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R A D I A T I O N R E S E A R C H 98, 425-437 (1984) 

Chord-Length Distributions and Related Quantities for Spheroids 

A . M . K E L L E R E R 

Institut für Medizinische Strahlenkunde der Universität Würzburg, 
Versbacher Strasse 5, D-8700 Würzburg 

K E L L E R E R , A. M . Chord-Length Distributions and Related Quantities for Spheroids. Radial. 
Res. 98, 425-437 (1984). 

The chord-length distributions are derived that result when spheroids are randomly traversed 
by straight lines. The first part of the article applies generally to convex domains in three-
dimensional or two-dimensional space; the relationships between the chord-length distributions 
and their moments for different types of randomness are summarized. Subsequently the chord-
length distributions, the point-pair distance distributions, and the geometric reduction factors 
are derived by a suitable transformation from the distributions for the sphere. Al l integrals can 
be resolved and the resulting formulae are valid for both prolate and oblate spheroids. The 
moments of the chord-length distributions are obtained by the same transformation from those 
for the sphere. The solutions for ellipses are given in the Appendix and contain Legendrc integrals. 

I N T R O D U C T I O N 

Chord-length dis t r ibut ions result when convex bodies are randomly intercepted by 
straight lines. These dis tr ibut ions and related concepts have applications in acoustics, 
microscopy, texture analysis, shielding or dose calculations, and microdosimetry. 
Early results have been obtained by Crofton (7, 2). K i n g m a n (3, 4), Coleman (5, 6), 
and Erms and Ehlers (7 ) have made impor tan t recent contr ibut ions. Surveys are 
given by Kenda l l and M o r a n (8) and by Coleman (9). Wei l (70) offers an excellent 
general overview w i t h a comprehensive list o f references. Simple analytical expressions 
o f the chord-length dis tr ibut ions exist for the sphere and for the infini te slab, and, 
in the two-dimensional case, for the disc and for the rectangle (4). A formula containing 
one integration has been obtained for cylinders w i t h convex cross sections (77). For 
circular cylinders the integral requires numerical integration (72). For parallelepipeds 
Coleman (7J) has derived the explicit solutions. 

The distance d is t r ibut ions o f pairs o f random points in convex bodies are l inked 
to the chord-length dis tr ibut ions. They, too, have simple analytical expressions in the 
case o f the sphere and the infinite slab; Borel (14) has considered the point-pair 
distance d is t r ibut ions for two-dimensional figures. A solution for general cylinders, 
including the case o f c i rcular cylinders and parallelepipeds (15), contains a somewhat 
simpler integral than the solution for the chord-length distr ibutions. 

The a t tent ion to parallelepipeds and circular cylinders stems f rom various appl i ­
cations. The case o f spheroids has comparatively less pragmatic importance and has 
therefore rarely been treated. However, it is not wi thou t interest i n applications o f 
microdosimetry to radiobiology where one deals w i th cells, cell nuclei , or various cell 
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426 A. M . KELLERER 

organelles that have rounded but frequently nonspherical shape. Such structures are 
often adequately approximated as spheroids, i.e., as ellipsoids w i t h two axes o f equal 
length. Accordingly the objective o f the present article is the der ivat ion o f the c h o r d -
length distributions, the point-pair distance distr ibutions, and the moments o f these 
distributions for spheroids. Al l i sy and Bou t i l lon (76) have, w i t h i n the con tex t o f 
microdosimetric computat ions for neutrons, uti l ized a t ransformation that l inks the 
chord-length dis t r ibut ion o f the spheroid to that o f the sphere. The present approach 
is somewhat different, but the idea is also to apply a suitable t ransformation to the 
solutions for a sphere. The results are not entirely new. Enns and Ehlers (7 ) h.ave 
earlier given the chord-length d is t r ibut ion o f prolate spheroids and their momen t s , 
although they have not reported the details o f their der ivat ion. 

The Distributions 

The earlier article w i th solutions for cylinders (75) deals also w i t h general properties 
o f the chord-length distr ibutions and point-pair distr ibutions, and w i t h their inter­
relations. This treatment applies equally to the present article. A br ie f but somewhat 
more complete restatement o f essential relations and their synopsis in tabular f o r m 
may nevertheless be useful. 

There are different types o f randomness for the intercept o f a convex body, K, by 
straight lines. Fol lowing the recent terminology o f Coleman (73) one can distinguish 
three main types: isotropic uniform randomness results when the body is exposed to 
a un i fo rm isotropic fluence o f infinite straight lines; weighted randomness results 
when a un i fo rmly distr ibuted random poin t is chosen in K and is traversed by a 
straight line w i t h un i fo rm random direct ion; two-point randomness is obtained when 
a straight line traverses two random points that are independently and un i fo rmly 
distr ibuted in K. The subscripts ß, v, X, respectively, are used for these three cases.' 
For example, fA[x) designates the chord-length density under isotropic u n i f o r m ran­
domness, and F^x) designates the sum dis t r ibut ion . For convenience all sum dis­
t r ibut ions are summed f rom the left (see Eq. (14)). The letters n, v, and X are also 
used for the moments; the order is given by an index. For example, p{ is the mean 
value and is the moment o f order A: oif„(x): 

The probability densities o f the chord lengths for the three different types o f randomness 
are related (see (4, 12)): 

INTERRELATIONS A M O N G T H E VARIOUS QUANTITIES 

(1) 

Ux) = ax-lf,M = bx-"'Mx). (2) 

In three-dimensional space, 7?3, 

a = 4V/S, b = \2V2/wS and m = 4 3) 

V: volume: S: surface o f K. I n two-dimensional space, 7?2, 

1 f(x) was formerly designated by./i(.v), and the term interior randomness was used instead of wcig'ted 
randomness. 



CHORD-LENGTH DISTRIBUTIONS 427 

TABLE I 

Relations between Chord-Length Distributions for Different Types of Randomness" 

M v I p X 

f ax) ax 'f{x) = -af',(x) aU"(x) = bx-'Ux) 
V xf„(x)la = m = xf',(x) xU"(x) = x-%(x)lc 
I F,(x)la = ft(x) = -V(x) 
p ixFJ,x)/a = F,(x) = U(x) 
A x"' %{x)lb cxJXx) = cxf\(x) cx"*'U"(x) = Ux) 

' For simplicity a number of relations are omitted; they can be obtained from the inverse relations. The 
geometric reduction factor, U(x), is used instead offp(x); s{x) is the proximity function. 

In Ry. n = 3, a = 4V/S, b = 12 V2/*S, fp(x) = 4vx2U(x)/V = s(x)/V, c = a/b. 
In R2: n = 2, a = irA/C, b = 3A2/C,fp(x) = 2xxU(x)/A = s(x)/A, c = a/b. 

a = TTA/C and b = 3A2/C and m = 3 (4) 

/ I : area; C : perimeter o f /£. The constant a is equal to the mean chord length ß] (see 
Eqs. (12), (13) and Table I I ) . 

Other types o f randomness involve the selection o f random points on the surface 
o f the body (17). They w i l l not be considered here, since they stand i n no k n o w n 
relation to /u>, c-, or \-randomness. 

A further concept o f importance in radiation dosimetry has been termed /-ran­
domness ( internal source randomness) (77): it refers to the dis t r ibut ion o f the length, 
.v, o f randomly oriented rays f rom random points in K. The length, x, o f the ray is 
the distance from the random poin t to the intersection o f the ray w i th the surface 
o f S. The probabil i ty density is designated by f,(x)- I t is related to the chord-length 
dis t r ibut ion ( 7 / ) 

f,(x) = F.(x)/a. (5) 

Fj(x) is equal to the geometric reduction factor, U(x), that is impor tan t in dose 
calculations w i t h internal emitters (see (18, 19)) and that is closely l inked to the point-
pair distance d i s t r ibu t ion . 2 This latter d is t r ibut ion results i f pairs o f points are chosen 
independently and un i fo rmly in the body, and i f their distances are considered. The 
probabil i ty density o f these distances is designated by fp(x)\ i t is related to U(x) or 
F,(x): 

f„(x) = 4irx2U(x)/V = 4irx2Fi(x)/V i n Ä 3 (6) 

fp(x) = 2irxU(x)/A = 2irxF,(x)IA i n R2. (7) 

Table I gives a synopsis o f the various interrelations that result f rom Eqs. (2)- (7) . 
For s implic i ty the quant i ty U(x) is uti l ized instead o f the density fn(x). The p rox imi ty 
function, s(x), (see (75)) equals fp(x) • V i n Ry and fp(x)-A i n R2. 

2 In spite of their numerical identity for convex bodies, the concepts of f',(x) and U(x) are distinguished. 
U(x) has earlier been designated by and il(x) (7, IS); it is defined as the probability that a shift by x 
in random direction from a random point in A' leads again to a point in K. This definition, as the definition 
of Jp(x). applies equally to convex and nonconvex bodies. The chord-length distributions, on the other 
hand, pertain only to convex bodies; they admit different extensions to nonconvex bodies. 

file:///-randomness
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TABLE II 

Relations between the Moments of the Chord-Length Distributions 

In R<° In RS 

p V i X P X 

ß-l = fcX-j = bX 4 

1 ai>-, = tt, = />X , 

Ml a = = /lX 2 

M: = av^ 2a/, = b/6p-2 = 6X.2 = &/3p , = bX , 
ßi m>2 = 3«( 2 = 6X_, = b 
ßi avi 4a/ 3 = b = 2/)/;, = />A, 

ßi avt 5au = 5bßP] = fcX, = 1 Oft/3/72 = b\2 

, k(k - 1) 
= ftX*-4 

, fc(A - 1) 
= ftxt_, ßk = Mk-1 ~ b i 2 Pt_, = ftX*-4 

= b pi-t 
6 

= ftxt_, 

In R 3 : a = 4175, b = 12 V2/rS. 
'\n R2: a = TTA/C, b = 3/1 2/C. 

The Moments 

Equations (2)-(4) yield the relations between the moments o f the chord-length 
distributions: 

ßk = Qv/c-i = b\k-m, (k>-l).3 (8) 

F rom Eqs. (5)- (7) one obtains by partial integration 

Hk = kaik-U (k>l) (9) 

and 

4?r 12 
Pk = 4 + i = -, X;., (A: > -2) i n R^ (10) 
n V(k + 3 ) k " (k + 3)(k + 4) ' 3 

2 6 
A = — — — 4 + 2 = - ; ; X*. ( A ' 3 = - 1 ) i n ( 1 1 ) 
1 + 2) * - (A + 2)(A- + 3) 

Table II gives a synopsis o f these relations and contains several notable identities 
for moments that depend only on integral parameters o f A'. In R$ one has for any 
convex body 

(12) 

Mi = a = 4V/S M4 = b = 12V2/WS 

v-\ = I / o = S/4V "3 = bin = 3 V/-K 

»3 = b/4a = 3 V/4TT 

X_ 4 = l/b = TTS/\2V2 X 3 = alb = 7T/3K 

3 The case k = — I does not apply to figures with corners or to bodies with edges: , i>-2- and X-4 (in 
fi2) or X. s (in R 3) are then infinite. 
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in R2 one has 
/u, = a = TTA/C Hi = b = 3 , 4 2 / C 

= l / f l = C/TT.-I i ' : = /V« = 3/1/x (13) 

/; = b/3a = A/w 

A 3 = I / /? = C/3A2 X-2 = a//) = TT/3.4. 

N o such general relation is known for moments o f the point-pair distance distributions. 

The Distributions for the Sphere 

The solutions for the sphere w i l l be required subsequently; they can also serve 
to illustrate the various distr ibutions. One obtains, w i th the diameter d and wi th 
0 < .v < d: 

./„(-v) = 2x/d2- Fß(x) = 1 - (x/d)2 

f(x) = 3.x2/d'; /••„(.v) = 1 - (x/d)3 

./.;u) = 6x$/d6; F\(x) = 1 - (x/df (14) 

3 3x2 3.v 1 
= 2d~ 2cp'' W = ^ ( x ) = ! - - - + -

fP(x) = 

( f 

The dis tr ibut ions are represented in Fig. 1. The moments w i l l be listed subsequently 
in Eqs. (32)- (36) for spheroids; the solutions for the sphere result when all parameters 

are set equal to uni ty . 

F I G . 1. Chord-length distributions lor the sphere (see Eq. (14)): ^-randomness (uniform isotropic distribution 
of straight lines); i'-randomness (straight lines through random point in sphere): A-randomness (straight 
lines through two random points in sphere); i-randomness (ray originating in random point); />: point-pair 
distance distribution. 
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S O L U T I O N F O R S P H E R O I D S 

Principle of the Solution and Derivation of the Transformation Kernel 

The solutions w i l l first be formulated in terms o f the two distr ibutions / A(.v) and 
/;,(.v) that result from the random choice o f pairs o f points in K. The related functions 
s(x), U(x), fv(x), f„(x), or fix) can then readily be obtained. 

A unidirect ional compression or expansion by the factor e transforms the sphere 
into an oblate (e < 1) or prolate (e> 1) spheroid, i.e., this transformation, 7", establishes 
a one-to-one relation between the points o f the sphere and their image points in the 
spheroid. T w o independently, un i fo rmly distr ibuted random points in the sphere 
have images that are also independently, un i fo rmly distr ibuted in the spheroid. This 
wi l l be uti l ized in the solut ion, i.e., the distr ibutions fx(x) and fp(x) i n the spheroid 
wi l l be obtained by applying a suitable t ransformation to the corresponding dis t r i ­
butions in the sphere. 

Consider two points in the sphere that are separated by the distance u. The distance, 
X, between their image points can then, depending on or ientat ion, have any value 
between u and ue. The point pairs in the sphere are randomly oriented and the 
distr ibution, hu(x). o f resulting distances is therefore obtained by considering a spherical 
surface o f radius u, and by asking for the d is t r ibut ion in distance from the center 
that results after the points o f the surface are subjected to the transformation T. 
Figure 2 indicates this schematically for an oblate spheroid; i t w i l l be noted that the 
result applies equally to prolate spheroids. 

Let Hu(x) be the sum dis t r ibut ion that belongs to hu(x), i.e., the probabil i ty that 
the transformation changes the distance u in to a distance larger than x. I t is apparent 
that Hu(x) is equal to that fraction o f the surface o f the hemisphere in Fig. 2, that 
lies to the right o f the broken line for e > 1 and to the left for e < 1. These fractions 
are 1 — z/u and z/u: 

Hu{x) = 

z/u = V( l - x2/ir)/(\ - e2), u e ^ x ^ u for e<\ (15) 

- z/u = 1 - i(x2/u2 - \)/(e2 - 1), u < x < ue for e> 1 

dH,jx) x 
h„(,x) = — = , , . 16) 

dx „V(i - e2)(u2 - x2) 

F I G . 2. Diagram for the derivation of the transformation kernel Hu(x). 
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The t ransformation w i l l be ut i l ized to obtain the distr ibutions and the moments for 
spheroids from the solutions for the sphere. 

Evaluation of the Transformation Formula 

I f the distr ibutions for the sphere are marked by a star, one has the fol lowing 
formulae for the spheroid: 

and 

w i t h : 

0 < x < d, 

0 < x < ed, 

fix) = P hu{x)ft(u)du 
Jli] 

f„(x) = f 2 hu(x)f*{u)du 

U\ = x and u2 = M i n ( ^ , x/e), 

U] = x/e and u2 = Min(d, x), 

for 

for 

e < 1 

e> 1. 

(17) 

(18) 

19) 

Derivation of the chord-length distribution. Equat ion (17) for the chord-length dis­
t r i bu t i on w i l l be evaluated first. The dis t r ibut ion, f(x), for un i fo rm isotropic ran­
domness has more pragmatic importance than f{x)\ u t i l i z ing Eq. (2) one can rewrite 
Eq. (17) in terms offß(x) and f*(x): 

e2Td2 

Sx4 

2 e \ 

Sx^ 

h„(x)u4f:(u)du 

JUI \uA - xLy 
(20) 

t = |1 — e2\,5 is the linear excentricity; 5 is the surface area o f the spheroid. 
T o obtain a c o m m o n formula t ion , in terms o f real functions, for the oblate and 

the prolate spheroid, i t is practical to use a funct ion that merges the inverse cosine 
and the inverse hyperbolic cosine: 

c m = 
fcos 1 ( A ) , for 0 < x < 

ICos ' ( A ) = l n ( A + ( A 2 - I ) 5 ) , for A > 1. 

Furthermore one can use the two constants 

i 3 

and c2 = —i + ~ C\. 
4e 4 

(21) 

(22) 

The surface o f the spheroid is 5 = c^-v d2, and the integration o f Eq. (20) gives the 
chord-length d is t r ibut ion for the spheroid 4 

m = 2± c2 + 
4(e- 1) X 

(23) 

4 The corresponding distribution, fXx) = {3c\x/2ed) f/x), for weighted randomness agrees with the expression 
given by Enns and Ehlers (7. Eq. (31)) for the prolate spheroid, although the identity of the two expressions 
is not readily evident. 
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The first term. c 2 , i n the square bracket applies only for 0 < x < ed, the second te rm 
for ed < x < d or d < x < ed. The distr ibutions are illustrated in Fig. 3. 

Derivation of the point-pair distance distributions. Inserting the expression f rom 
Eq. (14) into Eq. (18) one obtains 

24x 

~d 

Ix C" 
3e L 

I 3 ir »4 \ 

r~, m du. 
\u - x 

(24) 

The integration yields 

fP(x) 
24x2 

d\-

3 x c , 

2d e + 
x 3 c2 

2 ^ 7 

e) 

d2 

The expression in the first l ine o f the equation applies for 0 < x 
in the second line for ed < x < d or d < x < ed. 

The distributions are represented in Fig. 4. The related quant i ty U(x) : 

= fp(x)d3e/24x2 is equal to the expression in the square brackets in Eq. (25) 

(25) 

< ed, the expression 

Ft(x) 

The Moments 

A direct derivation o f the moments w i l l make i t unnecessary to integrate the 
complicated distributions. 

I f u is the distance o f two random points in the sphere, or the length o f the chord 
defined by these random points, then the d is t r ibut ion o f the corresponding distances, 
x, in the spheroid is hu(x) and the expectation o f x* for this fixed value u is 

F I G . 3. Chord-length distributions (/u-randomness) lor spheroids of elongation f and of unit length smaller 
axis (d = I for e > I ; d = \/e for e < 1). 
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0 1 2 
D I S T A N C E 

F I G . 4. Point-pair-distance distributions for the spheroid of elongation eand with two equal axes of unit 
length {d = 1). 

<*$> = j -x h„(x)dx 

1 f x k + l 

t J u\u - x \ 

= ekuk 

w i t h 

ek = YZJi [ u 1 „2|.5 = 1 for e = 1) (27) 

Evaluat ion o f these integrals gives 

2 1 1 

e - - 2 ? + M 9 e o = 1 ( 2 8 ) 

1 * , 1 V s 
e-3 = - f i = - + — « ( f ) 

e 2 2e 

1 / 1 \ 2 e 2 

Accordingly one has the relation between the moments for the spheroid and the 
moments. A*, o f the sphere 

h = f (xl)ff(u)du 
Jo 

ek\f, k>-5. (29) 

One has (see Eqs. (13), (14)): 

A? = 6/(A- + 6)rf*, fc> - 5 (30) 

b = 1/A_4 = fi?4/3e_4 and b/a = \/X^ = d3/2e-3. (31) 

Therefore one obtains, according to the relations i n Table I I , 

e_4 (/c + 2) 
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gjfc-3 £ 

<?_3 (A: + 3) 

e/c-3 3 

PA = ^A 

e_3 (A + 1)(A + 3) 

6 

(k + 6) 

3 - 4 - 6 

(A: + 3)(A + 4)(A + 6) 

A- > -2 

k 3 0 

A- 3 - 5 

A- 3 - 2 

(33) 

(34) 

(35) 

(36) 

For the sphere all ek's are equal to 1. 
Figure 5 gives, as numerical example, the mean values p t , vt ( = 2 i | ) , and v, 

( = 5 /3 / 7 j ) for spheroids o f uni t length smaller axis. 

APPENDIX: SOLUTION FOR ELLIPSES 

The solution for ellipses is analogous to that for spheroids; however, the integrals 
cannot be solved analytically. It w i l l be sufficient to cite the results; all notations 
correspond to those for the three-dimensional case. 

Distributions for the Circle 

For the circle o f diameter d and w i t h the abbreviation X = x/d one has 

1 
Ux) = -X/Vl -X2; 

d 
F„(x) = V i -X2 ( A . l ) 

f(x) = —X2/]/\ -X2; 
ird 

FAx) = - [cos" 1 (X) + A"Vl - A : ] (A.2) 

fix) = — V i - X2; 
ird 

F,(x) = - [cos"' (X) - X]/l - X2] (A.3) 
7T 

•l l 10 100 
ELONGATION 

F I G . 5. The mean values n,, K , ( = 2/,). and X, ( = 5/3/7,) for the different types of randomness in the 
spheroid. The smaller axis is taken to be of unit length {d = l for e > l ; d = l/e for e < l ) . 
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lira F x ( x ) 

X V i - X2 - s in" 1 (X) (A.4) 

16 
j„(x) = —X[cos 1 (X) - X \ ' \ - X2) 

ird 
FP(x) 

X V i - X2 + (1 - 4X2) cos 1 (X) (A.5) 

Transformation Kernel 

It is sufficient to consider the case e > 1. One obtains 

and 

//„(.v) = - cos" 
7T 

[(x2/u~- i y i 

zx 
7r[(e'W" — X ' ) ( x — M ) ] " 

u s£ x < ew. 

(A.6) 

(A.7) 

The Distribution for Ellipses 

Using Eqs. ( A . l ) . (A.4) , and (A.7) one obtains 

u*du 2e C"2 

f(x) = — 2 7 — r 
O r Jm \(u [(u2 - x2/e2)(x2 - u2)(d2 - u2)] 

wi th !/, = x/e and u2 = M i n (x, d). C is the perimeter o f the ellipse: 

r w f " ! „ , 2 n — (1 + e ) 7 T 64 - 3X 4 

C = led [ 1 - (<r - 1) sin" zydz = — 7 7 T ^ J, 
J o -

0 < x < ed (A.8) 

64 - 16A2 

w i t h 
e - 1 

e + 1 
(A.9) 

For the point-pair distance d is t r ibut ion one finds: 

,/;-(x) 
_ 32x r -

d2TV2 Jin 

cos 

[ ( e V - x 2 ) ( x 2 - u2)Y 
O^x^ed. (A. 10) 

Eqs. (A.8) and (A. 10) can not be solved in closed fo rm, but can be expressed in terms 
o f standard Legendre functions. 

The Moments 

From Eq. ( A . l ) one obtains the moments for the circle 

n*k=Jkd\ k > - \ 
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with 

Jk 

7T 7T 2 3-7T 8 5x 16 _ , „ 
= - , 1 , - , - , — , — , — , — for k = - 1 , 0, 1. 2 • • • (A.11) 

2 4 3 16 15 32 35 

and from Eq. (8) w i t h b = 3ird3/16 

X* = (I6jk+i/3ir)dk. ( A . 12) 

In analogy to Eq. (26) one obtains 

2 r z A + l 

<x*> = «wi* w i t h ek = - \ r r r - j d z . ( A . 13) 

TT J, [ ( f - - r - ) ( z - - 1)] 

Therefore the moments for the ellipse are 

X * = ek(16jk+3/3v)dk, k > - 4 (A.14) 

and w i t h b = 1/X 3 and a/b = X 2 (see Eq. (11)) and the relations in Table I I : 

A U = — = — y * r f * , Acs* - l 
A - 3 e-3 

_ h - i e k - 2 4 j k l i k 

i'k = -— = a , k > - 2 

— A- 3 0 

x_ 
-3 

3 

-
 e± 

e 3 

x± 2 - i \ -2 4 Ä + , 

X e. 2 T 

XA- 2 ^A : 

(A- + 1)X_ 2 e 2 (A- + 1)TT 

^^A 327A+3 ,A I ^ I / A i r i 
= (A- + 2)(A- + 3) = " (A- + 2 X * + 3 * * ' * * ( A ' ' 5 ) 
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