Germany

Abbreviated title: Aβ plaque asymmetry in mice

Corresponding author: Dr. Matthias Brendel; Department of Nuclear Medicine, University of Munich; Marchioninistraße 15, 81377 Munich, Germany; Phone:+49(0)89440074650, Fax:+49(0)89440077646; E-Mail:matthias.brendel@med.uni-muenchen.de

First author:
Christian Sacher (medical student); Department of Nuclear Medicine; LMU Munich, Germany; Phone:+49(0)1623878661; E-Mail:christian.sacher@med.uni-muenchen.de

Word count: 5000
ABSTRACT

Objective: Asymmetries of amyloid-β (Aβ) burden, are well-known in Alzheimer’s disease (AD), but did not receive attention in Aβ mouse models of AD. Therefore, we investigated Aβ-asymmetries in Aβ mouse models examined by Aβ- small animal positron-emission-tomography (PET) and tested if such asymmetries have an association with microglial activation. Methods: 523 cross-sectional Aβ-PET scans of five different Aβ mouse models (APP/PS1, PS2APP, APP-SL70, AppNL-G-F and APPswe) were analyzed together with 136 18kDa translocator protein (TSPO)-PET scans for microglial activation. The asymmetry index (AI) was calculated between tracer uptake in both hemispheres. AIs of Aβ-PET were analyzed in correlation with TSPO-PET AIs. Extrapolated required sample sizes were compared between analyses of single and combined hemispheres. Results: Relevant asymmetries of Aβ deposition were identified in ≥30% of all investigated mice. There was a significant correlation between AIs of Aβ-PET and TSPO-PET in four investigated Aβ mouse models (APP/PS1: R=0.593, P=0.001; PS2APP: R=0.485, P=0.019; APP-SL70: R=0.410, P=0.037; AppNL-G-F: R=0.385, P=0.002). Asymmetry was associated with higher variance of tracer uptake in single hemispheres, leading to higher required sample sizes. Conclusions: Asymmetry of fibrillar plaque neuropathology occurs frequently in Aβ mouse models and acts as a potential confounder in experimental designs. Concomitant asymmetry of microglial activation indicates a neuroinflammatory component to hemispheric predominance of fibrillary amyloidosis.

Key words: asymmetry, amyloid, microglia, mouse models
INTRODUCTION

Alzheimer disease (AD) is the most frequent neurodegenerative disease, with burgeoning incidence rates due to the rising life expectancy in most of the world (1). The neuropathology of AD is histologically characterized by the triad of accumulation of amyloid-β peptide (Aβ) as extracellular plaques, fibrillary tau aggregates within neurons, and the activation of multiple neuroinflammatory pathways, which is mediated by activated microglia expressing high levels of the marker 18-kDa translocator protein (TSPO) (2). Animal models that accurately reflect this complex pathology are indispensable for contemporary preclinical research into the molecular mechanisms of AD. In this context, a range of different overexpressing and knock-in Aβ mouse models have been established for molecular imaging with positron emission tomography (PET). In recent PET studies, increased binding of the Aβ tracer 18F-florbetaben (18F-FBB) and the TSPO tracer 18F-GE-180 were firmly established by longitudinal in vivo quantification of cerebral amyloidosis and microglial activation in various Aβ mouse models of AD (3-5). In humans, an asymmetric spatial distribution of neuropathological AD hallmarks is frequently discovered by PET studies in vivo (6-8). A recent human PET study has already shown that asymmetric spatial distributions of Aβ plaques are positively correlated with ipsilateral neurodegeneration (8). However, no study has hitherto investigated systematically the asymmetry in Aβ mouse models of AD. While a large scaled investigation of this phenomenon by histopathological investigations would be of high economic effort and difficult in terms of standardization, in vivo PET imaging methods should afford the means to compare readily the Aβ plaque burden in both hemispheres of individual animals.

Given this background, our aim was to investigate the occurrence of asymmetric fibrillar Aβ deposition in the well-established Aβ mouse models APP/PS1, PS2APP, APP-SL70, AppNL-G-F and APPsw. Using a large series of historical 18F-FBB Aβ-PET recordings, we tested for asymmetric Aβ deposition, while...
considering age as a predictive variable. We also made sample size estimations for
detecting asymmetric Aβ, and tested the hypothesis that Aβ asymmetry is associated
with ipsilateral microglial activation as assessed by \(^{18}\text{F}-\text{GE}-180\) TSPO-PET.

MATERIAL AND METHODS

Experimental Design

All experiments were performed in compliance with the National Guidelines
for Animal Protection, Germany and with the approval of the regional animal committee (Regierung Oberbayern) and were overseen by a veterinarian. Animals were housed in a temperature- and humidity-controlled environment with 12h light-dark cycle, with free access to food (Sniff, Soest, Germany) and water. A detailed overview of the investigated mouse cohorts is given in Supplemental Table 1. All PET raw data originated from previous in-house studies (cited below) conducted on the same Inveon small animal PET under identical acquisition parameters. 87% of the mice investigated were female. APP/PS1 and APPswe comprised only female mice, whereas PS2APP, APP-SL70, and App\(^{NL-G-F}\) included both sexes. All raw data were reprocessed to guarantee optimal agreement of spatial and radioactivity normalization. Either descriptive datasets or control groups of therapy/ genotype studies were included. From each investigated mouse, the degree of asymmetry in Aβ-PET and TSPO-PET was assessed by volume-of-interest based quantification in both cerebral hemispheres.

Animal Models

APP/PS1 (APPPS1-21): This transgenic mouse model was generated on a C57BL/6J genetic background that coexpresses KM670/671NL mutated amyloid precursor protein and L166P mutated presenilin 1 under the control of a neuron-specific Thy1 promoter. Cerebral amyloidosis in this model starts at 6–8 weeks of age (9). Historical \(^{18}\text{F}-\text{FBB}\) data from 41 scans of APP/PS1 mice imaged at four...
different ages (3, 6, 9 and 12 months) were reprocessed (10). 27 contemporaneous
18F-GE-180 scans were available.

PS2APP (APPswe/PS2): The transgenic B6.PS2APP (line B6.152H) is
homozygous both for human presenilin (PS) 2, the N141I mutation, and the human
amyloid precursor protein (APP) K670N/M671L mutation (11). Homozygous
B6.PS2APP mice show first appearance of plaques in the cerebral cortex and
hippocampus at 5–6 months of age (12). Historical 18F-FBB data from 147 scans of
PS2APP mice imaged at four different age ranges (6–8, 9–10, 11–14 and 15–17
months) were reprocessed (13,14). 23 contemporaneous 18F-GE-180 scans from
these mice were likewise reprocessed by standard methods.

APP-SL70: The PS1 knock-in line was generated by introducing two-point
mutations in the wild-type mouse PSEN1, corresponding to the mutations M233T and
L235P. The APP751SL mouse overexpresses human APP751 carrying the London
(V717I) and Swedish (K670N/M671L) mutations under the control of the Thy1
promoter. Aβ deposits appear as early as 2.5 months of age in these mice (15).
Historical 18F-FBB data from 208 scans of APP-SL70 mice imaged at four different
ages (4–6, 7–9, 10–12 and 13–15 months), deriving from a descriptive observational
study (16), along with control scans from an as yet unpublished therapy study were
reprocessed. 26 contemporaneous 18F-GE-180 scans were available in this group.

App$^{NL-G-F}$ (App$^{NL-G-F/NL-G-F}$): The knock-in mouse model App$^{NL-G-F}$ carries a mutant
APP gene encoding the humanized Aβ sequence (G601R, F606Y, and R609H) with
three pathogenic mutations, namely Swedish (KM595/596NL), Beyreuther/Iberian
(I641F), and Arctic (E618G). Homozygotic App$^{NL-G-F}$ mice progressively exhibit
widespread Aβ accumulation from two months of age (17,18). Historical 18F-FBB data
from 55 scans of homozygotic App$^{NL-G-F}$ mice imaged at four different ages (2.5, 5.0,
7.5 and 10 months) were reprocessed (3). 55 contemporaneous 18F-GE-180 scans
were available in this data set.

APPswe: Transgenic mice overexpressing human APP with the Swedish double
mutation (K670N, M671L) driven by the mouse Thy1.2 promoter were generated as
described earlier (11). Mice heterozygous for the transgene begin accumulating β-
amyloid at approximately nine months of age and develop β-amyloid plaques at
twelve months of age, mainly in the cortical mantle. Historical 18F-FBB data from 72
scans of APPswe mice imaged at three different age ranges (9–12, 13–16 and 17–20
months) were reanalyzed (19,20). Contemporaneous 18F-GE-180 scans were not
available for these mice.

C57Bl/6: Historical and unpublished 18F-FBB data from 27 scans of C57Bl/6 mice
(WT) were reprocessed and served as control material (age: 2.5-16 months).

PET Imaging

PET Data Acquisition, Reconstruction and Post-Processing: For all PET
procedures, radiochemistry, data acquisition, and image pre-processing were
conducted according to an established, standardized protocol (4,21). In brief, 18F-
FBB Aβ PET recordings (average dose: 11.4±2.0 MBq) with an emission window of
30–60 min after injection were obtained to measure fibrillar cerebral amyloidosis. 18F-
GE-180 TSPO PET recordings (average dose: 11.1±2.0 MBq) with an emission
window of 60–90 min after injection were performed for assessment of cerebral
TSPO expression. Anesthesia was maintained from just before tracer injection to the
end of the imaging time window.

PET Image Analysis: We performed all analyses using PMOD (version 3.5;
PMOD technologies). Normalization of emission images to standardized uptake
value ratio (SUVR) images was performed using previously validated white matter
(WM) reference regions for transgenic amyloid mouse models (APP/PS1, PS2APP,
APP-SL70 and APPswe) (4,21). For the knock-in mouse line AppNL-G-F, the
mesencephalic periaqueductal gray (PAG) was used as reference region, as recently
published (3). Two bilateral telencephalic volumes of interest (VOIs) (containing
cortex and hippocampus) comprising 50 mm³ each, were employed for calculation of
SUVR\textsubscript{Forebrain/WM} or SUVR\textsubscript{Forebrain/PAG}. For each scan, the hemispheric asymmetry index (AI) was calculated for 18F-FBB or 18F-GE-180 scans using the formula:

$$\text{AI} \,[\%] = 200 \times \frac{(R - L)}{(R + L)}$$

Statistical Analysis

95% and 99% confidence intervals (CI) of 18F-FBB AIs in normal C57BL/6 mice were calculated. Aβ mouse model 18F-FBB scans were judged as asymmetric when they exceeded the 95%-CI (moderate asymmetry) or the 99%-CI (strong asymmetry) of C57BL/6 mice. Significant 18F-FBB AIs (absolute magnitude) were correlated with age for each Aβ mouse model to evaluate age-dependency of asymmetric plaque distribution. For each Aβ mouse model, age-independent lateralized plaque distributions were compared by a Chi-square test to test for left or right predominance of Aβ deposition. Frequency of strong asymmetries were calculated in groups of comparable age for Aβ mouse models and correlated with coefficients of variance (CoV) of SUVR in the same groups of mice. Pearson’s coefficients of correlation (R) were calculated for the latter analyses and for correlation analyses between 18F-FBB AIs and age as well as between 18F-FBB AIs and 18F-GE-180 AIs. Hypothetical 2-sided t-test of independent measures were performed in order to perform sample sizes calculations in comparison of SUVR in single hemispheres and in combined hemispheres using G*Power (V3.1.9.2, Kiel, Germany). We used a given 5% therapy effect on SUVR at a power (1−β) of 0.80 and type one error of $\alpha=0.05$. A P-value of less than 0.05 was considered to be significant for rejection of the null hypothesis. SPSS 25 statistics (IBM Deutschland GmbH, Ehningen, Germany) was used for all statistical tests.

RESULTS

Asymmetric Plaque Distribution is Frequent in Aβ Mouse Models

First, we defined an asymmetry threshold based on PET measurements in
WT mice to establish real Aβ asymmetry, without bias in the spatial normalization or by physiological variability in tracer uptake. The 95%-CI of 18F-FBB AIs in C57BL/6 mice was -3.6% (right lateralization) to 3.6% (left lateralization) and defined the threshold for moderate Aβ asymmetry. The 99%-CI of 18F-FBB AIs in C57BL/6 was -4.0% (right lateralization) to 4.5% (left lateralization) and defined the threshold for strong Aβ asymmetry. Using these thresholds, 40% (L=21%; R=19%; 95%-CI) of all amyloid accumulating mice showed moderate asymmetry and 30% (L=14%; R=16%; 99%-CI) showed strong asymmetry of 18F-FBB forebrain uptake (Figure 1). There was no significant hemispheric predominance across the whole cohort of different Aβ mouse models. A detailed overview is provided in Supplemental Table 1.

Highest frequency of moderate Aβ-PET asymmetry was observed in PS2APP and $\text{App}^{\text{NL-GF}}$ mice (49% each). Strong Aβ-PET asymmetry was most frequently observed in PS2APP and APP/PS1 mice (37% each). Lowest frequency of Aβ-PET asymmetry was present in APPswe mice, in which 32% of scans indicated moderate and 24% showed strong asymmetry. A significant left-hemispheric predominance of Aβ deposition was detected in the PS2APP mouse ($\chi^2=4.7; P=0.030$; Chi-square test), whereas a significant right-hemispheric predominance of Aβ deposition was seen in APPswe mice ($\chi^2=15; P=0.0001$; Chi-square test). There was no significant association between age and asymmetric Aβ distribution in any Aβ mouse model (Figure 2). In summary, asymmetry of plaque burden was frequently observed in all studied Aβ mouse models, but with different magnitudes and side predilections.

Asymmetric Plaque Burden Impacts the Sufficient Sample Sizes in Preclinical Trials

Given the observed asymmetries in all Aβ mouse models studied, we hypothesized that measures in single hemispheres (as are typically examined by histological methods) would suffer from higher variance, subsequently leading to higher required sample sizes in preclinical trials when compared to combined
measures of both hemispheres, as are obtained by PET. CoV were positively
associated with the frequency of plaque burden asymmetry (99%-CI) in groups of
comparable age in different Aβ mouse models \((R=0.380, P=0.027, \text{Figure}\ 3A)\). CoV
by groups of comparable age in the different Aβ mouse models were \(4.3\pm1.2\%\) for
separate measures of left and right hemispheres and significantly lower for the
combined quantification of both hemispheres \((3.9\pm1.2\%; \ P = \text{left vs. both: 0.0003/}
right vs. both: 0.0007; paired \(t\)-test). Calculated sample sizes for detection of a 5%
therapy effect on SUVR at a power \((1-\beta)\) of 0.80 and type one error of \(\alpha=0.05\) were
n=14.1 for separate measures for the left hemisphere, n=13.9 for separate measures
of the right hemisphere, and n=11.9 for combined quantification of both hemispheres
\((P=0.0020/0.0016; \text{paired } t\text{-test}). \text{Required sample sizes as a function of power were}
consistently higher for calculation with left (Figure 3B) and right (Figure 3C)
hemispheric values when compared to combined quantification of both hemispheres.
The average reductions of required sample sizes for combined quantification of both
hemispheres were 2.1\pm0.6 (vs. left) and 1.8\pm0.5 (vs. right). These results indicate
that asymmetry of plaque burden in Aβ mouse models considerably increases
required sample sizes when hemispheres are analyzed separately.

Asymmetric Plaque Burden is Associated with Ipsilateral Glial Activation

Several studies have revealed associations between amyloid deposition and
microglial activation in Aβ mouse models \((3,4,16)\). However, it has not hitherto been
investigated if microglial activation follows any asymmetry of plaque burden, or if the
microgliosis is globally distributed. Hence, we made use of contemporaneous TSPO-
PET data for correlation analysis with lateralization to Aβ-PET. Significant positive
associations between asymmetric Aβ deposition and ipsilateral lateralization of
TSPO expression were observed in all four Aβ mouse models. The magnitude of
correlation between asymmetric Aβ-PET and ipsilateralized TSPO-PET uptake was
similar among APP/PS1 \((R=0.593; P=0.001; \text{n}=27; \text{Pearson’s correlation}), \text{PS2APP}
(R=0.485; P=0.019; n=23; Pearson’s correlation), APP-SL70 (R=0.410; P=0.037; n=26; Pearson’s correlation), and App^{NL-G-F} (R=0.385; P=0.002; n=60; Pearson’s correlation) mice. Taken together these results clearly indicate a spatial association between asymmetric distribution of fibrillar Aβ plaques and ipsilateral microglial activation.

DISCUSSION

In contrast to human investigations on asymmetrical Aβ distribution in AD (6,8,22), only scanty evidence is available for the presence of Aβ asymmetry in mouse models (19,23). We present the first large-scale preclinical *in vivo* investigation of fibrillar plaque burden asymmetry by standardized evaluation of PET data. With respect to animal welfare guidelines, in particular reduction of animal numbers in accordance with the 3R principle, we used scans from various earlier studies, this avoiding any requirement for additional animal experiments to test our hypotheses.

First, we endeavored to establish a reasonable threshold of lateralized Aβ-PET signal to exclude asymmetry findings driven by reasons other than Aβ pathology. To this end, we used Aβ-PET data of C57BL/6 WT mice, as they are not known to manifest any Aβ accumulation. Minor asymmetry of FBB tracer uptake in WT mice could be attributed to factors such as differences in cerebral blood flow, differing hemispheric volumes, or methodological issues such as lateralized spill-over of bone uptake, imperfect attenuation correction, or bias in spatial normalization. Hence, we used the 95% and 99% CIs of 18F-FBB AIs in WT to discern moderate and strong asymmetry in the groups of Aβ accumulating mice. By these criteria, 40% of all Aβ accumulating mice revealed moderate asymmetry, and 30% showed strongly asymmetric Aβ deposition, but without evidence for a general lateralization across all AD models. Nevertheless, two out of five investigated amyloid models
revealed significant lateralization of Aβ plaque distribution to Aβ-PET. There was a significant left-hemispheric predominance of Aβ deposition in PS2APP mice, but a significant right-hemispheric predominance in APPswe mice. While molecular explanations and causal mechanisms giving rise to this phenomenon are presently unknown, we contend that this is a real phenomenon requiring special consideration when comparing data from different Aβ mouse models of AD. For example, a comparison of exclusively right hemisphere read-outs, as might be obtained by histological analysis, between APPswe and PS2APP could cause false negative findings, and likewise for the left hemisphere. The highest frequency of asymmetry was observed in Aβ models with a Presenilin mutation (PS2APP and APP/PS1), indicating that involvement of this gene might increase the probability of asymmetric plaque burden. Variable expression of APP mRNA across different PS2APP mice is already postulated to be a key determinant of variance in individual Aβ deposition (12); therefore we speculate that this phenomenon could likewise hold true for differences between hemispheres.

By making sample size estimations, we established that the observed asymmetries of fibrillar plaque burden are potentially relevant to the design of preclinical trials. Importantly, the calculated sample sizes sufficient to detect relevant therapeutic effects, which are comparable to those of earlier drug trials in these Aβ mouse models (13,20), were significantly higher when only single hemispheres were analyzed, as opposed to combined measurement of both hemispheres. As Aβ-PET and histology markers for fibrillar Aβ were strongly intercorrelated in previous studies (10,19,24), we assume that asymmetry effects on required sample sizes should also hold true for stand-alone histological or biochemical analyses. This conjecture remains to be demonstrated, since usual practice is to process one hemisphere for histology and one for biochemistry. Aβ-PET findings at the terminal time-point could help to identify mice with asymmetric plaque burden, which would allow consecutive adjustment of measures by different modalities in separate hemispheres.
Next, we investigated whether asymmetric Aβ distributions occur in an age-dependent manner. Our cross-sectional analysis of historical PET data did not indicate any significant association of AI with age among the five Aβ mouse models. This is consistent with our earlier longitudinal ¹⁸F-FBB-PET findings in APPswe, were we incidentally noticed that some animals showed consistently right-sided plaque asymmetry between 13 and 20 months of age. More precisely, the magnitude of asymmetry in SUVR increased with age, but with no temporal dependence of the AI per se (19). In conclusion, Aβ asymmetries, when present, are established at the onset of plaque deposition.

We suppose that there are hitherto few reports on asymmetric plaque burden in Aβ mouse models due to the logistic difficulty of conducting onerous histological analysis of both hemispheres for sufficient numbers of animals. We performed a meta-analysis of the most recent 56 papers from journals with impact factor > 4 published in the interval 2016 to 2019 with the key words “amyloid, mouse, model, AD”. 38% (21/56) of these papers provided detailed information about use of different hemispheres for histology and biochemistry. 81% among those (17/21) assigned a specific hemisphere to a given modality, whereas only 19% (4/21) performed randomization of hemispheres to different modalities. Most of the remaining 35 papers likewise split hemispheres to different modalities, but without detailed information about the selection process. Immunohistochemistry with Aβ antibodies like 6E10 was most frequently used to assess fibrillar plaques in vitro, whereas other studies used histological staining with methoxy-X04 or thioflavin S (14,25). These studies generally reported immunohistochemistry/histology findings for Aβ quantification from a few representative brain slices of a single hemisphere, whereas the other hemisphere was typically reserved for biochemical assays such as Enzyme-linked Immunosorbent Assay or western blotting, which are not compatible with tissue fixation. Therefore, evaluation of intra-animal asymmetry in vitro was not feasible due to allocation of the hemispheres for different kinds of analyses. In
summary, potential asymmetries of fibrillar plaque burden were only sparsely considered in published papers during the recent years.

Contrary to the case in vitro, Aβ-PET allows convenient quantification of amyloid pathology in both whole hemispheres, with the caveat that the PET method has inherent limitations in spatial resolution (26,27). Therefore, PET quantification of small brain areas can be challenging, although asymmetry assessment Aβ plaque burden in large forebrain regions is a rather robust measure. Thus, conducting non-invasive PET examination prior to assignment of hemispheres to different terminal biochemical or histological experiments could help to identify and adjust for relevant asymmetries of plaque burden. This should encourage the combined use of PET together with immuno(histochemistry) and biochemistry read outs.

Another focus of our study was to investigate the relationship between lateralized Aβ deposition and microglial activation. Previous studies of our laboratory have already shown close correlations between fibrillar amyloidosis and TSPO expression in APP/PS1, PS2APP, APP-SL70 and AppNL-G-F mice (3,4,10,16). Although we acknowledge that it was anticipated from these earlier findings, we now show for the first time that microglial activation occurs concomitantly in the hemisphere ipsilateral with predominant fibrillar amyloidosis. This association further strengthens the hypothesis that initial fibrillar Aβ accumulation triggers neuroinflammation mediated by activated microglia (28). Another recently published study has also demonstrated a link between amyloidosis and neuroinflammation based on comparative profiling of cortical gene expression in AD patients and an Aβ mouse model (29). Comparisons of gene expression between hemispheres of mice with asymmetric amyloidosis could give new insights into the molecular pathways and causal mechanisms underlying asymmetry in AD. PET screening could guide the selection for detailed study of mice with strong asymmetries.

CONCLUSION
Nearly a third of Aβ mice show distinct left- or right-asymmetry in the deposition of cerebral amyloid. This phenomenon is neglected in the majority of current studies in Aβ mice and calls for consideration in the planning and design of preclinical trials, especially when single hemispheres are investigated by methods ex vivo. The lack of age-dependency on asymmetric Aβ distribution implies that genetic factors underlie the development of lateralized amyloidosis in AD model mice. There is a clear association between asymmetries of glial activation and fibrillar amyloidosis in all Aβ mouse models investigated in this study, further strengthening the hypothesis that neuroinflammatory response to fibrillar Aβ contribute to the development of pathology in these mice.

DISCLOSURE

C.H. collaborates with Denali Therapeutics, participated on one advisory board meeting of Biogen, and received a speaker honorarium from Novartis and Roche. C.H. is chief advisor of ISAR Bioscience. P.B., A.R. and M.B. received speaking honoraria from Life Molecular Imaging and GE healthcare. M.B. is an advisor of Life Molecular Imaging. No other potential conflicts of interest relevant to this article exist.

ACKNOWLEDGEMENTS

C.H. is supported by the Koselleck Project HA1737/16-1 of the DFG, the Helmholtz-Gemeinschaft (Zukunftsthema"Immunology and Inflammation"(ZT-0027)) and the Cure Alzheimer's fund. The work was supported by the Deutsche Forschungsgemeinschaft (M.B. and A.R. BR4580/1-1&RO5194/1-1). The APPPS1 colony was established from a breeding pair kindly provided by M. Jucker (Hertie-Institute for Clinical Brain Research, University of Tübingen and DZNE-Tübingen). APPswe, PS2APP and APP-SL70 mice were provided by Hoffmann-La Roche.
APP^{NL-G-F} mice were provided by RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan. GE Healthcare made GE-180 cassettes available through an early-access model.

QUESTION: Do amyloid mouse models have asymmetric plaque distribution and asymmetric neuroinflammation?

PERTINENT FINDINGS: Asymmetry in these amyloid mouse models is frequent and statistically relevant for planning of observational and interventional trials in these mice. Moreover, asymmetries of fibrillar plaque burden and glial activation are positively correlated.

TRANSLATIONAL IMPLICATIONS: Lateralized distribution of fibrillar plaques is insufficiently considered in experimental studies with amyloid mouse models and a potential confounder in preclinical phases of drug development.

REFERENCES

Figure 1 – Asymmetry of plaque distribution in amyloid mouse models. Forrest plot shows Al for a total of 523 amyloid PET scans in APP/PS1, PS2APP, APP-SL70, APPswe and AppNL-G-F mice. Laterализed plaque distributions were compared by a Chi-square test to test for left or right predominance in each mouse model. Representative PET SUVR-images show exemplary mice with right (APPswe) and left (APP/PS1) asymmetry.
Figure 2 – Age dependency of asymmetric amyloid deposition. Asymmetry (|AI|) is shown as a function of age for APP/PS1, PS2APP, APP-SL70, APPswe and AppNL-G-F mice. Datapoints with significant asymmetric 18F-FBB uptake (|AI| > 95%-CI\textsubscript{WT}; light area) indicate no relevant dependency on asymmetric plaque distribution on age in any of the mouse models. Values with symmetric distribution (grey area) were excluded from the correlation analysis.
Figure 3 – Statistical relevance of asymmetric plaque distribution in amyloid mouse models. (A) Association of higher coefficients of variation (CoV) in SUVR with higher frequency of asymmetry in age related groups of amyloid mouse models (see supplemental Table 1). (B, C) Required sample sizes as a function of power in comparison of analyses in single hemispheres and combined hemispheres (given effect of 5%, α=0.05, hypothetical 2-sided t-test of independent measures).
Figure 4 - Association between lateralized amyloid deposition and microglia activation. Correlations between AIs of amyloid and microglia PET in APP/PS1, PS2APP, APP-SL70 and App^{NL-G-F} mice show congruent asymmetry of both biomarkers. R indicates Pearson’s coefficients of correlation.
<table>
<thead>
<tr>
<th>Group</th>
<th>Age (months)</th>
<th>n</th>
<th>Left (n, % per subgroup)</th>
<th>Left (n, % per model)</th>
<th>Right (n, % per subgroup)</th>
<th>Right (n, % per model)</th>
<th>Left (n, % per subgroup)</th>
<th>Left (n, % per model)</th>
<th>Right (n, % per subgroup)</th>
<th>Right (n, % per model)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP/PS1</td>
<td>3</td>
<td>6</td>
<td>0 (0%)</td>
<td>20%</td>
<td>22%</td>
<td>15%</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>3 (21%)</td>
<td>14 (22%)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>14</td>
<td>3 (21%)</td>
<td>0 (0%)</td>
<td>3 (21%)</td>
<td>0 (0%)</td>
<td>3 (21%)</td>
<td>1 (17%)</td>
<td>1 (17%)</td>
<td>1 (17%)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6</td>
<td>1 (16%)</td>
<td>0 (0%)</td>
<td>1 (17%)</td>
<td>3 (20%)</td>
<td>3 (20%)</td>
<td>5 (33%)</td>
<td>5 (33%)</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>15</td>
<td>4 (27%)</td>
<td>5 (33%)</td>
<td>3 (20%)</td>
<td>5 (33%)</td>
<td>3 (20%)</td>
<td>5 (33%)</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PS2APP</td>
<td>6 - 8</td>
<td>55</td>
<td>15 (27%)</td>
<td>30%</td>
<td>19%</td>
<td>21%</td>
<td>10 (18%)</td>
<td>7 (19%)</td>
<td>9 (16%)</td>
<td>9 (16%)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>9 - 10</td>
<td>42</td>
<td>16 (38%)</td>
<td>5 (14%)</td>
<td>0 (0%)</td>
<td>2 (14%)</td>
<td>9 (16%)</td>
<td>4 (11%)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 - 14</td>
<td>36</td>
<td>12 (33%)</td>
<td>2 (20%)</td>
<td>0 (0%)</td>
<td>2 (14%)</td>
<td>0 (0%)</td>
<td>2 (14%)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 - 17</td>
<td>14</td>
<td>1 (7%)</td>
<td>2 (20%)</td>
<td>0 (0%)</td>
<td>2 (14%)</td>
<td>0 (0%)</td>
<td>2 (14%)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>APP-SL70</td>
<td>4 - 6</td>
<td>130</td>
<td>21 (16%)</td>
<td>18%</td>
<td>16%</td>
<td>12%</td>
<td>20 (15%)</td>
<td>5 (14%)</td>
<td>6 (16%)</td>
<td>5 (14%)</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>7 - 9</td>
<td>37</td>
<td>6 (16%)</td>
<td>6 (16%)</td>
<td>5 (14%)</td>
<td>5 (14%)</td>
<td>7 (23%)</td>
<td>6 (19%)</td>
<td>6 (16%)</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10 - 12</td>
<td>31</td>
<td>8 (26%)</td>
<td>1 (10%)</td>
<td>2 (20%)</td>
<td>1 (10%)</td>
<td>2 (20%)</td>
<td>1 (10%)</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 - 15</td>
<td>10</td>
<td>3 (30%)</td>
<td>1 (10%)</td>
<td>2 (20%)</td>
<td>1 (10%)</td>
<td>2 (20%)</td>
<td>1 (10%)</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>App<sup>NL-G-F</sup></td>
<td>2.5</td>
<td>20</td>
<td>4 (20%)</td>
<td>29%</td>
<td>20%</td>
<td>10%</td>
<td>5 (25%)</td>
<td>3 (15%)</td>
<td>4 (20%)</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>17</td>
<td>4 (24%)</td>
<td>3 (18%)</td>
<td>1 (6%)</td>
<td>3 (18%)</td>
<td>2 (22%)</td>
<td>2 (22%)</td>
<td>1 (11%)</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>9</td>
<td>4 (44%)</td>
<td>2 (22%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>2 (22%)</td>
<td>2 (22%)</td>
<td>1 (11%)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>APPSwe</td>
<td>9 - 12</td>
<td>26</td>
<td>3 (12%)</td>
<td>6%</td>
<td>26%</td>
<td>2%</td>
<td>2 (8%)</td>
<td>1 (4%)</td>
<td>2 (8%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>13 - 16</td>
<td>30</td>
<td>1 (3%)</td>
<td>11 (37%)</td>
<td>0 (3%)</td>
<td>10 (33%)</td>
<td>6 (38%)</td>
<td>0 (0%)</td>
<td>4 (25%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>17 - 20</td>
<td>16</td>
<td>0 (0%)</td>
<td>6 (38%)</td>
<td>0 (0%)</td>
<td>6 (38%)</td>
<td>0 (0%)</td>
<td>6 (38%)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C57BL/6 (wild-type)</td>
<td>2.5 - 16</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>