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Background: Survivors of childhood cancer are at risk for anthracycline- and/or

radiotherapy-induced cardiotoxicity.

Aims: The aim of this study was to assess clinical, laboratory, and imaging parameters

of subclinical cardiovascular disease in childhood cancer survivors.

Methods: Patients underwent cardiopulmonary exercise test (CPET), laboratory testing,

transthoracic echocardiography (TTE) with tissue doppler imaging (TDI) and speckle

tracking. A subset of patients also underwent cardiovascular magnetic resonance

imaging (CMR). Findings were correlated to cumulative anthracycline and exposure

to mediastinal irradiation during cancer treatment. In a subgroup analysis, TTE and

CMR findings were compared to data from 40 gender- and age-matched patients with

childhood onset hypertrophic cardiomyopathy (HCM).

Results: Cardiac evaluation was performed in 79 patients (43 males) at

11.2 ± 4.5 years after cancer treatment. Oncologic diagnosis at a median

age of 12.0 years was Hodgkin lymphoma in 20, sarcoma in 17, acute

leukemia in 24, relapse leukemia in 10, and others in 8 patients. Cumulative

anthracycline dose exceeded 300 mg/m2 in 28 patients. Twenty six patients also

received mediastinal irradiation. Decreased peak respiratory oxygen uptake in %

predicted on CPET, increased levels of N-terminal pro-brain natriuretic peptide

(NTproBNP), increased global longitudinal strain on TTE speckle tracking, and diastolic
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dysfunction on TDI were the most prominent findings on detailed cardiology follow-up.

In contrast to HCM patients, childhood cancer survivors did not show left ventricular

hypertrophy (LVPWd z-score median 0.9 vs. 2.8, p < 0.001), hyperdynamic systolic

function on TTE (Ejection fraction 62± 7 vs. 72± 12%, p= 0.001), or fibrotic myocardial

changes on CMR (Late gadolinium positive 0/13 vs. 13/36, p = 0.001; extracellular

volume fraction 22 ± 2 vs. 28 ± 3, p < 0.001) at time of follow-up. There was no

correlation between chest radiation exposure and abnormal cardiac findings. Cumulative

anthracycline dose was the only significant independent predictor on multivariate analysis

for any cardiovascular abnormality on follow-up (p = 0.036).

Conclusion: Increasing cumulative anthracycline dose during cancer treatment

correlates with subclinical cardiac dysfunction in childhood cancer survivors best

detected by elevated cardiac serum biomarkers, decreased exercise capacity on CPET,

and abnormalities on echocardiographic speckle tracking and TDI.

Keywords: cardiotoxicity, childhood cancer, biomarker, speckle tracking, tissue doppler, anthracycline,

cardiovascular, subclinical

INTRODUCTION

Due to advancements in treatment, survival rates for childhood
cancer have substantially improved during the past decades with
an overall 5-year survival rate of over 80% today (1–3). More
than half of childhood cancer patients receive anthracyclines
as part of their cancer therapy (4) and anthracycline-mediated
cardiovascular complications contribute to morbidity and
mortality in the growing population of childhood cancer
survivors [reviewed in Franco et al., (5), Raj et al., (6), Todaro
et al., (7), Van Der Pal et al., (8) and (9)]. Anthracyclines express
their antiproliferation of cancer cell effects through inhibition
of DNA replication, RNA replication, DNA cross-linking, and
topoisomerases (10). The pathophysiology of anthracycline
mediated cardiotoxicity is multifactorial and involves multiple
mechanisms. Oxidative stress (11–14), induction of apoptosis,
formation of toxic metabolites, altered cardiomyocyte gene
expression, transcription and translation (15–18), as well as
impaired oxidative phosphorylation and adenosine triphosphate
(ATP) synthesis (19), have been suggested to play a major role
in anthracycline-induced cardiotoxicity. Survivors of childhood
cancer are especially vulnerable to these risks given their young
age at the time of treatment and the exposure of cardiotoxicity
of their growing and developing heart. Exposure to mediastinal
irradiation might contribute additionally to cardiotoxic effects
(8, 20–24). Cardiotoxicity can manifest at an early stage of
therapy (during or immediately after treatment) (25) or many
years thereafter (9, 26). The clinical presentation of childhood
cancer survivors suffering from cancer-treatment related
cardiotoxicity varies from asymptomatic cardiac dysfunction to

Abbreviations: HCM, Hypertrophic cardiomyopathy; TTE, Transthoracic

echocardiography; ECG, Electrocardiogram; CPET, Cardiopulmonary exercise

testing; CMR, Cardiovascular magnetic resonance; LVPWd, Enddiastolic left

ventricular posterior wall dimension; LVEDd, Left ventricular enddiastolic

diameter; EF, Ejection Fraction; GLS, Global longitudinal strain; LA, Left

atrium; MV, Mitral valve; LGE, Late gadolinium enhancement; MOLLI, Modified

look-locker inversion recovery sequence; ECV, Extracellular volume fraction;

NTproBNP, N-terminal pro-brain natriuretic peptide.

overt congestive heart failure (8, 9, 20). Other cardiovascular
sequelae include coronary artery disease, stroke, arrhythmias,
and valvular and vascular dysfunction (20). There is now
a growing body of evidence that genetic risk factors might
contribute to the large variability of cardiotoxic disease in
individuals (27–30).

The primary prevention of long-term adverse effects of
childhood cancer treatment includes modification of therapeutic
exposures (31–33), the concomitant use of cardioprotective
therapies (34–37), or the use of alternative chemotherapeutics
with maximal efficacy and minimal short- and long-term adverse
effects (36).

Secondary prevention after completion of anticancer
treatment, such as improved surveillance, appropriate screening
strategies, and preventative therapies for cardiovascular
complications, require an interdisciplinary approach between
oncologists and cardiologist.

Standardized clinical evaluation with regular follow-up and
assessment of the entire cardiovascular system is necessary
in childhood cancer survivors (38). However, even though
consensus-based guidelines for cardiotoxicity monitoring
following chemotherapy using echocardiography exist (38),
the optimal timing and cost-effectiveness for such monitoring
needs further investigation (39, 40). Identification of subclinical
cardiotoxicity can be challenging (41).

Data are scarce with regards to the optimal use of serum
biomarkers, the mode and sensitivity of distinct imaging
modalities, and optimal management strategies once subclinical
cardiotoxicity has been detected, specifically in children.

The aim of the study was to assess laboratory,
cardiopulmonary exercise testing, echocardiographic, and
cardiac magnetic resonance imaging findings in clinically

asymptomatic childhood cancer survivors on long-term follow-

up. The identification of monitoring parameters shall optimize

risk stratification, identify subclinical cardiovascular disease, and

enable preventative treatment measures in time before overt

clinical disease in childhood cancer survivors becomes evident.

Frontiers in Pediatrics | www.frontiersin.org 2 March 2020 | Volume 8 | Article 123

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Wolf et al. Cardiovascular Disease Childhood Cancer Survivors

MATERIALS AND METHODS

Study Design
In this retrospective single tertiary care center study, medical
charts were reviewed from all childhood cancer survivors
followed at the pediatric cardiology outpatient unit at the
German Heart Center Munich between March 2015 and
October 2018. Demographic, clinical, laboratory, transthoracic
echocardiographic (TTE), cardiopulmonary exercise testing
(CPET), cardiovascular magnetic resonance (CMR), and other
patient-related data were collected retrospectively by review of
patients’ charts at last follow-up.

Patient Population
Data from a total of 79 patients with a primary diagnosis
of childhood cancer and initial cancer treatment between 0
and 18 years of age were analyzed. For subgroup analysis,
TTE and CMR findings were compared with 40 gender-
and age-matched patients with childhood onset hypertrophic
cardiomyopathy (HCM). The diagnosis of HCM was based on
clinical evaluation and cardiac catheterization or TTE detecting
myocardial hypertrophy (defined as a z-score of >2) in the
absence of another cardiac or systemic disease causing the degree
of left ventricular hypertrophy identified (42, 43). This patient
cohort was selected for comparison to evaluate similarities
and differences between cardiomyopathic changes according
to underlying etiology. Data were collected as previously
described (44).

Cardiopulmonary Exercise Testing
CPET was performed in sitting position on a bike-ergometer.
A standardized testing protocol was performed and physical
working capacity, peak oxygen uptake (VO2 max), evidence of
myocardial ischemia or arrhythmia and escalation of heart rate
or blood pressure during or after exertion were recorded (45).
For the peak respiratory oxygen uptake in % predicted [VO2 max
(% norm)], a cut-off level of <80 was determined as “abnormal.”

Serum Biomarkers
The serum biomarkers cardiac troponin T (cTNT) and N-
terminal pro-brain natriuretic peptide (NTproBNP) levels
were determined as marker for early systolic dysfunction
or myocardial stress. Values >0.01 ng/dL and >100 ng/dL,
respectively, were considered as “elevated.”

Transthoracic Echocardiography
Echocardiograms were obtained at the time of outpatient
visits and were remeasured by blinded study staff (AK).
TTE was performed using standard equipment in routine
clinical practice and using standard views according to
the American Society of Echocardiography guidelines (46–
48). Echopac Software (General Electric, Vingmed, Horten,
Norway) was used for offline analysis. Measurements of
left ventricular wall thickness and enddiastolic ventricular
diameters were standardized to body surface area and given
as z-scores [http://parameterz.blogspot.com/2008/09/z-scores-
of-cardiac-structures.html, (49)]. Z-scores of <-2 or > +2 are
considered as “abnormal,” myocardial hypertrophy is defined

as a z-score of >2 (42). Global longitudinal strain (GLS) was
assessed by speckle tracking and diastolic function by tissue and
pulse wave Doppler echocardiography on apical four-chamber
views at the lateral and septal mitral valve annulus as previously
described (48, 50). Reference values for normal and abnormal
measurements were extracted from literature of large gender-
and age-matched cohorts with similar ethnicity (49, 51–53). An
ejection fraction (EF) of <50 (51) and GLS >-20 (53, 54) were
considered as abnormal. Left atrial (LA) volume standardized
to body surface area (BSA) of >34 ml/m2 was considered as
enlarged (51). Mitral valve E/A ratio of >2 and a septal E/E’ ratio
of >8 was considered as abnormal (52, 55).

Cardiovascular Magnetic Resonance
Tomography
CMR was performed on a 1.5 Tesla MR scanner (Magnetom
Avanto, Siemens Healthcare, Software Version VD13, Erlangen,
Germany). Cine images (balanced steady-state free precession)
were acquired in short axis and four chamber orientations
in breath hold to evaluate the ventricular volume, ventricular
mass, ejection fraction, and regional wall anomalies. Late
Gadolinium Enhancement (LGE) was acquired using a T1-
weighted phase-sensitive inversion recovery sequence 10min
after intravenous administration of an extracellular MR contrast
agent (Gadopentetat) to detect focal fibrosis (56).

Native and post contrast T1 mapping, using a modified look-
locker inversion recovery sequence (MOLLI) (57), with non-rigid
motion correction reconstruction, were assessed in short axis and
four chamber orientation. Image quality was assessed by revising
T1 maps and error maps of the region of interest. Extracellular
volume (ECV) was calculated as previously described (58). An
ECV >25 was considered as abnormal.

Ethics
The study was conducted in accordance with the Declaration
of Helsinki (revision 2008) and the Good Clinical Practice
guidelines. The study protocol was approved by the local ethical
board of the Technical University Munich (ethical approval
number 243/17S, 10/16/2017).

Statistics
Data are presented as mean and standard deviation or as
median and minimum / maximum according to distribution.
Kolmogorov-Smirnoff Test was used to assess distribution of
variances. Independent t-Test and Mann-Whitney-Test were
used according to data distribution to compare parameters
between the two groups. ANOVA (analysis of variances)
or Kruskall-Wallis-test were used to compare differences
between multiple groups (oncologic diagnosis) according to
data distribution. Fisher’s Test or Pearson chi-square was used
for comparison of categorical variables. Pearson correlation
was used to assess the correlation between anthracycline dose,
radiation exposure, age at cancer treatment, age at follow-up,
follow-up time, and cardiovascular findings. Binary outcome
variables (abnormal or normal) were created using cut-off
for the respective variables. Backward multivariate binary
logistic regression analysis was done for the categorical variable
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“Any cardiovascular abnormality” defined as decreased exercise
capacity, NTproBNP level, or increased septal E/E’ ratio on
TDI as dependent variable and cumulative anthracycline dose,
radiation exposure, gender, age at cancer treatment, age at
follow-up, and follow-up time as covariates. Cut-off levels of
cumulative anthracycline dose predictive for any cardiovascular
abnormality on follow-up were derived from the Receiver
operating characteristic (ROC) curve. The significance level of
p-value was set at <0.05. Data were analyzed on IBM SPSS
Version 25.

RESULTS

Patient Characteristics
Demographic and clinical patient characteristics are summarized
in Table 1. A detailed cardiac evaluation was performed in
79 patients (43 males) at 11.2 ± 4.5 years after cancer
treatment. Underlying oncologic diagnosis was acute (N =

24) or relapse leukemia (N = 10), Hodgkin lymphoma
(N = 20), sarcoma (N = 17), nephroblastoma (N = 4),
neuroblastoma (N = 3), and hepatoblastoma (N = 1).
Median age at primary oncologic diagnosis was 12.0 years.
Mean cumulative anthracycline dose was 261±104 mg/m2

and exceeded 300 mg/m2 in 36% of patients. Patients with
sarcomas received significantly higher doses of anthracycline
compared to the remaining patients. Twenty-six patients,
most of them with Hodgkin lymphomas and relapse ALL,
also received mediastinal irradiation with heart exposure.
All patients with relapse ALL and one patient with ALL
received mediastinal irradiation in the setting of total body
irradiation for preparation to bone marrow transplant (Table 1).

Cumulative ionizing radiation dose was <30 Gray in all
these patients.

Cardiovascular Findings in Childhood
Cancer Survivors
All patients were clinically asymptomatic and in NYHA
functional class I at the time of follow-up. Abnormal findings
on detailed cardiovascular examination in childhood cancer
survivors included decreased exercise capacity on CPET,
increased NTproBNP levels on laboratory testing, impaired
global longitudinal strain on TTE speckle tracking, and evidence
of diastolic dysfunction on tissue Doppler echocardiography
(Figure 1). No patient had a medical history or clinical evidence
of significant pulmonary disease. Decreased exercise capacity
as shown by a peak respiratory oxygen uptake in % predicted
(VO2 max) of <80 on CPET was evident in a third of patients.
Cardiac troponin T levels were normal in all patients. NTproBNP
levels >100 ng/dL were measured in 29% of childhood cancer
survivors. Whereas, left ventricular systolic function (EF) and
left ventricular dimensions were normal on TTE in most
patients, there were abnormal GLS measurements in off-line
echocardiographic speckle tracking analysis in about 28% of
patients. No left atrial enlargement was documented on TTE,
but pulse wave and tissue Doppler examination showed signs of
diastolic dysfunction in 21, 24, and 11%, respectively (abnormal
MV E/A ratio, E deceleration time and septal E/E’. There was no
evidence of focal (LGE positive) or interstitial (increased ECV on
T1 map) myocardial fibrosis on CMR imaging (Figure 1).

TTE and CMR data of childhood cancer survivors were
compared to age- and gender-matched patients with an
underlying diagnosis of childhood hypertrophic cardiomyopathy
(HCM) secondary to mutations in sarcomere genes. Themajority

TABLE 1 | Patient characteristics.

Patient characteristics Total

N = 79

Hodgkin lymphoma

N = 20

Sarcoma

N = 17

ALL

N = 24

Relapse ALL

N = 10

Others*

N = 8

p

Male n/N (%) 43/79 (54) 11/20 (55) 10/17 (59) 14/24 (58) 3/10 (30) 5/8 (22) nsa

Age at diagnosis (years) 12.0 [0.2–17.9] 14.0 [6.7–17.9] 12.5 [3.8–17.7] 8.5 [2.7–16.7] 6.3 [2.0–11.4] 5.0 [0.2–13.7] <0.001b

Age at follow-up (years) 20.9 [11.9–32.0] 23.2 [18.8–30.2] 19.9 [17.0–27.6] 20.3 [11.9–24.8] 19.5 [17.1–26.1] 21.0 [13.9–32.0] <0.001b

Follow-up time (years) 11.2 ± 4.5 10.1 ± 3.1 8.2 ± 3.1 12.0 ± 4.5 13.4 ± 2.8 15.7 ± 6.8 <0.001b

Height (cm) 169 ± 10 172 ± 8 171 ± 10 170 ± 9 159 ± 10 167 ± 14 0.013b

Weight (kg) 68 ± 17 78 ± 23 64 ± 9 70 ± 11 53 ± 13 62 ± 19 0.002b

BMI 22.9 [14.1–41.5] 25.0 [18.2–41.5] 21.3 [18.6–29.4] 23.2 [17.6–35.5] 20.1 [17.3–27.5] 22.4 [14.1–26.9] 0.017b

BSA (m2) 1.77 ± 0.26 1.91 ± 0.31 1.74 ± 0.15 1.8 ± 0.16 1.53 ± 0.23 1.69 ± 0.33 0.001b

Anthracycline dose (mg/m2) 261 ± 104 187 ± 75 367 ± 87 225 ± 68 290 ± 8 283 ± 119 <0.001b

< 100 mg/m2, n/N (%) 3/79 (4) 1/20 (5) 1/17 (6) 1/24 (4) 0/10 0 <0.001a

100–199 mg/ m2, n/N (%) 24/79 (31) 15/20 (79) 0 6/24 (25) 2/10 (20) 2/8 (25)

200–299 mg/m2, n/N (%) 23/79 (29) 1/20 (5) 0 16/24 (68) 3/10 (30) 3/8 (38)

>300 mg/m2, n/N (%) 28/79 (36) 3/20 (16) 16/17 (94) 1/24 (4) 5/10 (50) 3/8 (38)

Mediastinal irradiation 26/79 (33) 14/20 (70) 0 1/24 (4) 10/10 (100) 1/8 (13) <0.001a

Total body irradiation 11/79 (14) 0 0 1/24 (4) 10/10 (100) 0 <0.001a

Data are shown as mean ± standard deviation or median [range] according to data distribution.

*Other oncologic diagnosis include nephroblastoma (N = 4), neuroblastoma (N = 3), and hepatoblastoma (N = 1).
aPearson chi square.
bANOVA (analysis of variances) or Kruskall-Wallis-test according to data distribution.

N, number of patients; ns, not significant; mg, milligram; cm, centimeter.
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FIGURE 1 | Abnormal cardiovascular parameters. Shown are the percentages

of childhood cancer survivors with normal cardiovascular parameters (black

bars) and those with abnormal cardiovascular parameters (striped bars).

Please see methods section for cut-off values. CPET: cardiopulmonary

exercise testing; VO2 max (% norm): peak respiratory oxygen uptake in %

predicted; EF, Ejection Fraction; GLS, Global longitudinal strain; LVPWd,

Enddiastolic left ventricular posterior wall dimension; LVEDd, Left ventricular

enddiastolic diameter; LA, left atrium; MV, Mitral valve; CMR, cardiovascular

magnetic resonance imaging; LGE, Late gadolinium enhancement; ECV,

extracellular volume fraction.

of HCM patients carried a pathogenic variant in either the
MYH7 (14/40, 35%) or the MYBPC3 (12/40, 30%) gene. Other
genes affected included TNNT2, TNNI3, ML2, TPM1 in 7
of 40 HCM patients (17.5%) and multiple mutations were
detected in 4 of 40 HCM patients (10 %). Molecular diagnostic
testing was negative in 3 of 40 HCM patients (7.5 %). Left
ventricular outflow tract obstruction was present in 14 of 40
HCM patients (35 %). In contrast to HCM patients, childhood
cancer survivors did not show left ventricular hypertrophy
or hyperdynamic systolic function on TTE (Table 2). Fibrotic
myocardial changes, such as focal fibrosis assessed by the
presence of LGE on CMR and interstitial fibrosis assessed by
increased ECV on CMR T1 map, were observed in a subset
of HCM patients but not in childhood cancer survivors at the
time of follow-up (Table 2). Evidence of diastolic dysfunction on
echocardiographic pulse wave and tissue Doppler was observed
in both groups, but only HCM and not childhood cancer
survivor patients presented with enlarged standardized left
atrial volumes (Table 2). Enlarged left atria documented in
HCM patients occurred independently from moderate mitral
regurgitation noted in only 3 of the 10 HCM patients with
enlarged left atria. No higher degree valve stenosis was noted in
HCM patients.

Univariate Analysis of Risk Factors for
Abnormal Clinical Features
Patients were grouped into five categories according to oncologic
diagnosis and variance analysis was carried out to assess if there
were differences of abnormalities in cardiovascular findings
between groups. There were significant differences between

TABLE 2 | Cardiovascular findings of childhood cancer survivors compared to childhood hypertrophic cardiomyopathy patients.

Clinical findings Total

N = 120

Childhood cancer survivors

N = 79

Childhood hypertrophic cardiomyopathy

N = 40

p

Male; n/N (%) 67/120 (56) 43/79 (54) 24/40 (60) nsa

Age at diagnosis (years) 10.7 [0–18.9] 12.0 [0.2–17.9] 6.0 [0.0–18.9] 0.024b

Age at follow-up (years) 20.1 [0.4–51.2] 20.9 [11.9–32.0] 17.7 [0.4–51.2] 0.044b

Follow-up time (years) 11.1 ± 6.2 11.2 ± 4.5 10.8 ± 8.6 ns

CPET

VO2 max (% norm) 87 ± 21 91 ± 21 78 ± 17 0.003b

TTE

LVPWd (z-score) 1.0 [−0.8 to 7.1] 0.9 [−0.8 to 1.9] 2.8 [−0.4 to 7.1] <0.001b

EF (%) 64 ± 9 62 ± 7 72 ± 12 0.001b

GLS −18.0 [−27.2 to 5.0] −18.7 [−22.6 to 10.0] −13.1 [−27.2 to 4.8] 0.007b

Enlarged LA; n/N (%) 10/109 (9) 0 10/38 (26) <0.001a

MV E/A 1.6 ± 0.5 1.6 ± 0.5 1.6 ± 0.7 nsb

E dec 175 ± 41 175 ± 37 172 ± 52 nsb

E/E’ sept 6.9 ± 2.8 6.4 ± 2.3 9.1 ± 3.5 0.009b

CMR

LGE positive; n/N (%) 13/36 (36) 0 13/36 (36) 0.001a

T1 ECV 25 ± 4 22 ± 2 28 ± 3 <0.001b

Data are shown as mean ± standard deviation or median [range] according to data distribution.
aFishers exact Test.
b independent t-Test or Mann-Whitney-Test according to data distribution.

n/N, number of patients; ns, not significant; CPET, cardiopulmonary exercise testing; VO2 max (% norm), peak respiratory oxygen uptake in % predicted; TTE, transthoracic

echocardiography; EF, Ejection Fraction; GLS, Global longitudinal strain; LVPWd, Enddiastolic left ventricular posterior wall dimension; LA, left atrium;MV,Mitral valve; CMR, cardiovascular

magnetic resonance imaging; LGE, Late gadolinium enhancement; ECV, extracellular volume fraction.
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oncologic groups concerning decreased exercise capacity,
NTproBNP levels and evidence of diastolic dysfunction on
echocardiographic tissue Doppler imaging (mitral valve septal
E/E’). Elevated NTproBNP levels and evidence for diastolic
dysfunction were mostly observed in patients treated for
sarcoma (Table 3).

There was no influence of age of diagnosis, age at follow-up
and follow-up time on cardiac features on Pearson’s correlation
in univariate analysis.

There was a positive correlation between increasing
cumulative anthracycline doses and decreased exercise
capacity on CPET (Figure 2A). Septal E/E’ ratio on pulse
wave and tissue Doppler echocardiography as a correlate
of diastolic function increased significantly with increasing
cumulative anthracycline doses (Figure 2B). There was a trend
toward increased NTproBNP levels on Pearson correlation
(Figure 2C), and patients with increased NTproBNP levels had
received a significantly higher cumulative anthracycline dose

TABLE 3 | Cardiovascular findings according to oncologic diagnosis.

Cardiovascular

parameters

Total

N = 79

Hodgkin lymphoma

N = 20

Sarcoma

N = 17

ALL

N = 24

Relapse ALL

N = 10

Others*

N = 8

p

CPET

VO2 max (% norm) 91 ± 21 94 ± 26 79 ± 13 96 ± 19 89 ± 20 92 ± 24 nsd

Laboratory

NTproBNP (ng/dL) 40 [6-763] 40 [6-168] 130 [17-763] 33 [8-77] 37 [7-139] 54 [15-273] 0.043d

NTproBNP

elevateda

18/65 (28) 5/19 (26) 10/15 (67) 0/17 2/9 (22) 1/5 (20) 0.001e

n/N (%)

cTNT (ng/dL) 0.004 [0.001-0.10] 0.004 [0.003-0.10] 0.006 [0.001-0.009] 0.003 [0.003-0.008] 0.005 [0.003-0.01] 0.003 [0.003-0.006] nsd

TTE morphology

Myocardial

hypertrophyb;

0/79 0/20 0/17 0/24 0/10 0/8 NA

n/N (%)

LV dilatationc 1/79 (1) 0/20 1/17 (6) 0/24 0/10 0/8 nse

n/N (%)

TTE systolic function

EF (%) 62 ± 7 63 ± 7 60 ± 8 63 ± 7 65 ± 8 61 ± 6 nsd

GLS −18.7 [−22.6 to

−10.0]

−20.1 [−22.6 to

−14.8]

−17.0 [−21.0 to

−10.0]

−18.4 [−22.6 to

−15]

−18.5 [−22.1 to

−14.8]

−19.2 [−20.0 to

−16.5]

nsd

TTE diastolic function

LA volume/BSA

(ml/m2 )

16.1 ± 3.9 16.0 ± 3.4 17.9 ± 4.2 15.3 ± 4.0 14.4 ± 4.2 17.0 ± 2.3 nsd

MV E/A ratio 1.6 [1.0–3.3] 1.4 [1.0–2.1] 1.6 [1.0–3.1] 1.6 [1.0–3.3] 1.3 [1.0–3.0] 1.7 [1.5–2.3] nsd

MV E dec (ms) 175 ± 37 179 ± 47 171 ± 32 183 ± 32 162 ± 33 167 ± 40 nsd

MV E/E’ sept 6.0 [3.4–17.2] 5.3 [3.8–7.6] 6.9 [3.8–17.2] 5.3 [3.4–7.7] 7 [5.4–15.0] 6.5 [3.7–8.4] 0.006d

MV E/E’ sept

abnormal;

8/72 (11) 0/18 4/15 (27) 0/23 3/10 (30) 1/6 (17) 0.001e

n/N (%)

CMR

LGE positive;

0 0 0 0 0 0 NA

n/N (%)

T1 ECV 22 ± 2 20 22 ± 2 NA 21 ± 1 25 ± 1 nsd

Any cardiovascular abnormality

n/N (%) 38/79 (48) 9/20 (45) 14/17 (82) 5/24 (21) 5/10 (50) 5/8 (63) 0.003 e

Data are shown as mean ± standard deviation or median [range] according to data distribution.

*Other oncologic diagnosis include nephroblastoma (N = 4), neuroblastoma (N = 3), and hepatoblastoma (N = 1).
aNTproBNP elevated defined by values >100 ng/dL.
bMyocardial hypertrophy defined by left ventricular enddiastolic posterior wall z-score >2.
cLeft ventricular dilatation defined by left ventricular enddiastolic diameter z-score >2.
dANOVA (analysis of variances) or Kruskall-Wallis-test according to data distribution.
ePearson chi square.

N, number of patients; ns, not significant; NA, not available; ng, nanogram; dL, deciliter; CPET, cardiopulmonary exercise testing; VO2 max (% norm), peak respiratory oxygen uptake in

% predicted; NTproBNP, N-terminal pro-brain natriuretic peptide; cTNT, cardiac troponin T; TTE, transthoracic echocardiography; LV, Left ventricular; EF, Ejection Fraction; GLS, Global

longitudinal strain; LA, left atrium; BSA, body surface area; MV, Mitral valve; CMR, cardiovascular magnetic resonance imaging; LGE, Late gadolinium enhancement; ECV, extracellular

volume fraction.
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FIGURE 2 | Correlation of cardiomyopathic changes with anthracycline dose. Peak respirator oxygen uptake on cardiopulmonary exercise testing (A) decreases and

septal mitral valve E/E’ ratio (B) increases significantly with increasing cumulative anthracycline dose (p = 0.015 and p = 0.003, respectively, pearson chi square).

Trend to increased NTproBNP values with increasing cumulative anthracycline dose (C). Receiver operating characteristic (ROC) curve illustrating the ability of

cumulative anthracycline dose predicting any cardiovascular abnormality (decreased exercise capacity, increased NTproBNP level, or abnormal tissue Doppler septal

E/E’ratio) on follow-up (D). CPET, cardiopulmonary exercise testing; VO2 max (% norm), peak respiratory oxygen uptake in % predicted; EF, Ejection Fraction; TTE,

transthoracic echocardiography.

compared to patients with normal NTproBNP levels Figure 3A).
Increasing NTproBNP values correlated with decreasing
exercise capacity, decreasing echocardiographic systolic left
ventricular function, and increasing echocardiographic diastolic
dysfunction parameters (Figures 3B–D). Patients with abnormal
cardiovascular findings were exposed to a significantly higher
amount of cumulative anthracycline compared to patients with
normal evaluations (cumulative anthracycline dose 294 ± 105
mg/m2 vs. 231± 95 mg/m2, p= 0.007, independent t-Test).

There was no significant correlation between cumulative
anthracycline dose and decreased systolic echocardiographic
function as shown by TTE ejection fraction (EF)
on follow-up.

There was no correlation between exposure to mediastinal
irradiation or exposure to total body irradiation and
abnormal cardiac findings in univariate analysis. Patients with
relapse ALL who were all exposed to mediastinal radiation
in the setting of TBI for bone marrow transplantation
conditioning had also received higher cumulative
anthracycline doses, so that mediastinal radiation exposure
was eliminated as independent predictor on multivariate
analysis (see below).

Multivariate Analysis and Identification of
Predictors for Risk Stratification
Increased cumulative anthracycline dose during cancer
treatment was the only independent predictor for any
cardiovascular abnormality (decreased exercise capacity or
elevated NTproBNP or evidence of diastolic dysfunction)
after elimination of influencing factors, such as oncologic
diagnosis, gender, age at diagnosis, age at follow-up,
follow-up time or exposure to irradiation, on multivariate
logistic regression analysis (p = 0.036). Cut-off levels
of the cumulative anthracycline dose associated with any
cardiac abnormality on follow-up examination on the ROC-
curve were 261, 269, and 305 mg/dL for a true positive
prediction rate (sensitivity) of 62.2, 59.5, and 54.1%, and a
false-positive prediction rate (1- specificity) of 30, 20, and 17.5%,
respectively (Figure 2D).

DISCUSSION

This study reports the results of a detailed cardiovascular
examination in a large group of clinically asymptomatic
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FIGURE 3 | Role of the laboratory biomarker NTproBNP in cardiovascular impairment of childhood cancer survivors. Patients with elevated NTproBNP values were

exposed to significantly higher doses of cumulative anthracycline compared to patients with NTproBNP values within the normal range [(A) independent t-Test 0.008];

increasing NTproBNP values correlated with decreasing exercise capacity [VO2 max (% norm), (B) Pearson correlation p = 0.017], decreasing echocardiographic

systolic left ventricular function [EF, (C) Pearson correlation p = 0.039], and increasing echocardiographic diastolic dysfunction parameters [tissue Doppler septal

E/E’ratio, (D) Pearson correlation p = 0.01]; CPET, cardiopulmonary exercise testing; VO2 max (% norm), peak respiratory oxygen uptake in % predicted; EF, Ejection

Fraction; TTE, transthoracic echocardiography.

childhood cancer survivors on long-term follow-up. All
patients were in NYHA functional class I and had a normal
echocardiographic ejection fraction. Subclinical cardiovascular
disease was evident by increased circulating NTproBNP levels,
decreased exercise capacity, increased global longitudinal strain
on echocardiographic speckle tracking, and evidence of diastolic
dysfunction on echocardiographic tissue Doppler. The only
independent predictor for any abnormal cardiovascular finding
identified on multivariate analysis was the amount of cumulative
anthracycline dose administered during cancer treatment.
Major findings include the absence of overt clinical signs but
the presence of subtle impairment of cardiovascular function
most prevalent in patients late after successful treatment of
sarcoma, as well as a correlation of these subclinical findings
to the exposure of higher amounts of anthracycline during
cancer treatment. When comparing patients with abnormal
cardiovascular findings to those without, the cumulative
anthracycline dose was close to 300 mg/m2 in those who
showed cardiovascular impairment. The data support a
threshold of >300 mg/m2 as critical cumulative anthracycline
dose that puts patients at a higher risk for later myocardial
remodeling (59–62).

No correlation was found between mediastinal irradiation
exposure and abnormal cardiovascular findings in the current
study, although this has previously been suggested by others
(8, 9, 63). Two thirds of patients with Hodgkin disease
were exposed to mediastinal irradiation, but their cumulative
anthracycline dose was lower compared to the other groups
and they displayed the lowest amount of any cardiovascular
abnormalities. Cardiovascular abnormalities occurred more
frequently in patients with relapse ALL who were all exposed
to mediastinal irradiation. However, those patients had also
received higher doses of cumulative anthracycline because
of recurrence of disease. Since the current analysis did not
reveal any correlation with abnormal cardiovascular findings
and exposure to mediastinal irradiation after correction for
cumulative anthracycline dose, gender, age, height and weight
differences, the patients were evaluated as one group to assess
correlation with anthracycline dose. According to others (63)
there is a high risk of developing cardiomyopathy if >15 Gray
of mediastinal irradiation is given in addition to >100 mg/m2

of cumulative anthracycline doses. Not detecting an aggravating
effect from radiotherapy in the current study may be because the
time of 11.2 ± 4.5 years from cancer diagnosis to the follow-up
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cardiac examination was rather short, since deteriorating effects
frommediastinal irradiation are expected to occur at a later point
in time (8).

The reported positive correlation of decreased exercise
capacity on CPET with increasing cumulative anthracycline dose
and increasing NTproBNP levels contributes to the large body
of evidence about impaired exercise capacity in childhood cancer
survivors (64–66) and supports the value of CPET in identifying
subclinical changes (67).

The role of circulating biomarkers as predictors for subclinical
cardiovascular disease in childhood cancer survivors has been
suggested by others (68). Serum cardiac troponins are widely
used in assessing myocardial damage in adults and children (69).
No patient had elevated cardiac troponin T (cTNT) levels in the
current study providing evidence for the absence of any acute
ischemic or clinically overt myocardial disease. Thus, cardiac
troponin T does not seem suitable to detect cardiac sequelae
late after childhood cancer treatment. In contrast, NTproBNP
levels were increased in patients exposed to high cumulative
anthracycline doses even in the absence of clinical signs of
heart failure or decreased ejection fraction on echocardiography.
NTproBNP is elevated in response to ventricular wall stress
(70) and increased levels have been shown as marker for
diastolic dysfunction or myocardial stress (71, 72). The results
of the current study together with other data (68) support
the role of circulating serum NTproBNP levels as biomarkers
for subclinical cardiovascular impairment in asymptomatic
childhood cancer survivors.

On transthoracic echocardiography, there were no
abnormalities in morphologic parameters, such as myocardial
wall thickness, left ventricular enddiastolic dimensions or left
atrial volumes in the patients studied, supporting the evidence
of subclinical rather than clinical cardiovascular impairment.
However, patients after treatment for sarcoma and most
exposure to anthracyclines had lower enddiastolic left ventricular
dimension and thinner posterior walls compared to the other
groups. This was observed by others (73, 74) and supports the
theory of myocardial wall thinning secondary to progressive
cardiomyocyte loss after cardiotoxic cancer treatment (75, 76).
The observations of the current study are supported by
the comparison with a cohort of childhood hypertrophic
cardiomyopathy patients which shows fundamental differences
between the two types of cardiomyopathy.

Because myocardial and interstitial fibrosis occurs in
childhood hypertrophic cardiomyopathy patients (77) and
has been described in histopathological specimens obtained at
autopsy of childhood cancer survivors (78) and in adult patients
with anthracycline-induced decreased left ventricular function
poor LV function (79, 80), CMR was performed in a subset
of the studied cohort. There was no evidence of myocardial
fibrosis in the studied cohort, suggesting that myocardial fibrosis
is rather a sign of late disease and not evident in subclinical
disease status. However, the prevalence of myocardial fibrosis
and its impact on rhythm disorders or ventricular dysfunction
in adult childhood cancer survivors >30 years of age cannot be
assessed based on the present data because of the follow-up time
reaching to young adulthood only. Based on those findings it

can be concluded that CMR studies can be preserved to those
patients with overt cardiac dysfunction on echocardiography or
to specific questions.

As shown in other studies (81), global longitudinal strain on
echocardiographic speckle tracking was impaired in about a third
of childhood cancer survivors in the current study in the absence
of a decreased ejection fraction, supporting the use of speckle-
tracking echocardiography to detect subtle changes in cardiac
dysfunction. However, speckle tracking echocardiography needs
to be performed offline and is time-consuming, thus elevating
costs during regular patient follow-up.

In the absence of enlarged left atria, the ratio of mitral
valve septal annular E to the early velocity as measured by
tissue Doppler imaging (E’) (E/E’) was increased in patients
with subclinical cardiovascular impairment in the current
study, correlating with the amount of cumulative anthracycline
exposure as a sign of subclinical diastolic dysfunction. This was
also shown by others (67, 82–84) and supports the hypothesis of
a progressive, restrictive-like cardiomyopathy pattern previously
described in serial echocardiographic studies of long-term
childhood cancer survivors treated with anthracyclines (59, 74,
85–88).

In summary the presented data provide evidence of subclinical
cardiovascular disease in childhood cancer survivors exposed
to high doses of anthracyclines. Subtle changes may precede
clinical manifestation and can be evaluated by laboratory testing
(biomarkers) and focused echocardiographic imaging techniques
including speckle tracking and tissue Doppler.

Of course, focus should always be on the primary prevention
of cardiotoxicity (89) by limiting cumulative dosage, using
liposomal anthracyclines (31–33), and providing adjunctive
cardioprotective therapies (34–37) [specifically the iron-
chelating agent dexrazoxane (90–92)]. On the other hand,
patients at risk may benefit from early detection of subclinical
heart failure in order to start preventative cardiovascular
measures in time (74, 93–96).

CONCLUSION

Long-term childhood cancer survivors exposed to cardiotoxic
therapy show subtle impairment of cardiovascular function best
detected by decreased exercise capacity, elevated NTproBNP
levels, increased global longitudinal strain on speckle tracking,
and abnormal mitral valve annular septal tissue doppler
velocities in the absence of gross morphological changes,
such as myocardial fibrosis on CMR, or echocardiographic
decreased ejection fraction, enlarged left ventricular chamber
sizes or left atria. Increased cumulative anthracycline dose
for cancer treatment is the only independent predictor for
the presence of those abnormal cardiovascular findings.
Regular application of blood biomarkers and new imaging
technologies can optimize risk stratification of childhood
cancer survivors and can facilitate identification of subclinical
cardiovascular disease and enable preventative treatment
measures in time before overt clinical disease in high risk
childhood cancer patients.
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