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The study of shared variation in gray matter morphology may define neurodegenerative
diseases beyond what can be detected from the isolated assessment of regional brain
volumes. We, therefore, aimed to (1) identify SCNs (structural covariance networks) that
discriminate between Alzheimer’s disease (AD) patients and healthy controls (HC), (2)
investigate their diagnostic accuracy in comparison and above established markers, and
(3) determine if they are associated with cognitive abilities. We applied a random forest
algorithm to identify discriminating networks from a set of 20 SCNs. The algorithm was
trained on a main sample of 104 AD patients and 104 age-matched HC and was then
validated in an independent sample of 28 AD patients and 28 controls from another
center. Only two of the 20 SCNs contributed significantly to the discrimination between
AD and controls. These were a temporal and a secondary somatosensory SCN. Their
diagnostic accuracy was 74% in the original cohort and 80% in the independent samples.
The diagnostic accuracy of SCNs was comparable with that of conventional volumetric
MRI markers including whole brain volume and hippocampal volume. SCN did not
significantly increase diagnostic accuracy beyond that of conventional MRI markers. We
found the temporal SCN to be associated with verbal memory at baseline. No other
associations with cognitive functions were seen. SCNs failed to predict the course of
cognitive decline over an average of 18 months. We conclude that SCNs have diagnostic
potential, but the diagnostic information gain beyond conventional MRI markers is limited.

Keywords: structural covariance network, longitudinal, Alzheimer, cognition, random forest
INTRODUCTION

Alzheimer’s Disease (AD) has been recognized as a disconnection syndrome (1, 2) leading to
increasing cognitive deficits as the disease progresses. Resting state functional magnetic resonance
imaging (rs-fMRI) has been used to study functional connectivity at rest and showed decreased
connectivity in brain networks of AD patients (3–5). The default mode network (DMN) (3, 6) is
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most affected (7–9). Alterations in connectivity have also been
found in the salience and frontal executive networks (6, 8). In
healthy subjects, DMN connectivity is inhibited while other
networks increase their connectivity. AD patients lose the
ability to suppress the DMN network during cognitive activity,
(8) and a task-based fMRI study showed an association between
de-synchronized hippocampus and DMN activity and impaired
memory (10). In line with functional disconnection in AD,
multi-level deficiency of white matter (WM) connectivity has
been shown in DTI studies (11, 12). The authors reported a
decreased fiber-count of WM and loss of connective efficiency
within and between AD relevant brain areas like the
hippocampus, precuneus, and temporal gyrus (11). Another
study showed degeneration in 18 major WM tracts, including
the fornix, cingulum, and corpus callosum (12). Connectivity
between gray matter regions can also be assessed by a method
called structural covariance networks (SCNs) (13). SCNs are
networks found on the basis of distinct gray matter (GM)
covariation patterns in remote cortical areas. In healthy
subjects, SCN integrity decreases with age (14, 15), and relates
to impairment of cognitive and motor functions (16, 17). In
patients with mild cognitive impairment and AD, SCNs
containing temporal and limbic regions as well as the
precuneus were found to predict the rate of decline in memory
over time (13, 18, 19).

In the present study we aimed to identify those SCNs that best
discriminate between AD patients and healthy controls by
utilizing twenty SCNs obtained in a group of 257 healthy aging
subjects (16). We hypothesized, that networks including the
temporal lobes as well as the DMN discriminate best between
patients and controls. To validate the diagnostic accuracy of
potentially significant identified networks, we applied them on
an independent sample. The diagnostic value of SCNs was then
compared to conventional MRI markers of AD including the
medial temporal lobe atrophy score, total brain volume, and
hippocampal volume. We also tested whether SCNs relate to
cognitive functioning cross-sectionally and longitudinally.
METHODS

Sample
The data from AD patients are from the Prospective Registry on
Dementia (PRODEM), a longitudinal multi-center study on
disease-progression of dementia patients in Austria. The
inclusion criteria were as follows: (a) dementia diagnosis
according to DSM-IV criteria, (b) non-institutionalization and
no need for 24-h care and (c) availability of a caregiver who is
able to provide additional information on the patient. We
excluded patients with co-morbidities that were likely to cause
early termination from the study such as cancer. Subjects who
were not able to sign an informed consent form were also
excluded. For further detail see (20). The data from the
controls are from the Austrian Stroke Prevention Study–Family
(ASPS-Fam). The ASPS-Fam is a single-center, prospective study
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on risk factors and their effects on the brain in the normal elderly.
None of our control subjects had a history of neuropsychiatric
disease, including cerebrovascular attacks and dementia. All had
a normal neurologic examination (21).

For the present study all PRODEM patients with (1) either
possible or probable AD defined by the NINCDS-ADRDA
Alzheimer’s criteria (22), (2) a 3-Tesla T1-weighted 3D MRI
scan, and (3) a cognitive assessment within 3 months of the
imaging examination were selected. The cognitive assessment
included the Mini Mental State examination (MMSE) and the
“Consortium to Establish a Registry for Alzheimer’s Disease”—
Test battery—plus version (CERAD-Plus). In total 104 AD
patients (mean age = 71.45 ± 7.97 years, range: 51–87 years, 59
females) from Graz and 28 AD patients (mean age = 73.79 ±
6.17, range: 58–82, 14 females) from Vienna were included. The
Graz sample was used for statistical modeling, while the
Viennese sample served as the independent validation cohort.
In each center a cohort of controls was matched to each AD
patient. Matching was done for age (+/− 3 years) and sex (Graz:
mean age = 71.09 ± 7.38 years; range: 53–86, 59 females; Vienna:
n = 28, mean age = 72.44 ± 7.18 years; range: 56–85 years,
14 female).

Eighty-two AD patients from the Graz set had a follow-up
clinical and cognitive assessment that ranged between 6 and 37
months with a mean of 18 months. Patients who dropped out
from the study did not differ from subjects with follow-up in
terms of and the Mini Mental State Examination scores
at baseline.

The study was approved by the ethics committees of the
Medical Universities of Graz, Austria and Vienna, Austria.
Informed consent was obtained from all subjects and/or
caregivers included in the study.

MRI Protocol
Structural data were assessed using a three-dimensional, T1-
weighted, magnetization prepared rapid gradient echo sequence
(MPRAGE) in Graz and Vienna (Trio Tim 3.0T, manufactured
by Siemens Healthcare, Erlangen, Germany) with whole brain
coverage. The selected sequence parameters for PRODEM were
as follows: Repetition time: 1,900/2,000 ms, inversion time: 900
ms, echo time: 2.19 ms, flip angle: 9° and a resolution of: 1 mm ×
1 mm × 1 mm/1.2 mm. For ASPS-Fam, the selected sequence
parameters were as follows: Repetition time: 1,900, inversion
time: 900 ms, echo time: 2.19 ms, flip angle: 9° an isotropic
resolution of 1 mm.

Image Analysis
Structural Covariance Networks
To prevent biasing data, all image processing steps were done
independently for the Graz and Vienna cohorts of this sample.
The T1 weighted images were visually checked to ensure
consistent image quality for analysis. Pre-processing and SCN
analyses were performed using FMRIB’s Software Library (FSL)
Version 5.0.9 (23). A detailed version of processing steps can be
found in (14, 16, 18, 24) In brief, the brain was extracted from
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non-brain tissue in the images with a semiautomatic brain
extraction tool (BET) implemented in FSL (25). The extracted
brains were visually checked for artefacts (remaining skull or
missing part of sulci). In case of missing part of sulci, parameters
for BET were changed. Remaining skull was removed by hand.
Then followed tissue-type segmented into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) using a voxel-
based morphometric analysis (VBM) within the FSL framework
(26). After visual inspection, the individual GM images were
non-linear registered (27) to the GM MNI152 standard space
(Montreal Neurological Institute, Montreal, QC, Canada) (23).
By averaging the resulting images, a study-specific GM template
was created to which the native GM images were non-linearly re-
registered. Following, the images were modulated to correct for
distortions due to non-linear transformation (26, 28). Finally, the
GM images were then spatially smoothed with an isotropic
Gaussian kernel with a sigma of 3 mm and concatenated to a
4D–data set. Thereafter, this 4D–data set was spatially regressed
onto 20 networks obtained by Koini and colleagues (16) in a
healthy sample, using spatial regression (Step 1 of the dual
regression script provided by FSL) (29) to calculate individual
network integrity scores. These networks included a temporal, a
temporo-cerebellar, a superior temporal gyrus, a supplementary
motor, a secondary somatosensory, a limbic, a fronto-parietal, a
cuneal, a precuneus, a fronto-occipital, an insular including the
gyrus cinguli, an occipital including the posterior cingulate
cortex, six cerebellar, and an amygdala SCN. The outcome of
the spatial regression consists of individual beta scores (positive
and negative) per person and per SCN, representing network
integrity values, which were used in the statistical analyses.

Visual and Automated Atrophy Marker
The native T1-weighted images of all subjects were visually rated
by trained specialists using the medial temporal lobe atrophy
(MTA)-score scale, a five-point rating scale, ranging from no
atrophy (0) to maximum atrophy (4) (30). Ratings were made for
both hemispheres, with a mean value calculated for statistical
analyses. Automatic brain volume measurements from the native
T1-weighted images of all subjects were done by using FreeSurfer
(Version 5.3) (31). The brain volume and the hippocampus
volumes, averaged across hemispheres, were normalized for
intracranial volume.

Cognitive Assessment
The PRODEM study protocol includes the CERAD-Plus
(Consortium to Establish a Registry for Alzheimer’s Disease)
test battery, which among others includes subtests for verbal
memory and figural memory (32). Verbal memory is tested by
the recall of a wordlist and figural memory is assessed by drawing
geometric figures from a template and later from memory. For
both subtests “savings” scores, the ratio of correctly recalled items
to learned items (times 100), were available as measurement for
memory retention. We also determined a composite score of
CERAD-Plus subtest, the Chandler-score (33). Verbal and figural
memory savings and the Chandler-score were selected as outcome
variables in the cross sectional and longitudinal analyses.
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Statistical Analysis
The statistical software R (version 3.5.3 on Windows 10) was
used (34). Training of the classification algorithms were done
solely on the cohort from Graz. For discrimination between AD
patients and HC the value of the integrity score of each of the 20
SCNs was used in a random forest analysis (35) using the
“cforest” function within the “party” package (36–38). 1001
condition inference trees and the associated conditional
permutation importance for the SCN integrity scores were
calculated (39). Numbers of random variables at the nodes
(“mtry” parameter) were left at the standard of five variables.
The conditional permutation importance is a measure of variable
importance and is defined as a score for mean loss of accuracy in
classification, if a given SCN is excluded from the random forest
model. SCNs with a variable importance score of less than one
were not regarded as crucial for classification. Since the random
forest estimations and variable importance calculations contain
steps based on randomness, the results typically vary in small
ranges. To compensate for this, the calculations were repeated
100 times to build mean values and standard deviation.

Next, random forest models containing distinct combinations
of crucial SCNs were compared to check if comparable
classification accuracy can be achieved with sparser models.
Crucial SCNs were identified and selected by variable
importance as mentioned above. Accuracy, sensitivity, and
specificity calculations were done with the “caret”-package
(40). These models were again calculated 100 times to obtain
mean accuracy, sensitivity, and specificity values. The models
were then tested on the independent data set containing AD
patients from Vienna and HC from the ASPS-Fam. Thereafter, a
model containing the crucial SCNs was extended by the
established markers MTA-score, total brain volume, and
averaged hippocampus volume to measure their joint
discriminative ability.

To examine the association between the SCNs integrity and
cognitive ability, six multiple linear regression models were
computed using the longitudinal cohort from Graz. Outcome
variables were baseline (BL) values (cross-sectional) and
annualized change values from BL to follow-up (FU,
longitudinal) of (a) the Chandler-score, (b) the verbal memory
savings, and (c) the figural memory savings. Predictors were the
crucial SCNs evaluated by variable importance.
RESULTS

Diagnostic Accuracy
From the 20 template networks included in our random forest
analysis (Model A), the temporal network (Figure 1A, Table 1)
and the secondary somatosensory (S2) network (Figure 1B,
Table 1) reached a variable importance score above one
(Figure 2), and discriminative value.

As can be seen from Table 2, sensitivity, specificity, and
diagnostic accuracy of the temporal SCN is 72, 77, and 74%,
respectively. These values were replicated in the validation
cohort. It is also shown in this table that the S2 SCN has lower
May 2020 | Volume 11 | Article 360
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diagnostic accuracy. A combination of the S2 and temporal SCNs
and even a combination of all 20 SCNs increased the diagnostic
accuracy only marginally when compared to the temporal
SCN alone.

In Table 3 and Figure 3 we show the random forest models
assessing diagnostic accuracy measure for volumetric MRI
markers of AD alone and for the full model including all
volumetric measures and the temporal and S2 SCN. In both
the Graz cohort and the Vienna validation cohort single
volumetric MRI markers performed similar to SCNs. Joint use
of volumetric markers and SCNs discriminated best between AD
and controls with a diagnostic accuracy of 82 and 86% in the
founder and validation cohort, respectively. The increase in
accuracy when adding SCNs to conventional MRI volumetric
measures was near zero and non-significant.

Cognition
Cross-sectionally, in AD, the temporal SCN showed a significant
association with verbal memory savings (Table 4), explaining
nine percent of the variance. No association between SCN
integrity and any other test scores were found. For change in
cognitive measures over time, no associations with SCN integrity
were found either (Table 4).
Frontiers in Psychiatry | www.frontiersin.org 4
DISCUSSION

Among 20 covariance networks, a temporal gray matter network
and a secondary somatosensory gray matter network showed a
diagnostic accuracy of 74 and 80% in two independent cohorts.
AD patients were correctly identified in 76 and 83% of cases,
controls were correctly identified in 78 and 75% of cases. The
gray matter networks did not significantly surpass the diagnostic
accuracy of traditional volumetric markers including brain
volume, hippocampal volume, and MTA score. When adding
the covariance networks to a model of traditional volumetric MR
markers, the diagnostic accuracy remained virtually unchanged.
This contrasts the view that the assessment of networks, which
degenerate in synchrony, provides more diagnostic information
than a simple volumetric assessment of selected brain regions
known to be involved in AD (1, 41, 42).

Loss of connectivity within the temporal network was related
to lower verbal memory, but neither the temporal network nor
other SCNs were able to predict the slope of cognitive decline
over the observational period.

The covariance networks in our study are partly overlapping
with those described by Hafkemeijer and co-workers (18). The
temporal gray matter network, which related to verbal memory in
FIGURE 1 | Sagittal, coronal, and axial slices of the temporal SCN (MNI coordinates: x = −50, y = −20, z = −32) and the secondary somatosensory SCN (S2; MNI
coordinates: x = −50, y = −26, z = 18). The images are taken from the Koini masks (16).
May 2020 | Volume 11 | Article 360
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our study, contains connections between the anterior part of the
right inferior temporal gyrus, the left temporal pole, the right
paracingulate gyrus, the anterior part of the right cingulate gyrus,
and the left insular cortex. These areas have been reported to be
particularly affected by AD pathology (43–46). However, the
inclusion of the anterior cingulate and paracingulate gyri in the
temporal network is somehow unusual, but in case of the former a
Frontiers in Psychiatry | www.frontiersin.org 5
comparable network was also found in a study by Hafkemeijer
and co-workers (14). Since there is quite some randomness in
network creation depending on both sample data and parameter
choice, we are unable to determine whether the inclusion of the
anterior division of the cingulate gyrus and the paracingulate
gyrus in the temporal SCN occurred on true biological grounds. A
statistical change finding cannot be excluded with certainty. The
TABLE 1 | Regions included in the Temporal SCN and Secondary Somatosensory SCN (16).

SCN Voxels MNI coordinates Region Hemisphere

x y z

Temporal 10,442 40 −4 −40 Inferior temporal gyrus, anterior division R
5,355 −38 8 −38 Temporal pole L
1,466 0 20 40 Paracingulate gyrus R
1,313 10 38 −4 Cingulate gyrus, anterior division R
1,106 −32 22 −4 Insular Cortex L

Secondary Somatosensory (S2) 9,650 −48 −26 16 Parietal operculum cortex L
7,478 50 −28 16 Parietal operculum cortex R
1,028 10 −26 34 Cingulate gyrus, posterior division R
May 2020 | Volume 11
TABLE 2 | Accuracy, sensitivity, and specificity measures for the classification models in the original Graz sample and the independent Viennese sample.

Main sample (Graz) Independent sample (Vienna)

Model Predictors Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

A All SCNs 77 76 78 79 83 75
B Temporal + S2 74 73 75 80 85 75
C Temporal SCN 74 72 77 74 75 73
D S2 SCN 67 67 67 54 54 53
|

FIGURE 2 | Variable importance (mean accuracy loss) of 20 structural covariance networks (SCNs) in a random forest classification model. Exclusion of the
temporal and the secondary somatosensory network show a variable importance score above one. The error bars show one standard deviation.
Article 360
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TABLE 3 | Accuracy, sensitivity, and specificity measures for MTA-score, normalized brain volume (BV), normalized hippocampus volume (Hc), and combined models.

Graz AD–HC Vienna AD–HC

Model Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

MTA 77 74 81 82 82 82
BV 74 72 75 73 75 72
Hc 76 73 79 79 88 74
MTA +
Hc + BV

82 80 84 88 92 84

MTA +
Hc + BV + Temporal + S2

82 81 82 86 92 81
Frontiers in Psychiatry | www.frontiers
in.org 6
 M
ay 2020 | Volume 11 |
Calculations were done in the original Graz sample and the independent Viennese sample.
FIGURE 3 | Variable importance (mean accuracy loss) of the temporal and the S2 SCNs and three alternative markers (MTA-score, normalized brain volume,
normalized hippocampus volume) in a random forest classification model. The error bars depict one standard deviation.
TABLE 4 | Multiple linear regression models to evaluate the predictive value of the SCNs for cognition.

N = 82 Chandler-score Verbal memory savings Figural memory savings

Cross-sectional

Variable B SE beta B SE beta B SE Beta
Temporal SCN 276.34 200.33 .15 1,060.42* 508.55 .23* −168.11 508.11 −.03
Secondary Somatosensory SCN 204.857 225.80 .10 805.79 573.23 .15 569.17 572.73 .11
R2 (p-value) .04 (.17) .09 (.01)* .01 (.61)

Longitudinal

Variable B SE beta B SE beta B SE Beta
Temporal SCN −7.26 126.24 <−0.00 155.77 484.45 .03 −182.99 391.47 < .00
Secondary Somatosensory SCN −71.78 143.45 −0.06 −902.78 570.06 −.19 87.47 441.26 < .00
R2 (p-value) < .00 (.86) .03 (.29) < .00 (.89)
Article
*significance at.05 level.
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secondary somatosensory SCN, which was the second gray matter
network that discriminated AD from controls in the current
study, contains connections between the parietal operculum and
the posterior part of the cingulate gyrus, which is also involved in
the AD pathophysiologic processes (44). Assessment of SCNs as
potential MRI markers for the differential diagnosis of dementia
follows the network degeneration hypothesis of Seeley and co-
workers (13). It suggests disease-dependent simultaneous network
degeneration of gray matter rather than isolated and successive
involvement of brain areas to by typical for primary degenerative
dementias including AD, behavioral variant fronto-temporal
dementia, semantic dementia, progressive nonfluent aphasia,
and cortico-basal syndrome. Our results are somewhat
contrasting this assumption in that the potential of SCNs to
discriminate between AD and controls was almost identical to
that of isolated volumetric measures. So far, five studies have used
SCNs as a diagnostic tool to separate AD cases from controls (18,
19, 47–49). They identified multiple SCNs that differ between AD
and HC, such as the default mode network, a hippocampal
network, the salience network, and the executive control
network. We also found two networks, the temporal and the
somatosensory SCN to contribute to the classification between
patients and controls. Our study extends previous investigations
by not only defining SCNs that may assist in AD diagnosis but by
also assessing their diagnostic potential relative to establishedMR-
based biomarkers. In our study SCNs did not increase the
diagnostic accuracy beyond that of whole brain volume,
hippocampal volume, and MTA rating. Similar assessments
were not done in previous studies but are needed to better
define the diagnostic potential of SCNs in clinical settings.
Another reason for insignificant results may be the use of
MNI152 for co-registration standard space during processing.
MNI152 may not be ideal, since the brains of the elderly might
significantly differ from the brains used for the MNI152 template.
However, Fillmore et al. (50) and Huang et al. (51) discussed this
problem and indicated that these effects are diminished in case of
VBM because it results in a study specific template. This was the
case in our study. As Ashburner and Friston discussed in their
technical paper on VBM, a version of standard space template is
needed to create this study specific template, and it is merely used
for correction of global brain shape difference (26). However, we
cannot completely rule out that the use of the default workflow
might have had an impact on our analyses. Possibly another
crucial factor for our results may be the use of SCN templates
from Koini et al. (52). To our knowledge, there exist two
commonly used options for template selection. One is using
templates from prior studies, the other is to generate study
specific templates. Bijsterbosch et al. (53) discuss these choices
of network templates and associated advantages and
disadvantages. They point out that the first choice is typically to
create study specific network templates on the study sample. This
approach increases the likelihood for finding statistical differences
between investigational groups, because it represents the best fit
for the sample under investigation and provides a way to control
for noise in the data. This advantage may come at a price of
interpretability. If we had created study specific templates, they
Frontiers in Psychiatry | www.frontiersin.org 7
would include both experimental groups (controls and patients)
and therefore represent a form of hybrid networks rather than
being specific for each comparative sample. Using data of only one
of the experimental groups in template creation (controls for
example) would introduce a strong bias for later statistical
analyses (53). Hence, we decided to use templates from an
independent healthy sample with adequate sample size, since we
expected sufficient differences and a high potential for
classification accuracy between patients and controls when using
networks derived from healthy individuals. Another factor
regarding interpretation of our results is the inclusion of
imaging data from two different centers. While from the same
vendor, slightly different image acquisition parameters were used
at the two centers which could have affected the study results (54).
It is important to note, however, that both cohorts were pre-
processed independently, and although some center effects cannot
be excluded with certainty, the results on the diagnostic accuracy
of SCNs were almost identical at both sites. This is a clear
indication for the robustness of the study’s finding across centers.

Our study has several strengths. The size of the cohort is
considerable, and we used an independent sample for validation of
our results. The diagnostic accuracy was almost identical in both
samples which underscores the robustness of our findings. A
limitation of our study was the absence of imaging data at follow-
up. Longitudinal change in network integrity over time may be a
better diagnostic marker of AD. Moreover, although we did not
find an association between SCNs at baseline and future cognitive
functioning, we cannot rule out that loss of SCN integrity over
time parallels cognitive decline in AD patients. In this study, we
used subtests of the CERAD-Plus for assessment of verbal and
figural memory.While CERAD is a well-established test battery in
AD research, more extensive memory tests to reduce the
possibility of measurement error may be considered.

In conclusion, we found that established volumetric markers
and the visual MTA score perform similarly well in differentiating
AD from healthy controls than SCNs which need extensive image
postprocessing. As to whether SCNs are helpful in discriminating
between different forms of dementia syndromes needs to be
determined and it is likely that longitudinal assessment of SCNs
can increase our understanding of the spatial and timely evolution
of neurodegenerative processes.
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