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Abstract Microglial dysfunction is a key pathological feature of Alzheimer’s disease (AD), but

little is known about proteome-wide changes in microglia during the course of AD and their

functional consequences. Here, we performed an in-depth and time-resolved proteomic

characterization of microglia in two mouse models of amyloid b (Ab) pathology, the overexpression

APPPS1 and the knock-in APP-NL-G-F (APP-KI) model. We identified a large panel of Microglial Ab

Response Proteins (MARPs) that reflect heterogeneity of microglial alterations during early, middle

and advanced stages of Ab deposition and occur earlier in the APPPS1 mice. Strikingly, the kinetic

differences in proteomic profiles correlated with the presence of fibrillar Ab, rather than dystrophic

neurites, suggesting that fibrillar Ab may trigger the AD-associated microglial phenotype and the

observed functional decline. The identified microglial proteomic fingerprints of AD provide a

valuable resource for functional studies of novel molecular targets and potential biomarkers for

monitoring AD progression or therapeutic efficacy.

Introduction
Microglia play fundamental roles in a variety of neurodegenerative diseases, including AD

(McQuade and Blurton-Jones, 2019). Changes in brain immunity, together with extracellular Ab

deposition and neurofibrillary tangles, are major pathological culprits in AD (Gjoneska et al., 2015;
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Guillot-Sestier and Town, 2013; Holtzman et al., 2011; Shi and Holtzman, 2018). The importance

of microglia in AD pathogenesis is well illustrated by the increasing number of identified AD risk

genes which are expressed in microglia and have functions in brain immunity (Cuyvers and Sleegers,

2016; Guerreiro et al., 2013; Jansen et al., 2019; Jonsson et al., 2013; Karch and Goate, 2015;

Lambert et al., 2009; Naj et al., 2011; Sims et al., 2017). For example, the triggering receptor

expressed on myeloid cells 2 (TREM2) and apolipoprotein E (APOE) are major genetic risk factors

for sporadic AD that are expressed by plaque-associated microglia and involved in Ab clearance

(Bradshaw et al., 2013; Castellano et al., 2011; Kleinberger et al., 2014; Parhizkar et al., 2019;

Reddy et al., 2009; Wang et al., 2015). It has also been shown that microglial phagocytosis decays

over the course of AD (Hickman et al., 2008; Koellhoffer et al., 2017; Orre et al., 2014a;

Solito and Sastre, 2012; Zuroff et al., 2017). Along these lines, Ab clearance was found reduced in

sporadic AD and it is assumed to be a key factor in the pathogenesis (Mawuenyega et al., 2010;

Saido, 1998; Wildsmith et al., 2013). Importantly, Ab clearance defects in AD microglia are revers-

ible (Daria et al., 2017; Krabbe et al., 2013) and enhancing microglial phagocytic function has

been explored as a therapeutic approach since substantial reduction of Ab burden in mice appears

to correlate with cognitive benefits (Bacskai et al., 2001; Bard et al., 2000; Bohrmann et al., 2012;

Janus et al., 2000; Lathuilière et al., 2016; Morgan et al., 2000; Nicoll et al., 2006; Nicoll et al.,

2003; Schenk et al., 1999; Schlepckow et al., 2020; Sevigny et al., 2016; Wilcock et al., 2004).

However, when and how microglia change along AD progression is still not clear. Thus, understand-

ing molecular alterations of microglia at different stages of AD is crucial and a pre-requisite for

developing safe and efficacious therapy.

eLife digest Alzheimer’s disease is a progressive, irreversible brain disorder. Patients with

Alzheimer’s have problems with memory and other mental skills, which lead to more severe

cognitive decline and, eventually, premature death. This is due to increasing numbers of nerve cells

in the brain dying over time. A distinctive feature of Alzheimer’s is the abnormally high accumulation

of a protein called amyloid-b, which forms distinctive clumps in the brain termed ‘plaques’.

The brain has a type of cells called the microglia that identify infections, toxic material and

damaged cells, and prevent these from building up by clearing them away. In Alzheimer’s disease,

however, the microglia do not work properly, which is thought to contribute to the accumulation of

amyloid-b plaques. This means that people with mutations in the genes important for the microglia

activity are also at higher risk of developing the disease.

Although problems with the microglia play an important role in Alzheimer’s, researchers still do

not fully understand why microglia stop working in the first place. It is also not known exactly when

and how the microglia change as Alzheimer’s disease progresses. To unravel this mystery, Sebastian

Monasor, Müller et al. carried out a detailed study of the molecular ‘fingerprints’ of microglia at

each key stage of Alzheimer’s disease.

The experiments used microglia cells from two different strains of genetically altered mice, both

of which develop the hallmarks of Alzheimer’s disease, including amyloid-b plaques, at similar rates.

Analysis of the proteins in microglia cells from both strains revealed distinctive, large-scale changes

corresponding to successive stages of the disease – reflecting the gradual accumulation of plaques.

Obvious defects in microglia function also appeared soon after plaques started to build up.

Microscopy imaging of the brain tissue showed that although amyloid-b plaques appeared at the

same time, they looked different in each mouse strain. In one, plaques were more compact, while in

the other, plaques appeared ‘fluffier’, like cotton wool. In mice with more compacted plaques,

microglia recognized the plaques earlier and stopped working sooner, suggesting that plaque

structure and microglia defects could be linked.

These results shed new light on the role of microglia and their changing protein ‘signals’ during

the different stages of Alzheimer’s disease. In the future, this information could help identify people

at risk for the disease, so that they can be treated as soon as possible, and to design new therapies

to make microglia work again.
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Transcriptional expression profiles of microglia were previously revealed under physiological, neu-

rodegenerative or neuroinflammatory conditions (Butovsky et al., 2014; Galatro et al., 2017;

Gosselin et al., 2017; Götzl et al., 2019; Grabert et al., 2016; Holtman et al., 2015;

Kamphuis et al., 2016; Krasemann et al., 2017; Mazaheri et al., 2017; Orre et al., 2014a;

Orre et al., 2014b; Wang et al., 2015; Yin et al., 2017). Transcriptional signatures were also

recently reported at single-cell resolution, demonstrating regional and functional heterogeneity of

brain myeloid cells (Hammond et al., 2019; Jordão et al., 2019; Keren-Shaul et al., 2017;

Mathys et al., 2017; Sala Frigerio et al., 2019; Zhou et al., 2020). In neurodegenerative mouse

models, two major profiles have been proposed along the spectrum of microglial alterations. One is

the homeostatic microglial signature that occurs under physiological conditions and is characterized

by the expression of several genes, including P2ry12, Tmem119 and Cx3cr1. The other key signa-

tures, referred to as disease-associated microglia (DAM), microglial neurodegenerative phenotype

(MGnD) or activated response microglia (ARM) are observed under neurodegenerative conditions

(Keren-Shaul et al., 2017; Krasemann et al., 2017; Sala Frigerio et al., 2019) and characterized by

increased expression of Apoe, Trem2, Cd68, Clec7a and Itgax (Cd11c), among others. These

changes were quantified using RNA transcripts, but transcript levels do not necessarily reflect pro-

tein levels which ultimately control cell function (Böttcher et al., 2019; Mrdjen et al., 2018;

Sharma et al., 2015). Importantly, a recent study postulated that transcriptomic profiles of microglia

from another AD mouse model (5xFAD) do not correlate well with proteomic changes

(Rangaraju et al., 2018), suggesting the existence of additional translational or post-translational

regulation mechanisms in AD microglia. Additionally, little is known about Ab-associated changes in

the microglial proteome in a time-resolved manner, or which proteome alterations underscore

microglial dysfunction. Accordingly, we analyzed the microglial proteome at distinct stages of Ab

pathology in two commonly used mouse models of amyloidosis; the APPPS1 (Radde et al., 2006),

and the APP-KI mice (Saito et al., 2014). In contrast to the APPPS1 mouse model that overexpresses

mutated human amyloid precursor protein (APP) and presenilin-1 (PS1), the APP-KI model bears

endogenous levels of APP with a humanized Ab sequence containing three AD mutations (NL-G-F),

and has no alterations of PS1 (Radde et al., 2006; Saito et al., 2014).

Our study determines the proteome of microglia from APPPS1 and APP-KI mice in a time

resolved manner, starting from pre-deposition to early, middle and advanced stages of amyloid

deposition and reveals a panel of Microglial Ab Response Proteins (MARPs) that progressively

change throughout Ab accumulation. Although both mouse models display severe microglial altera-

tions at late stages of Ab pathology, the occurrence of MARP signatures differs and appears earlier

in the APPPS1 mice. Strikingly, the kinetic differences in proteomic profiles correlated with the pres-

ence of fibrillar Ab, rather than dystrophic neurites, suggesting that fibrillar Ab aggregates may trig-

ger the AD-associated microglial phenotype and corresponding functional decline. The time-

resolved microglial profiles may serve as benchmark proteomic signatures for investigating novel

microglial targets or monitoring the efficacy of future pre-clinical studies aiming at microglial repair.

Results

APPPS1 microglia develop AD-associated proteomic signatures earlier
compared to APP-KI microglia
Amyloid plaque deposits appear at similar ages (between 6–8 weeks) in APPPS1 and APP-KI mouse

models (Radde et al., 2006; Saito et al., 2014). To reveal the dynamics of microglial proteomic

alterations across different amyloid stages, we analyzed microglia from 1, 3, 6 and 12 month old

APPPS1 and APP-KI mice and their corresponding age-matched wild-type (WT) mice (Figure 1—fig-

ure supplement 1A). To facilitate proteomic analysis, we first optimized the microglial isolation pro-

cedure. CD11b positive microglia were isolated from mouse cerebrum using MACS technology. The

purity of the CD11b-enriched fraction was controlled by fluorescence activated cell sorting (FACS),

revealing that 97% of isolated cells were CD11b positive (Figure 1—source data 1A). Of note, only

0.49% of CD11b positive cells were detected in the CD11b-depleted fraction (Figure 1—source

data 1B), demonstrating high isolation efficiency. Isolated microglia were lysed and then measured

by LC-MS/MS using label-free quantification (LFQ) of proteins. Next, we optimized the data acquisi-

tion method for microglial proteome analysis. Recently, it was shown that Data Independent
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Acquisition (DIA) for LFQ of proteins identifies and quantifies consistently more peptides and pro-

teins across multiple samples, compared to Data Dependent Acquisition (DDA) (Bruderer et al.,

2015). Thus, we first evaluated the performance of DDA vs. DIA using microglial lysates from WT

and APPPS1 mice. DDA identified 53912 peptides on average compared to 74281 peptides identi-

fied by DIA, representing a 37.8% increase in detection by DIA method (Supplementary file 1).

Overall, the main advantage of DIA was the improved consistency of protein quantifications among

the replicates and the identification of proteins with lower abundance, leading to a 29% increase of

relatively quantified proteins from 4412 with DDA to 5699 with DIA (Figure 1—figure supplement

1B and C, Supplementary file 1). Therefore, we chose the DIA acquisition method to also generate

the proteome dataset of APP-KI microglia. We detected a consistent relative quantification of pro-

teins with an overlap of 93.5% (5500 proteins) between the two investigated mouse models (Fig-

ure 1—figure supplement 1D), supporting our selection of DIA as a robust method for microglial

proteomic analysis. For the comparative analysis of proteomic changes, we defined a threshold of a

log2 fold change larger than 0.5 or smaller than �0.5 with a p-value less than 0.05, and significance

after False Discovery Rate (FDR) correction. No data imputation was performed.

According to Ab burden in both mouse models, we refer to one month of age as a pre-deposition

stage, and to 3, 6 and 12 months of age as early, middle and advanced stages of amyloid pathology,

respectively (Figure 1—figure supplement 2). At the pre-deposition stage (1 month), microglial pro-

teomes of APPPS1 and APP-KI mice did not show significant alterations compared to WT (Figure 1A

and B), demonstrating that microglia are not affected prior to development of Ab pathology. At 3

months of age, microglia in APPPS1 mice already displayed a significant up-regulation of 332 pro-

teins and down-regulation of 678 proteins, compared to WT microglia (Figure 1C,

Supplementary file 2A). In contrast, APP-KI microglia were hardly affected at 3 months of age

(Figure 1D, Supplementary file 2B), which is particularly surprising because both mouse models

show comparable amyloid burden at this stage (Figure 1—figure supplement 2). At 6 months of

age, microglia in APPPS1 mice displayed 309 up-regulated and 261 down-regulated proteins, com-

pared to WT microglia (Figure 1E, Supplementary file 2A). In contrast to 3 months of age

(Figure 1D), APP-KI mice displayed a substantial alteration of their microglial proteome at 6 months

of age, illustrated by 140 up-regulated and 151 down-regulated proteins (Figure 1F,

Supplementary file 2B). Still, microglial alterations in 6 month old APP-KI mice were less pro-

nounced compared to the proteome of APPPS1 mice (Figure 1E and F). Noteworthy, by 12 months

of age, APPPS1 microglia revealed a significant up-regulation of 776 proteins and down-regulation

of 633 proteins, while APP-KI microglia displayed 704 up-regulated and 666 down-regulated pro-

teins (Figure 1G and H, Supplementary file 2A and B). Overall, our data show that amyloid plaque

accumulation triggers microglial progression towards an AD-associated phenotype in both mouse

models, but that response dynamics are different in APPPS1 and APP-KI microglia.

Identification of MARPs as signatures of early, middle and advanced
amyloid stages
Next, we determined protein alterations that first appear in early, middle or advanced stages of Ab

deposition and remain altered through all analyzed stages, thus following amyloid accumulation. To

this end, we selected the APPPS1 mouse model as a reference since it displays earlier changes and

therefore provides a better time resolution of protein alterations to amyloid response, compared to

the APP-KI model (Figure 2A). Only proteins with a consistent quantification in all samples of an age

group were used for relative quantification. Furthermore, in order to determine robust and model-

independent Ab-triggered microglial alterations, we only selected MARPs that were altered with a

significantly changed abundance in both mouse models (even if in APP-KI microglia changes appear

later). This analysis identified 90 early, 176 middle, and 435 advanced MARPs (Figure 2—source

data 1, Figure 2—figure supplement 1A). The most strongly regulated MARPs with early, middle

and advanced response are displayed in corresponding heatmaps (Figure 2B–D).

Early MARPs included several of the previously identified transcriptional DAM markers (Keren-

Shaul et al., 2017) such as ITGAX (CD11c), APOE, CLEC7a, LGALS3 (Galectin-3) and CD68, which

were found with an increased abundance (Figure 2B). Moreover, proteins involved in antigen pre-

sentation such as CD74, H2-D1, TAP2, TAPBP and H2-K1 were revealed as up-regulated early

MARPs. In addition, we discovered prominent changes in interferon signaling represented by the

up-regulation of early MARPs, including MNDA, OAS1A, IFIT3, ISG15, GVIN1, STAT1 and 2
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(Figure 2B). Even though early MARPs were mainly up-regulated, we also identified early MARPs

with a decreased abundance, including KRAS, a protein involved in cell proliferation and the endocy-

tosis regulator EHD2 among others (Figure 2B). A gene ontology (GO) cluster enrichment analysis

of early MARPs revealed that up-regulated proteins were enriched for immune and viral response,

interferon beta and cytokine response, antigen processing and presentation as well as biotic and

lipid response (Figure 3A, Figure 3—figure supplement 1A and D). Thus, these processes repre-

sent first molecular alterations which progressively follow Ab plaque pathology.

The middle MARPs included the up-regulated proteins FABP3, FABP5, CD63, TREM2, MIF and

GUSB (Figure 2C), demonstrating a progressive conversion of the microglial proteome towards a

disease state that accompanies Ab accumulation. Importantly, middle MARPs also reveal down-regu-

lation of the proposed homeostatic markers such as CX3CR1, TMEM119 and P2RY12 (Figure 2C).

Among the down-regulated middle MARPs, we identified additional chemotaxis and cell migration

related proteins like SYK, FER, CX3CL1, and BIN2 (Figure 2C, Figure 2—source data 1), underscor-

ing a loss of key microglial functions throughout AD progression.

Advanced MARPs represent proteins that were only altered upon extensive amyloid pathology.

This group included up-regulation of proteins involved in calcium ion binding such as NCAN,

MYO5A, HPCAL4, TTYH1 and GCA and down-regulation of proteins that play a role in the endocy-

tosis/lysosomal system such as TFEB, TFE3 and BIN1 (Figure 2D, Figure 2—source data 1). In addi-

tion, different G protein-coupled receptor signaling proteins, including GNG2, GNG5 and GNG10,
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Figure 1. Quantitative proteomics of acutely isolated microglia. Volcano plots of APPPS1 and APP-KI versus WT microglia at 1 (A and B), 3 (C and D), 6

(E and F) and 12 (G and H) months of age. The minus log10 transformed p-value is plotted against the log2 transformed LFQ ratios (log2 fold changes).

A permutation-based FDR estimation was applied which is visualized as hyperbolic curves. Proteins with a log2 LFQ ratio lower than �0.5 or higher than

+0.5 with a p-value less than 0.05 which remain significantly changed after FDR correction (FDR = 0.05, s0x00A0 = 0.1) are indicated as red circles. Non-

significantly changed proteins are indicated as blue circles. Some selected proteins are marked with their gene names.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Quality control of microglial isolation using MACS.

Figure supplement 1. Improvement of the data acquisition method for quantitative proteomics of microglia.

Figure supplement 2. Ab pathology in 3, 6 and 12 month old APPPS1 and APP-KI mice.
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Figure 2. APPPS1 microglia display earlier proteomic changes compared to APP-KI microglia. (A) Profile plots of APPPS1 and APP-KI versus WT

microglia at 1, 3, 6, and 12 months of age. Lines connect the average log2 fold changes of each protein at the different time points. Regulated proteins

were grouped according to three profiles: significantly increased or decreased after FDR correction (log2 fold change >0.5 or<�0.5; p<0.05; FDR

significant) at 3, 6, and 12 months or only at 6 and 12 or 12 months. Proteins that fulfill these criteria are indicated as red and blue lines for increased
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also displayed a decreased abundance (Figure 2D). Furthermore, we observed a high correlation of

MARP signatures between the two models at 12 months (Figure 2—figure supplement 1B).

A GO cluster enrichment analysis of middle and advanced MARPs identified down-regulation of

biological processes including cell motility, migration and chemotaxis, as well as cell development

and proliferation (Figure 3B and C, Figure 3—figure supplement 1B,C,E and F). Conversely, we

found an up-regulation of protein glycosylation and carbohydrate metabolism (Figure 3C, Figure 3—

figure supplement 1E and F). Additionally, alterations in ion transport processes involving ion

homeostasis and pH regulation were also detected (Figure 3C). These findings indicate that after an

initial inflammatory response, several cellular processes related to chemotaxis and phagocytosis are

progressively dysregulated upon increased Ab deposition.

Importantly, our proteomic analysis also detected alterations in proteins related to different

genetic risk factors of AD (Karch and Goate, 2015), including significantly increased levels of APOE,

TREM2, and INPP5D, and decreased levels of PLCG2, ABI3, and BIN1 in both mouse models (Fig-

ure 2—figure supplement 2A and B).

In addition, we compared MARP signatures with the previously published single cell transcrip-

tome study of 5xFAD mice (Keren-Shaul et al., 2017) to visualize the overlap, as well as differences,

between proteomic and transcriptomic microglial profiles (Figure 2B–D). When comparing the over-

lapping proteome of 12 months old APPPS1 and APP-KI mice with the transcriptome of 5xFAD mice

(Keren-Shaul et al., 2017), we were able to quantify 3348 common proteins/transcripts, whereas

2152 and 2841 gene products were only quantified on protein and transcript level, respectively

(Figure 4A). Comparison of our proteomic signatures with the microglial transcripts (Keren-

Shaul et al., 2017) revealed an overlap of 227 unidirectionally regulated, whereas 263 and 849 gene

products were only regulated on protein and transcript level, respectively (Figure 4B). While tran-

scriptomics demonstrates a similar regulation of a large number of early MARPs, we found less over-

lap for middle and advanced MARPs (Figure 2B–D). We also identified proteins with an inverse

regulation compared to transcriptomic signatures such as the early MARP RPL38, middle MARPs

MCM3 and GFPT1 or advanced MARPs CDC88A, GALNT2, EIF4B and CHMP6 (Figure 2B–D, Fig-

ure 2—source data 1). Furthermore, the advanced MARP HEXB showed a consistent up-regulation

in our proteomic analysis (Figure 2—source data 1), despite being previously anticipated as a

homeostatic gene.

Overall, our study presents a robust and reliable method to track microglial proteome and pro-

vides a resource that maps changes in brain immunity during different phases of Ab accumulation.

Proteomic changes are detected in plaque-associated microglia
Next, we validated proteomic changes by western blot analysis using isolated microglia from 12

month old APPPS1 and APP-KI mice. This analysis confirmed the pronounced increase of the early

MARPs APOE and CD68, the middle MARPs TREM2 and FABP5, as well as reduced levels of the

advanced MARP CSF1R (Figure 4C) in both transgenic mouse models compared to WT mice. Fur-

thermore, proteomic changes were also validated by immunohistochemistry in order to visualize spa-

tial distribution of altered microglial proteins in APPPS1 and APP-KI mice. Immunohistological

analysis of 3 month old APPPS1 mice already revealed increased immunoreactivity of selected

MARPs such as CLEC7a (Figure 5), TREM2 (Figure 5—figure supplement 1) and APOE (Figure 5—

figure supplement 2) that mark initial stages of microglial activation in AD. This increase was

detected in IBA1 positive microglia that were clustering around amyloid plaques, but not in micro-

glia further away from plaques and was – in agreement with our proteomic data – less pronounced

Figure 2 continued

and decreased abundance, respectively. Selected up- or down-regulated proteins are indicated in orange and cyan. Heatmaps show the log2 fold

changes of the top 74 up- or down-regulated proteins for early (B), middle (C) and advanced (D) MARPs and are compared to the log2 fold changes of

transcripts from single cell transcriptome study (Keren-Shaul et al., 2017), indicated with K-S. Crosses indicate missing values.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Early, middle, and advanced MARPs.

Figure supplement 1. Comparison of the early, middle and advanced MARPs in APPPS1 and APP-KI mice.

Figure supplement 2. Relative quantification of proteins from seven AD risk genes in APPPS1.
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Figure 3. Gene ontology enrichment cluster analysis for biological process (BP) of MARPs. Bar graphs show the clustering of early MARPs (A), middle

MARPs (B) and advanced MARPs (C) for BP. Up- and down-regulated proteins were analyzed separately using the web-based software tool DAVID 6.8

with all consistently quantified proteins (5500) as an individual background. Significantly enriched clusters (Enrichment Score >1.301) for up-and down-

regulated proteins are indicated in red and blue, respectively.
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in 3 month old APP-KI mice. Accordingly, at 12 months, both APPPS1 and APP-KI mice showed a

similar increase in the levels of selected MARP CLEC7a (Figure 6) and decreased levels of TMEM119

(Figure 7) compared to the WT mice, once again in microglia surrounding amyloid plaques. Taken

together, we validated selected microglial proteomic alterations from our dataset by applying bio-

chemical and immunohistochemical methods. In addition, we confirmed the kinetic differences in

AD-associated proteomic signatures of APPPS1 and APP-KI microglia. Our data suggest that

Figure 3 continued

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Gene ontology enrichment cluster analysis for cellular component (CC) and molecular function (MF) of MARPs.
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Figure 4. Comparison of quantified and regulated proteins of APPPS1 and APP-KI mice at 12 months with single cell transcriptomics and biochemical

validation of regulated proteins. (A) The comparison of relatively quantified proteins of APPPS1 (yellow) and APP-KI (green) mice versus WT at 12

months shows a modest overlap with a single cell transcriptomics study (blue) (Keren-Shaul et al., 2017). An amount of 3348 proteins (57.2% of all

quantified proteins) and their related transcripts were quantified in all three data sets. (B) The Venn diagram shows the overlap of significantly regulated

proteins in APPPS1 (yellow) and APP-KI (green) mice versus WT at 12 months with unidirectionally regulated microglial transcripts (blue) (Keren-

Shaul et al., 2017). Signatures which are specific either for the proteome or transcriptome dataset are separately depicted at the top or right,

respectively. The indicated percentage values are based on all relatively quantified proteins. (C) Biochemical validation of proteomic data was

performed using western blot analysis of microglial lysates from 12 month old mice. This analysis revealed an increased abundance of the up-regulated

MARPs APOE, TREM2, CD68 and FABP5 as well as a decreased abundance of the down-regulated MARP CSF1R in APPPS1 and APP-KI compared to

WT microglia. Arrows indicate antibody-detected specific bands and asterisk indicates unspecific bands.
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Figure 5. Microglial CLEC7a is prominently up-regulated in 3 month old APPPS1 mice. Immunohistochemical analysis of CLEC7a (red) reveals an

increased abundance of this early MARP in IBA1 positive (green) APPPS1 microglia surrounding Ab plaques (magenta) that is less prominent in APP-KI

microglia. CLEC7a is barely detected in WT microglia. Hoechst (HOE, blue) was used for nuclear staining. Boxed regions in upper panels (scale bar: 50

mm) are shown with a higher magnification in lower panels (scale bar: 10 mm).
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interaction between microglia and Ab is likely triggering the proteomic changes as they could be

observed in plaque-associated microglial population.

APPPS1 and APP-KI mice show similar dynamics of amyloid plaque
deposition, but differ in plaque fibrillization
The magnitude of proteomic microglial changes was found to correlate with Ab plaque accumulation

throughout disease progression. However, the appearance of MARP signatures differed between

the models and occurred earlier in the APPPS1 mice (Figure 1C and D, Figure 2A) despite the com-

parable plaque load observed in both mouse models (Figure 1—figure supplement 2). Thus, it

appears possible that the nature of amyloid plaques is different between the APPPS1 and APP-KI

mice. To examine this, we analyzed amyloid plaques in 3, 6 and 12 month old APPPS1 and APP-KI

mice by immunohistochemistry. We used the anti-Ab antibody NAB228 (Abner et al., 2018) to

detect Ab plaques, and Thiazine Red (ThR) to visualize fibrillar amyloid (Daria et al., 2017;

Figure 8A). In agreement with amyloid plaque pathology reported in this model (Radde et al.,

2006), APPPS1 mice contained fibrillar amyloid plaque cores already at 3 months of age. In contrast,

fibrillar Ab was barely detectable in APP-KI mice at 3 months of age (Figure 8A). The amount of

fibrillar Ab in APP-KI mice increased at 6 and 12 months, but overall remained lower compared to

the APPPS1 mice (Figure 8A). The reduced levels of fibrillar Ab in APP-KI mice were also confirmed

by biochemical analysis in which fibrillar Ab was specifically detected via immunoblot of the insoluble

brain fraction (Figure 8B). Despite the reduced levels of fibrillar Ab, Ab coverage was increased in 3

month old APP-KI compared to the APPPS1 mice (Figure 8C). To obtain further information on the

conformational state of amyloid plaque cores in both mouse models, we performed spectral analysis

using two luminescent conjugated oligothiophenes (LCOs) as reported previously (Rasmussen et al.,

2017; Figure 8—figure supplement 1A–D). The quadro-formyl thiophene acetic acid (qFTAA) LCO

binds to dense core amyloid fibrils and the hepta-formyl thiophene acetic acid (hFTAA) LCO seems

to recognize both amyloid fibrils and less dense pre-fibrillar amyloid aggregates (Klingstedt et al.,

2011; Nyström et al., 2013). In contrast to APP-KI, a prominent qFTAA signal was detected in

APPPS1 mice at 3 months of age, revealing dense core fibrillar Ab (Figure 8—figure supplement

1A and C). As expected, we could detect the hFTAA signal in both models at 3 months of age, visu-

alizing the less dense, pre-fibrillar amyloid aggregates. To compare the levels of dense fibrillar ver-

sus pre-fibrillar Ab, we quantified the ratio between peak intensities of qFTAA (emission at 502) and

hFTAA (emission at 588) in both models at 3 and 12 months (Figure 8—figure supplement 1D).

This analysis revealed significantly reduced levels of fibrillar Ab in the APP-KI mice at the age of 3

months and only a trend towards reduction at the age of 12 months (Figure 8—figure supplement

1A–D). Thus, we demonstrate prominent differences in Ab plaque fibrillization between APPPS1 and

APP-KI mice at the age of 3 months.

Microglial recruitment correlates with fibrillar Ab
To determine what triggers microglial reactivity in AD, we first quantified microglial recruitment to

Ab plaques in both mouse models. This analysis was done at the early pathological stage (3 months),

where we identified prominent differences in the proteome regulation (Figure 1C and D, Figure 2A)

as well as in the amount of fibrillar Ab (Figure 8A and B, Figure 8—figure supplement 1A–

C) between the two mouse models. Immunohistochemical analysis revealed IBA1 positive, amoeboid

microglia recruited to large, ThR positive, fibrillar Ab aggregates in APPPS1 mice (Figure 9A). Of

note, we observed intracellular fibrillar Ab in APPPS1 microglia in close contact to the plaque core

as previously reported (Bolmont et al., 2008). Despite the significantly smaller fibrillar Ab aggre-

gates in APP-KI mice, we could observe IBA1 positive microglia polarized towards the fibrillar Ab,

rather than to the surrounding non-fibrillar Ab positive material (Figure 9A). Quantification analysis

revealed increased clustering of IBA1 positive microglia around Ab plaques in APPPS1 compared to

Figure 5 continued

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Microglial TREM2 is prominently up-regulated in 3 month old APPPS1 mice.

Figure supplement 2. Microglial APOE is prominently up-regulated in 3 month old APPPS1 mice.

Sebastian Monasor et al. eLife 2020;9:e54083. DOI: https://doi.org/10.7554/eLife.54083 11 of 33

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.54083


IBA1CLEC7a MERGE

)
M

2
1( 

1
S

P
P

P
A

A
P

P
-K

I 
(1

2
M

)

A

W
T

 (
1

2
M

)

b IBA1CLEC7a HOE

Figure 6. Microglial CLEC7a is increased in both AD mouse models at 12 months of age. Immunohistochemical analysis shows an up-regulation of

CLEC7a (red) in IBA1 positive (green) APPPS1 and APP-KI microglia surrounding Ab plaques (magenta), compared to WT where CLEC7a is barely

detected. Hoechst (HOE, blue) was used for nuclear staining. Boxed regions in upper panels (scale bar: 50 mm) are shown with a higher magnification in

lower panels (scale bar: 10 mm).
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Figure 7. Microglial TMEM119 is down-regulated in both AD mouse models at 12 months of age. Immunohistochemical analysis of TMEM119 (red)

shows a broad coverage signal of this homeostatic marker in IBA1 positive (green) WT microglia. In the APPPS1 and APP-KI mice, TMEM119 signal is

reduced in IBA1 positive microglia surrounding Ab plaques (magenta). Of note, increased TMEM119 signal was often found in the core of amyloid

Figure 7 continued on next page
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the APP-KI mice (Figure 9B), despite their overall larger Ab plaque size (Figure 9C), supporting that

fibrillar Ab conformation, rather than plaque size, are responsible for microglial recruitment. Like-

wise, we observed increased CD68 immunoreactivity around Ab plaques in the APPPS1 compared

to the APP-KI mice (Figure 9D and E). However, CD68 signal per individual microglial cell in the pla-

que vicinity was similar in both models (Figure 9F), suggesting that differences in AD-associated

microglial proteins are due to the number of recruited microglia rather than differences in their indi-

vidual CD68 protein levels.

One of the Ab modifications that can be readily detected in AD brains and favours fibrillar confor-

mation is pyroglutamate-modified Ab (pE3-Ab) (Dammers et al., 2015a; Dammers et al., 2015b).

To test whether pE3-Ab may be triggering microglial reactivity, we assessed pE3-Ab levels in 3 and

12 month old APPPS1 and APP-KI mice by immunohistochemistry, using a previously validated anti-

body (Hartlage-Rübsamen et al., 2018; Figure 9—figure supplement 1A–D). As we could only

detect pE3-Ab reactivity in 12 month old animals, but not at 3 months (Figure 9—figure supple-

ment 1A and B), it is less likely that this modification is responsible for microglial recruitment and

differences in the proteome between the models. Similarly as observed for fibrillar Ab, levels of pE3-

Ab were reduced in the APP-KI compared to the APPPS1 mice (Figure 9—figure supplement 1C

and D).

Besides Ab, microglial recruitment has also been associated with neuritic damage (dystrophic

neurites) (Hemonnot et al., 2019). Accordingly, we analyzed dystrophic neurite pathology in 3

month old APPPS1 and APP-KI mice, using an antibody against APP that accumulates in these struc-

tures (Cummings et al., 1992; Sadleir et al., 2016). As previously reported (Radde et al., 2006),

amyloid plaques in the APPPS1 mice were surrounded by prominent dystrophic neurites

(Figure 9G). Interestingly, despite the reduced load of fibrillar Ab, we readily detected dystrophic

neurites in the APP-KI mice (Figure 9G). Moreover, our quantification analysis revealed an increased

dystrophic neurite area in the APP-KI compared to the APPPS1 mice (Figure 9H) and reduced num-

ber of microglial cells recruited to this area (Figure 9I). Therefore, the differences in early microglial

recruitment to APPPS1 plaques and the consecutive proteomic changes are less likely to be trig-

gered by dystrophic neurites.

Altogether, we hypothesize that microglial recruitment may be triggered by the fibrillar Ab con-

tent of amyloid plaques, which drives the acquisition of MARP signatures.

Phagocytic impairments correlate with the occurrence of MARP
signatures
The differences observed in the dynamics of microglial response to amyloid in the APPPS1 and the

APP-KI mice prompted us to examine the association between microglial phagocytic function and

the appearance of MARP signatures. To this end, we assessed the phagocytic capacity of microglia

from 3 and 6 month old APPPS1 and APP-KI mice compared to the corresponding age-matched WT

microglia using the E. coli-pHrodo uptake assay (Götzl et al., 2019; Kleinberger et al., 2014). We

already detected phagocytic impairments in 3 month old APPPS1 microglia, which was reflected by

a prominent decrease in the amount of intracellular E. coli particles (Figure 9J, Figure 9—source

data 1A) and a reduced number of CD11b positive cells that were capable of E. coli uptake

(Figure 9K, Figure 9—source data 1B). Notably, APPPS1 phagocytic impairment did not change

further in 6 month old microglia, suggesting that microglial functional deficits, as measured by the

E. coli uptake assay, were fully established already at 3 months of age and characterized by early

MARPs. In contrast, APP-KI microglia remained functional at 3 months, but at 6 months displayed

similar impairments as seen in APPPS1 microglia (Figure 9J and K). Overall, we observed different

kinetics of microglial dysfunction among mouse models which correlate with the appearance of

MARPs and, in turn, with the presence of fibrillar Ab.

Figure 7 continued

plaques in APPPS1 and APP-KI mice. Hoechst (HOE, blue) was used for nuclear staining. Boxed regions in upper panels (scale bar: 50 mm) are shown

with a higher magnification in lower panels (scale bar: 10 mm) and illustrate reduced levels of TMEM119 in plaque associated microglia.
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Figure 8. APPPS1 Ab plaques display a higher content of fibrillar Ab compared to the APP-KI plaques. (A) Immunohistochemical analysis showing total

Ab (magenta), fibrillar Ab (ThR, red) and microglia (IBA1, green) in both mouse models at 3, 6 and 12 months of age. Scale bar: 100 mm B). Western blot

analysis of insoluble Ab at 3, 6 and 12 months of age confirms increased levels of fibrillar Ab in APPPS1 compared to the APP-KI mice. (C).

Figure 8 continued on next page
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Discussion
This study presents an in-depth and time-resolved proteome of microglia isolated across different

stages of Ab accumulation in the APPPS1 and APP-KI mouse models, resulting in the identification

of early, middle, and advanced MARPs. We propose that the structure of amyloid plaques (fibrillar

versus non-fibrillar) triggers the molecular alterations of microglia. Key microglial signatures encom-

pass proteins with a central function in microglial biology and AD pathogenesis. Moreover, our func-

tional analysis shows that early MARP signatures already reflect microglial phagocytic dysfunction.

To achieve robust and reproducible relative quantification of microglial proteins from single mice,

we improved the yield of acutely isolated microglia to an average of 2 � 106 cells per mouse brain,

compared to recently published protocols (Flowers et al., 2017; Rangaraju et al., 2018). Next, by

establishing the more sensitive DIA method for protein quantification, we improved the number of

consistently identified proteins by 29.3% and obtained an average of 5699 (APPPS1) and 5698 (APP-

KI) relatively quantified proteins. Notably, our analysis enhanced the detection of low abundance

proteins and did not require data imputation. Although we included both male and female mice for

the analysis of microglial proteome, our study was not powered to detect sex-specific differences

that have been reported in microglia (Sala Frigerio et al., 2019). The advancement to previous stud-

ies (Rangaraju et al., 2018; Sharma et al., 2015) is also exemplified by quantification of membrane

proteins, including well known microglial homeostatic markers TMEM119 or P2RY12. We also mea-

sured alterations in proteins that were postulated to be only altered at the transcriptional level in AD

microglia (Rangaraju et al., 2018), including up-regulation of middle MARPs FABP3, FABP5, PLP2

and MIF. In summary, our study achieved a major improvement in quantitative proteomic analysis of

rodent microglia (Flowers et al., 2017; Rangaraju et al., 2018; Thygesen et al., 2018). This meth-

odological advance enabled us to map microglial changes across diverse stages of Ab pathology in

two widely explored pre-clinical models of amyloidosis. Generated proteomic profiles characterize

microglia under diseased conditions and can be used as a resource to track changes upon microglial

therapeutic modification, such as Ab immunotherapy. Such studies would facilitate discovery of clini-

cally relevant molecular alterations that are necessary for microglial functional repair, monitoring dis-

ease progression and therapeutic efficacy.

The TREM2/APOE axis plays a key role in the regulation of the microglial transcriptional program

and guides the homeostatic/DAM signature switch (Jay et al., 2017; Keren-Shaul et al., 2017;

Krasemann et al., 2017). Our time-resolved proteomic analysis observed major rearrangements of

the microglial proteomic landscape in both APPPS1 and APP-KI mice and revealed a partial overlap

between MARPs and transcriptional profiles of DAM and homeostatic microglia (Keren-Shaul et al.,

2017), but also identified additional microglial marker proteins throughout different stages of Ab

deposition.

Early MARPs include proteins of the interferon response, which is consistent with the recently

identified interferon-responsive microglial sub-population in AD mice (Sala Frigerio et al., 2019).

Numerous up-regulated early MARPs, including CD74, CTSD, CTSH, CTSZ, HEXA, GLB1, CD68,

NPC2 and CLN3, reflect alterations in endo-lysosomal homeostasis as an early pathological insult in

AD microglia (Van Acker et al., 2019). Additionally, factors of the fatty acid and cholesterol metab-

olism are altered throughout all pathological phases. Up-regulated are the early (APOE, ACACA,

and SOAT1) middle (FABP3, FABP5, NCEH1, APOD, AACS, ACOX3, HACD2) and advanced MARPs

(ACOT11, ACSBG1, ECHS1, ELOVL1, and FASN) and down-regulated are several middle and

advanced MARPs (NAAA, FAM213B, HPGD, HPGDS, and PRKAB1), linking microglial lipid dysho-

meostasis and AD pathology.

An inflammatory response in AD is suggested by the significant up-regulation of early MARPs

LGALS3 and its binding protein (LGALS3BP). Recent findings indicated that the LGALS3/TREM2 sig-

nalling pathway, that acts as an inflammatory regulator of amyloid plaque formation, may also be of

Figure 8 continued

Quantification reveals increased total Ab coverage in 3 month old APP-KI compared to the APPPS1 mice. Values are expressed as percentages of area

covered by total Ab and calculated as the mean (± SD) from N = 4 mice (****p<0.0001, unpaired two-tailed Student’s T-test).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Amyloid plaque spectral characteristics show differences between 3 month old APPPS1 and APP-KI mice.
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Figure 9. Fibrillar Ab triggers higher microglial recruitment in 3 month old APPPS1 mice and correlates with a phagocytic impairment. (A) IBA1 positive

(green) microglia polarize towards the fibrillar Ab core (ThR, red, white arrow), rather than to the surrounding plaque halo (magenta) in 3 month old

APPPS1 and APP-KI mice. Hoechst (HOE, blue) was used for nuclear staining. Yellow arrows indicate intracellular fibrillar Ab within APPPS1 microglia.

Scale bar: 10 mm. (B) Quantification of IBA1 positive cells recruited to amyloid plaques in 3 month old APPPS1 and APP-KI mice. Microglial numbers are

Figure 9 continued on next page
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relevance for AD pathology in humans (Boza-Serrano et al., 2019). Further evidence that some of

the presented proteomic alterations of rodent microglia may be relevant for human disease is given

by the detection of up-regulated early/middle microglial MARPs, including CD68, TREM2 and ITGAX

in microglia surrounding amyloid plaques in postmortem AD brains (Hopperton et al., 2018). How-

ever, a recent study suggested little overlap between DAM and homeostatic profiles of rodent

microglia and human AD patients, implicating a limitation of mouse models of AD (Zhou et al.,

2020). Of note, microglial signatures have mostly been studied in amyloidosis mouse models and

amyloid triggered microglial alterations cannot be directly compared with human microglia from

advanced AD stages that are exposed to both amyloid and tau pathology. As microglia emerge as a

promising therapeutic target in AD, additional MARP signatures should be validated in human tis-

sue. In particular, early MARPs that are strongly increased in both AD mouse models may serve as a

resource to identify novel AD biomarkers and more specific microglial positron emission tomography

(PET) tracers that are urgently needed to monitor microglial reactivity in vivo (Edison et al., 2018;

Hemonnot et al., 2019). Middle and late MARPs reveal a decrease of microglial homeostatic func-

tions affecting chemotaxis, cell migration and phagocytosis (e.g., CX3CR1, SYK, P2RY12, BIN2, TFEB

and TFE3) and thus mark AD progression.

It is still being discussed which is the main trigger for microglial recruitment to amyloid plaques

and their molecular switch from a homeostatic to a neurodegenerative phenotype

(Hemonnot et al., 2019; Jung et al., 2015; Krasemann et al., 2017). Our study proposes that

microglial recruitment to Ab deposits and their corresponding disease-associated proteomic altera-

tions may be triggered by fibrillar Ab. This response could be mediated by dense core fibrillar amy-

loid and/or smaller fibrillar oligomers that have been proposed as neurotoxic species (Haass and

Selkoe, 2007). Of note, microglial recruitment did not correlate with neuritic dystrophies as we

detected prominent neuritic dystrophies in the APP-KI mice that bear less fibrillar Ab. Similar plaque

morphology with less fibrillar Ab, as observed in APP-KI mice, has also been reported in AD mice

deficient for TREM2 or APOE that also have less microglial cells recruited to amyloid plaques and

display prominent neuritic dystrophies (Parhizkar et al., 2019; Sala Frigerio et al., 2019;

Ulrich et al., 2018; Wang et al., 2015; Yuan et al., 2016). APOE may have a dual role and control

the transcriptional/translational response of microglia to amyloid as well as amyloid plaque compact-

ness that directs microglial recruitment and thus creates a regulatory feedback-loop. These findings

are strengthened by the relevance of ApoE and Trem2 as genetic risk factors of AD (Karch and

Goate, 2015). Fibrillar Ab as the trigger for microglial recruitment is also supported by the human

pathology where neuritic plaques in AD brains were found surrounded by microglia. In contrast,

microglial clustering was not detected at diffuse plaques lacking fibrillar Ab cores (D’Andrea et al.,

2004).

Figure 9 continued

normalized to the plaque area. (C) Quantification of plaque size in 3 month old APPPS1 and APP-KI mice. (D) Immunohistochemical analysis of IBA1

(green) and CD68 (red) positive microglial cells recruited to Ab plaques (magenta) in 3 month old APPPS1 and APP-KI mice. Hoechst (HOE, blue) was

used for nuclear staining. Scale bar: 20 mm. (E) Quantification of CD68 coverage per single plaque in 3 month old APPPS1 and APP-KI mice. CD68

coverage is normalized to the plaque area. (F) Quantification of CD68 coverage per microglia in 3 month old APPPS1 and APP-KI mice. CD68 coverage

is normalized to the number of IBA1 positive cells recruited to amyloid plaque. (G) Immunohistochemical analysis of microglia (IBA1, green) associated

to dystrophic neurites (APP, red) in 3 month old APPPS1 and APP-KI mice. Ab plaque was visualized using an antibody against Ab (magenta) and

Hoechst (HOE, blue) was used for nuclear staining. Scale bar: 10 mm. (H) Quantification of area covered by dystrophic neurites in 3 month old APPPS1

and APP-KI mice. (I) Quantification of IBA1 positive cells associated to dystrophic neurites in 3 month old APPPS1 and APP-KI mice. Number of

microglia quantified per single plaque are normalized to its corresponding dystrophic neurite area. Values in (B, C), (H), and (I), are expressed as the

mean of N = 5 (APPPS1) and N = 4 (APP-KI) mice ± SD and in (E and F) as the mean of N = 3 mice per genotype ± SD (*p<0.05; **p<0.01, unpaired

two-tailed Student’s T-test; n.s.: not significant). (J). Mean Fluorescence Intensity (MFI) of E. coli-pHrodo signal within the CD11b positive cells in 3 and

6 month old APPPS1, APP-KI and WT mice. CytoD was used to inhibit phagocytosis and serves as a negative control. a.u.: arbitrary units. (K).

Percentage of CD11b and E. coli-pHrodo double positive cells from the total CD11b positive population. In (J and K), values for the 3 month old group

are expressed as the mean of N = 3 mice per genotype ± SD and for the 6 month old group as the mean of N = 2 mice per genotype ± SD

(***p<0.001, Two-way ANOVA, Dunnett’s multiple comparison test; n.s.: not significant).

The online version of this article includes the following source data and figure supplement(s) for figure 9:

Source data 1. Phagocytosis is impaired earlier in APPPS1 compared to APP-KI microglia.

Figure supplement 1. pE3-Ab does not correlate with early microglial changes in 3 month old APPPS1 mice.
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Although DAM signatures, that include upregulation of phagocytosis and lysosomal genes, have

been suggested as a protective response (Keren-Shaul et al., 2017), there is still a lack of direct

experimental evidence linking DAM profiles to improved microglial phagocytic function. In addition,

it has been proposed that MGnD microglia may represent a dysfunctional phenotype

(Krasemann et al., 2017). Importantly, our study demonstrates a functional link between proteomic

changes and reduced phagocytosis by AD microglia. This is in agreement with Ab�dependent early

phagocytic dysfunction of APPPS1 microglia reported previously (Krabbe et al., 2013). Our study

shows that APPPS1 microglia start acquiring early MARPs at the age of 3 months, which is already

accompanied by reduced phagocytic function. In contrast, less altered proteomic signatures of 3

month old APP-KI microglia correlated with preserved phagocytic function. Pronounced MARP sig-

natures that appeared later in APP-KI microglia (6 months) were subsequently in accordance with

phagocytic impairments. Therefore, differences in plaque fibrillization in both mouse models did not

only affect microglial recruitment and activation, but also the phagocytic function of microglia. This

functional link should be examined further using physiological substrates of microglia such as Ab,

myelin or synaptosomes (McQuade and Blurton-Jones, 2019).

Reduced phagocytosis of AD microglia might be related to observed proteomic alterations in

lysosomal proteins or cell receptors. TREM2, which we found increased in both mouse models, plays

an important role in phagocytosis as mutations of TREM2 related to AD and FTLD impair phagocytic

activity of microglia (Kleinberger et al., 2014). However, up-regulation of the TREM2/APOE axis

involves up-regulation of many phagocytic or lysosomal proteins (e.g., cathepsins or CD68) that are

part of MARPs and altered in APPPS1 and APP-KI microglia. Similarly, also transcriptional analysis

revealed a downregulation of homeostatic and upregulation of DAM or MGnD program within

microglial cells in the vicinity of Ab plaques (Keren-Shaul et al., 2017; Krasemann et al., 2017). The

increase in lysosomal or phagocytic gene signatures may reflect a compensatory mechanism initiated

as a response of microglia to Ab accumulation in order to enhance phagocytic function. Eventually,

this limited microglial response fails to translate into improved Ab clearance capability.

Phagocytosis might also be altered through differential regulation of toll like receptors (TLR).

Among the TLRs, TLR2, an Ab binding receptor (Liu et al., 2012; McDonald et al., 2016), showed

the strongest increase with age while TLR9 was significantly reduced in APPPS1 and APP-KI mice.

Along these lines, TLR2 deficiency reduced the inflammatory response of microglia to Ab42, but

increased Ab phagocytosis in cultured microglia (Liu et al., 2012) while TLR9 is associated with

improved Ab clearance (Scholtzova et al., 2009). Thus, differential regulation of TLRs might contrib-

ute to the reduced phagocytic activity of aged APPPS1 microglia (Daria et al., 2017).

Additionally, many purinergic receptors (e.g., P2RX7, P2RY12 or P2RY13), which are important

regulators of chemotaxis, phagocytosis, membrane polarization, and inflammatory signaling and

thus emerged as possible microglial targets in AD (Calovi et al., 2019; Hemonnot et al., 2019),

were found down-regulated in both AD mouse models. P2RY12 is regarded as a marker for ramified

non-inflammatory microglia (Mildner et al., 2017) that is reduced in response to Ab plaques and

therefore represents a homeostatic microglial marker (Keren-Shaul et al., 2017; Krasemann et al.,

2017). In contrast, P2RX4, a purinergic receptor that is likely to be involved in shifting microglia

towards a pro-inflammatory phenotype (Calovi et al., 2019) or myelin phagocytosis (Zabala et al.,

2018) had an increased abundance in both AD models. Taken together, our data emphasize altera-

tions of purinergic receptor signaling in AD microglia that may regulate a morphological change

towards amoeboid microglia with reduced motility and increased pro-inflammatory activity.

Our study confirms that both mouse models are valuable tools for studying Ab�induced patho-

logical changes of microglia that are remarkably comparable at advanced stages of amyloidosis.

However, the observed differences in the dynamics of early, middle and late MARPs in APPPS1 and

APP-KI mice should be considered for the design of pre-clinical studies of microglial repair and will

require different time windows for microglial modulation.

In conclusion, we tracked pathological alterations of microglia in two AD mouse models using a

proteomic approach. Our work demonstrates that microglial alterations are triggered as a response

to Ab deposition as pre-deposition stages do not reveal proteomic alterations. The conversion to

MARPs is supported by changes in TREM2-APOE regulation mechanism. AD microglia display pro-

nounced interferon stimulation, increased antigen presentation, alterations in cell surface receptors,

lipid homeostasis and metabolism. These proteomic changes in microglia seem to occur as a

response to fibrillar Ab and are reflected in amoeboid microglial morphology and impaired
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phagocytic capacity. Finally, our proteomic dataset serves a valuable research resource providing

information on microglial alterations over different stages of Ab deposition that can be used to mon-

itor therapeutic efficacy of microglial repair strategies.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(Mus musculus)

APPPS1 DOI: 10.1038/sj.embor.7400784 RRID:MGI:5313568 Heterozygous
(C57BL/6 background)

Genetic reagent
(Mus musculus)

APPNL-G-F (APP-KI) DOI: 10.1038/nn.3697 RRID:MGI:6160916 Homozygous
(C57BL/6 background)

Antibody Anti-IBA1
(rabbit polyclonal)

Wako Cat#:019–19741,
RRID:AB_839504

IHC (1:500)

Antibody Anti-IBA1
(goat polyclonal)

Abcam Cat#:ab5076,
RRID:AB_2224402

IHC (1:500)

Antibody Anti-Amyloid beta
NAB228
(mouse monoclonal)

Santa Cruz Cat#:sc-32277,
RRID:AB_626670

IHC (1:2000)

Antibody Anti-CD68
(rat monoclonal)

Bio-Rad Cat#:MCA1957G,
RRID:AB_324217

IHC (1:500)
WB (1:1000)

Antibody Anti-TREM2
(sheep polyclonal)

R and D Systems Cat#:AF1729,
RRID:AB_354956

IHC (1:50)

Antibody Anti-Amyloid Y188
(rabbit monoclonal)

Abcam Cat#:1565–1,
RRID:AB_562042

IHC (1:2000)

Antibody Anti-CLEC7a
(rat monoclonal)

Invivogen Cat#:mabg-mdect,
RRID:AB_2753143

IHC (1:50)

Antibody Anti-TMEM119
(rabbit monoclonal)

Abcam Cat#:ab209064,
RRID:AB_2800343

IHC (1:200)

Antibody Anti-APOE HJ6.3
(mouse monoclonal)

DOI: 10.1084/jem.20121274 IHC (Biotinylated, 1:100)

Antibody Anti-Amyloid beta 3552
(rabbit polyclonal)

DOI: 10.1523/JNEUROSCI.05.2006 IHC (1:5000), WB (1:2000)

Antibody Anti-pE3-Amyloid beta J8
(mouse monoclonal)

DOI: 10.3390/molecules23040924 IHC (1:500)

Antibody Anti-TREM2 5F4
(rat monoclonal)

DOI: 10.15252/emmm.201606370 WB (1:10)

Antibody Anti-APOE
(goat polyclonal)

Millipore Cat#:AB947,
RRID:AB_2258475

WB (1:1000)

Antibody Anti-CSF1R
(rabbit polyclonal)

Cell Signaling Cat#:3152,
RRID:AB_2085233

WB (1:1000)

Antibody Anti-FABP5
(goat polyclonal)

R and DSystems Cat#:AF1476,
RRID:AB_2293656

WB (1:400)

Antibody Anti-GAPDH
(mouse monoclonal)

Abcam Cat#:ab8245,
RRID:AB_2107448

WB (1:2000)

Antibody Anti-CD11b-APC-Cy7
(rat monoclonal)

BDBiosciences Cat#:557657,
RRID:AB_396772

FACS (1:200)

Animals
Male and female mice of the hemizygous APPPS1 mouse line overexpressing human APPKM670/671NL

and PS1L166P under the control of the Thy1 promoter (Radde et al., 2006), homozygous AppNL-G-F

mouse line (Saito et al., 2014) and the C57BL/6J (WT) line were used in this study. Mice were group

housed under specific pathogen-free conditions. Mice had access to water and standard mouse

chow (Ssniff Ms-H, Ssniff Spezialdiäten GmbH, Soest, Germany) ad libitum and were kept under a

Sebastian Monasor et al. eLife 2020;9:e54083. DOI: https://doi.org/10.7554/eLife.54083 20 of 33

Tools and resources Neuroscience

https://doi.org/10.1038/sj.embor.7400784
https://scicrunch.org/resolver/MGI:5313568
https://doi.org/10.1038/nn.3697
https://scicrunch.org/resolver/MGI:6160916
https://scicrunch.org/resolver/AB_839504
https://scicrunch.org/resolver/AB_2224402
https://scicrunch.org/resolver/AB_626670
https://scicrunch.org/resolver/AB_324217
https://scicrunch.org/resolver/AB_354956
https://scicrunch.org/resolver/AB_562042
https://scicrunch.org/resolver/AB_2753143
https://scicrunch.org/resolver/AB_2800343
https://doi.org/10.1084/jem.20121274
https://doi.org/10.1523/JNEUROSCI.5354%E2%80%9305.2006
https://doi.org/10.3390/molecules23040924
https://doi.org/10.15252/emmm.201606370
https://scicrunch.org/resolver/AB_2258475
https://scicrunch.org/resolver/AB_2085233
https://scicrunch.org/resolver/AB_2293656
https://scicrunch.org/resolver/AB_2107448
https://scicrunch.org/resolver/AB_396772
https://doi.org/10.7554/eLife.54083


12/12 hr light-dark cycle in IVC System Typ II L-cages (528 cm2) equipped with solid floors and a

layer of bedding. All animal experiments were performed in compliance with the German animal

welfare law and have been approved by the government of Upper Bavaria.

Isolation of primary microglia
Primary microglia were isolated from mouse brains (cerebrum) using MACS technology (Miltenyi Bio-

tec) according to manufacturer’s instructions and as previously described (Daria et al., 2017). Briefly,

olfactory bulb, brain stem and cerebellum were removed and the remaining cerebrum was freed

from meninges and dissociated by enzymatic digestion using a Neural Tissue Dissociation Kit P (Mil-

tenyi Biotec). Subsequently, mechanical dissociation was performed by using three fire-polished

glass Pasteur pipettes of decreasing diameter. CD11b positive microglia were magnetically labelled

using CD11b MicroBeads, loaded onto a MACS LS Column (Miltenyi Biotec) and subjected to mag-

netic separation, resulting in CD11b-enriched (microglia-enriched) and CD11b-depleted (microglia-

depleted) fractions. Obtained microglia-enriched pellets were either washed twice with HBSS

(Gibco) supplemented with 7 mM HEPES, frozen in liquid nitrogen and stored at �80˚C for biochem-

ical or mass spectrometry analysis, or resuspended in microglial culturing media and used for phago-

cytosis assay as described below.

Sample preparation for mass spectrometry
Microglia were isolated from three transgenic animals and their three corresponding WT controls for

each age and genotype. We included both male and female mice into proteomic analysis and their

distribution is outlined in Supplementary file 3. Microglia-enriched pellets from individual animals

were analysed separately and lysed in 200 mL of STET lysis buffer (50 mM Tris, 150 mM NaCl, 2 mM

EDTA, 1% Triton, pH 7.5) at 4˚C with intermediate vortexing. The samples were centrifuged for 5

min at 16000 x g at 4˚C to remove cell debris and undissolved material. The supernatant was trans-

ferred to a LoBind tube (Eppendorf) and the protein concentration estimated using the Pierce 660

nm protein assay (ThermoFisher Scientific). A protein amount of 15 mg was subjected to tryptic pro-

tein digestion applying the the filter aided sample preparation protocol (FASP) (Wiśniewski et al.,

2009) using Vivacon spin filters with a 30 kDa cut-off (Sartorius). Briefly, proteins were reduced with

20 mM dithiothreitol and free cystein residues were alkylated with 50 mM iodoacetamide (Sigma

Aldrich). After the urea washing steps, proteins were digested with 0.3 mg LysC (Promega) for 16 hr

at 37˚C followed by a second digestion step with 0.15 mg trypsin (Promega) for 4 hr at 37˚C. The

peptides were eluted into collection tubes and acidified with formic acid (Sigma Aldrich). Afterwards,

proteolytic peptides were desalted by stop and go extraction (STAGE) with self-packed C18 tips

(Empore C18 SPE, 3M) (Rappsilber et al., 2003). After vacuum centrifugation, peptides were dis-

solved in 20 mL 0.1% formic acid (Biosolve) and indexed retention time peptides were added (iRT

Kit, Biognosys).

Liquid chromatography – tandem mass spectrometry analysis
For label-free quantification (LFQ) of proteins, peptides were analyzed on an Easy nLC 1000 or 1200

nanoHPLC (Thermo Scientific) which was coupled online via a Nanospray Flex Ion Source (Thermo

Sientific) equipped with a PRSO-V1 column oven (Sonation) to a Q-Exactive HF mass spectrometer

(Thermo Scientific). An amount of 1.3 mg of peptides was separated on in-house packed C18 col-

umns (30 cm x 75 mm ID, ReproSil-Pur 120 C18-AQ, 1.9 mm, Dr. Maisch GmbH) using a binary gradi-

ent of water (A) and acetonitrile (B) supplemented with 0.1% formic acid (0 min., 2% B; 3:30 min.,

5% B; 137:30 min., 25% B; 168:30 min., 35% B; 182:30 min., 60% B) at 50˚C column temperature.

For DDA, full MS scans were acquired at a resolution of 120000 (m/z range: 300–1400; automatic

gain control (AGC) target: 3E+6). The 15 most intense peptide ions per full MS scan were selected

for peptide fragmentation (resolution: 15000; isolation width: 1.6 m/z; AGC target: 1E+5; normalized

collision energy (NCE): 26%). A dynamic exclusion of 120 s was used for peptide fragmentation.

For DIA, one scan cycle included a full MS scan (m/z range: 300–1400; resolution: 120000; AGC

target: 5E+6 ions) and 25 MS/MS scans covering a range of 300–1400 m/z with consecutive m/z win-

dows (resolution: 30000; AGC target: 3E+six ions; Supplementary file 4). The maximum ion trap-

ping time was set to ‘auto’. A stepped normalized collision energy of 26 ± 2.6% was used for

fragmentation.
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Microglia from APPPS1 mice were analyzed using DDA and DIA for method establishement.

Microglia from APPPS1 and APP-KI mice were compared using DIA as it outperformed DDA.

Mass spectrometric LFQ and data analysis
For data acquired with DDA, the data was analyzed with the software Maxquant (maxquant.org,

Max-Planck Institute Munich) version 1.6.1.0 (Cox et al., 2014). The MS data was searched against a

reviewed canonical fasta database of Mus musculus from UniProt (download: November the 1st

2017, 16843 entries) supplemented with the sequence of human APP with the Swedish mutant and

the iRT peptides. Trypsin was defined as a protease. Two missed cleavages were allowed for the

database search. The option first search was used to recalibrate the peptide masses within a window

of 20 ppm. For the main search peptide and peptide fragment mass tolerances were set to 4.5 and

20 ppm, respectively. Carbamidomethylation of cysteine was defined as static modification. Acetyla-

tion of the protein N-term as well as oxidation of methionine was set as variable modification. The

FDR for both peptides and proteins was set to 1%. The ‘match between runs’ option was enabled

with a matching window of 1.5 min. LFQ of proteins required at least one ratio count of unique pep-

tides. Only unique peptides were used for quantification. Normalization of LFQ intensities was per-

formed separately for the age groups because LC-MS/MS data was acquired in different batches.

A spectral library was generated in Spectronaut (version 12.0.20491.11, Biognosys)

(Bruderer et al., 2015) using the search results of Maxquant of the APPPS1 dataset. The library

includes 122542 precursor ions from 91349 peptides, which represent 6223 protein groups. The DIA

datasets of both mouse models were analyzed with this spectral library (version

12.0.20491.14.21367) with standard settings. Briefly, the FDR of protein and peptide identifications

was set to 1%. LFQ of proteins was performed on peptide fragment ions and required at least one

quantified peptide per protein. Protein quantification was performed on maximum three peptides

per protein group. The data of APPPS1 microglia was organized in age-dependent fractions to

enable separate normalization of the data. All LC-MS/MS runs of the APP-KI dataset were normal-

ized against each other because all samples were analyzed in randomized order in one batch.

The protein LFQ reports of Maxquant and Spectronaut were further processed in Perseus

(Tyanova et al., 2016). The protein LFQ intensities were log2 transformed and log2 fold changes

were calculated between transgenic and WT samples separately for the different age groups and

mouse models. Only proteins with a consistent quantification in all samples of an age group were

considered for statistical testing. A two-sided Student’s t-test was applied to evaluate the signifi-

cance of proteins with changed abundance (from log2 fold change of transgenic versus WT microglia

per age group). Additionally, a permutation based FDR estimation (threshold: FDR = 5%,

s0x00A0 = 0.1) was used to perform multiple hypothesis correction (Tusher et al., 2001). A log2 fold

change larger than 0.5, or smaller than �0.5, a p-value less than 0.05 and significant regulation after

FDR filtering were defined as regulation thresholds criteria. The same thresholds were used for the

comparison with transcriptomics data.

Gene ontology enrichment analysis was performed with the web-tool DAVID (version 6.8)

(Huang et al., 2009a; Huang et al., 2009b) using GO_FAT terms. Up- and down-regulated early,

middle and advanced MARPs were clustered separately for biological process, cellular component,

and molecular function with all 5500 proteins, consistently quantified in APPPS1 and APP-KI micro-

glia, as a customized background. A medium classification stringency was applied. An enrichment

score of 1.3 was defined as threshold for cluster enrichment.

Biochemical characterization of brain tissue and isolated microglia
RIPA lysates were prepared from brain hemispheres, centrifuged at 100000 x g (60 min at 4˚C) and

the remaining pellet was homogenized in 0.5 mL 70% formic acid. The formic acid fraction was neu-

tralized with 20 � 1 M Tris-HCl buffer at pH 9.5 and used for Ab analysis. For Ab detection, proteins

were separated on Tris-Tricine gels (10–20%, Thermo Fisher Scientific), transferred to nitrocellulose

membranes (0.1 mm, GE Healthcare) which were boiled for 5 min in PBS and subsequently incubated

with the blocking solution containing 0.2% I-Block (Thermo Fisher Scientific) and 0.1% Tween 20

(Merck) in PBS for 1 hr, followed by overnight incubation with rabbit polyclonal 3552 antibody

(1:2000, Yamasaki et al., 2006). Antibody detection was performed using the corresponding anti-
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HRP conjugated secondary antibody (Santa Cruz) and chemiluminescence detection reagent ECL

(Thermo Fisher Scientific).

Microglia-enriched pellets were resuspended in 100 mL of STET lysis buffer (composition as

described above for mass spectrometry, supplemented with protease and phosphatase inhibitors),

kept on ice for 20 min and then sonicated for 4 cycles of 30 s. Cell lysates were then centrifuged at

9600 x g (5 min. at 4˚C) and pellets discarded. Protein concentration was quantified using Bradford

assay (Biorad) according to manufacturer instructions. 10 mg of two independent microglial lysates

per genotype were loaded on a bis-tris acrylamide gel (8% or 12%) and subsequently blotted onto

either a PVDF or nitrocellulose membrane (Millipore) using the following antibodies: TREM2 (1:10,

clone 5F4, Xiang et al., 2016); APOE (1:1000, AB947 Millipore); CD68 (1:1000, MCA1957GA, AbD-

serotec); CSF1R (1:1000, 3152, Cell Signaling) and FABP5 (1:400, AF1476, R and DSystems). Blots

were developed using horseradish peroxidase-conjugated secondary antibodies (Promega) and the

ECL chemiluminescence system (Amersham) or SuperSignal West Pico PLUS (Thermo Scientific). An

antibody against GAPDH (1:2000, ab8245, Abcam) was used as loading control.

Immunohistochemistry
We analyzed 3 and 12 month old APPPS1 and APP-KI mice of both sexes, as outlined in

Supplementary file 5. Mice were anesthetized i.p. with a mixture of ketamine (400 mg/kg) and xyla-

zine (27 mg/kg) and transcardially perfused with cold 0.1M PBS for 5 min followed by 4% parafor-

maldehyde (PFA) in 0.1 M PBS for 15 min. Brains were isolated and postfixed for 20 min in 4% PFA

in 0.1 M PBS and transferred to 30% sucrose in 0.1 M PBS for cryopreservation. Brains were embed-

ded in optimal cutting temperature compound (Tissue-Tek O.C.T., Sakura), frozen on dry ice and

kept at �80˚C until sectioning. 30 mm coronal brain sections were cut using a cryostat (CryoSTAR

NX70, Thermo Scientific) and placed in 0.1 M PBS until staining. Alternatively, sections were kept in

anti-freezing solution (30% glycerol, 30% ethylenglycol, 10% 0.25 M PO4 buffer, pH 7.2–7.4% and

30% dH2O) at �20˚C and briefly washed in 0.1M PBS before staining. Briefly, free-floating sections

were permeabilized with 0.5% Triton-PBS (PBS-T) for 30 min, blocked either in 5% normal goat

Serum or 5% donkey serum in PBS-T for 1 hr and incubated overnight at 4˚C in blocking solution

with the following primary antibodies: IBA1 (1:500, 019–19741,Wako), IBA1 (1:500, ab5076, Abcam),

NAB228 (1:2000, sc-32277, Santa Cruz), CD68 (1:500, MCA1957GA, Bio-Rad), TREM2 (1:50,

AF1729, R and DSystems), APP-Y188 (1:2000, ab32136, Abcam), CLEC7a (1:50, mabg-mdect, Invivo-

gen), TMEM119 (1:200, ab209064, Abcam), APOE-biotinylated (HJ6.3, 1:100, [Kim et al., 2012]),

3552 (1:5000, [Yamasaki et al., 2006]) and pE3-Ab (J8, 1:500, [Hartlage-Rübsamen et al., 2018]).

pE3-Ab immunostaining required heat antigen retrieval (25 min at 95˚C) in citrate buffer (10 mM, pH

6.0) prior blocking. After primary antibody incubation, brain sections were washed 3 times with

PBS-T and incubated with appropriate fluorophore-conjugated or streptavidine-fluorophore conju-

gated (for APOE biotinylated antibody) secondary antibodies (1:500, Life Technologies) together

with nuclear stain Hoechst 33342 (1:2000, H3570, Thermo Fisher Scientific), for 2 hr at room temper-

ature (RT). Fibrillar dense core plaques were stained with ThR (Sigma Aldrich, 2 mM solution in PBS)

for 20 min in the dark at RT (after secondary antibody staining). Sections were subsequently washed

3 times with PBS-T, mounted onto glass slides (Thermo Scientific), dried in the dark for at least 30

min, mounted using Gel Aqua Mount media (Sigma Aldrich) and analyzed by confocal microscopy.

Image acquisition, analysis and quantifications
3 month old APPPS1 and APP-KI mice were analyzed for dystrophic neurites, plaque size, microglial

recruitment and CD68 and total Ab coverage. pE3-Ab coverage was analyzed in 12 month old

APPPS1 and APP-KI mice. All quantification analysis were performed in a blinded manner and

included at least three mice per genotype. Mice sex and numbers of biological and technical repli-

cates for all immunohistological experiments are summarized in Supplementary file 5.

For the analysis of microglial recruitment, plaque and dystrophic neurite size and CD68 coverage,

30 z-stack images (10–12 mm thick) of randomly selected plaques from neocortical regions were

acquired per experiment using a confocal microscope (63X water objective with 2x digital zoom, 600

Hz, Leica TCS SP5 II). Microscopy acquisition settings were kept constant within the same experi-

ment. Maximal intensity projection pictures from every z-stack were created using ImageJ software

and for every image, a defined region of interest (ROI) was manually drawn around every plaque
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(including microglia recruited -in contact- to the plaque). APP (Y188 antibody) and CD68 coverage

area were quantified using the ‘Threshold’ and ‘Analyze Particles’ (inclusion size of 1-Infinity) func-

tions from ImageJ software (NIH) within the ROI. The area covered by CD68 was normalized to the

total Ab plaque area (NAB228 antibody) or was divided by the number of microglia (IBA1 positive

cells) recruited to the plaque within the ROI. The absolute values of area covered by neuritic dystro-

phies or Ab plaques are represented in square micrometers (mm2). Microglial recruitment to plaques

was quantified by counting the number of microglia (IBA1 positive cells) around amyloid plaques

through the z-stack images within the defined ROI using the cell counter function of ImageJ soft-

ware. Number of microglial cells at amyloid plaques was normalized to the area covered by Ab

(NAB228 antibody) or by dystrophic neurites (APP, Y188 antibody) and expressed as number of

microglial cells per mm2 of Ab plaque.

For the quantification of total Ab and pE3-Ab coverage at 3 and 12 months of age, respectively,

18 images were systematically taken from comparable neocortical regions using a confocal micro-

scope (20X dry objective, 600 Hz, Leica TCS SP5 II). Quantification of Ab and pE3-Ab areas was per-

formed using a self-programmed macro with ImageJ software outlined in Supplementary file 6A

and B, respectively.

Representative images from microglial recruitment analysis (IBA1 positive cells and CD68 cover-

age) were taken using the confocal microscope (63X water objective with 2x digital zoom, 400 Hz,

Leica TCS SP5 II). Representative images of microglia polarized towards amyloid cores and of micro-

glial recruitment and dystrophic neurite size were taken using a 63X confocal water objective with 3x

digital zoom.

For immunohistological validation of the proteome and analysis of amyloid pathology, represen-

tative images from comparable neocortical regions were taken by confocal microscopy using the

same settings for all three different genotypes (WT, APPPS1 and APP-KI). Low magnification pictures

were taken with 20X dry confocal objective with 2x digital zoom and higher magnification ones with

63X confocal water objective with 3x digital zoom (400 Hz, Leica TCS SP5 II). Images of Ab pathol-

ogy (NAB228 antibody) were taken with a tile scan system covering comparable cortico-hippocam-

pal regions (10X confocal dry objective, 400 Hz, Leica TCS SP5 II). Representative images of Ab

composition and microglia (NAB228, ThR and IBA1) and pE3-Ab were taken with a confocal 20X dry

objective (400 Hz, Leica TCS SP5 II).

LCO staining and spectral analysis
3 and 12 month old APPPS1 and APP-KI mice were analysed using LCOs. Information including mice

sex and biological and technical replicates is outlined in Supplementary file 5. LCO analysis was

performed as previously described (Rasmussen et al., 2017). Briefly free-floating brain sections from

PFA-perfused mice (as described in Immunohistochemistry) were incubated with two LCOs, qFTAA

and hFTAA (2.4 mM qFTAA and 0.77 mM hFTAA in PBS), for 30 min at RT in the dark and subse-

quently washed 3 times with PBS-T. Sections were mounted, air-dried and mounted with Dako

mounting medium. Randomly chosen images from neocortex (4–10 images per mouse) were

acquired with a confocal 40X oil objective on a Zeiss LSM 510 META confocal microscope equipped

with an argon 458 nm laser for excitation and a spectral detector. Emission spectra were acquired

from 470 to 695 nm and values of each plaque were normalized to their respective maxima. For

each mouse, 20 plaques were randomly chosen from the images, normalized values were averaged

for each mouse and the mean was taken for each mouse line (spectrum). The ratio of the intensity of

emitted light at the blue-shifted peak (502 nm from qFTAA) and red-shifted peak (588 nm from

hFTAA) was used as a parameter for spectral distinction of different Ab conformations in plaque

cores.

Microglial phagocytosis of E. coli particles
Microglial phagocytosis was performed similarly as previously described (Kleinberger et al., 2014).

Microglia isolated from 3 or 6 month old APPPS1, APP-KI and WT mice were plated onto 24 well

plate at a density of 2 � 105 cells per well and cultured for 24 hr in a humidified 5% CO2 incubator

at 36.5˚C in DMEM/F12 media (Invitrogen) supplemented with 10% heat inactivated FCS (Sigma),

1% Penicillin-Streptomycin (Invitrogen) and 10 ng/mL GM-CSF (R&DSystems). After 24 hr, plating

media were replaced with fresh media. After 5 days in culture, microglia were incubated with 50 mL
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of E. coli particle suspension (pHrodo Green E. coli BioParticles, P35366, Invitrogen) for 60 min.

Cytochalasin D (CytoD, 10 mM, from 10 mM stock in DMSO) was used as phagocytosis inhibitor and

added 30 min prior to addition of bacterial particles. Bacteria excess was washed four times with

PBS (on ice) and microglia attached to the plate were incubated with CD11b-APC-Cy7 antibody

(1:200, clone M1/70, 557657, BD) in FACS buffer (PBS supplemented with 2 mM EDTA and 1% FBS)

for 30 min at 4˚C. Microglia were then washed twice with PBS, scraped off in FACS buffer and ana-

lyzed by flow cytometry. Information including mice sex and biological and technical replicates is

outlined in Supplementary file 7.

FACS analysis
For the microglial isolation quality control, around 12000 cells from a CD11b-enriched and CD11b-

depleted fractions were stained in suspension with CD11b-APC-Cy7 antibody (1:200, clone M1/70,

557657, BD) in FACS buffer for 30 min at 4˚C. After several washes with PBS, microglia were resus-

pended in FACS buffer for analysis. Propidium Iodide (PI) staining was done 10 min prior to FACS

analysis. Flow cytometric data was acquired on a BD FACSverse flow cytometer by gating according

to single stained and unstained samples and analyzed using FlowJo software (Treestar). Mean fluo-

rescent intensity (MFI) is represented as the geometric mean of the according fluorochrome.

Immunohistochemical and FACS data analysis
Immunohistochemical and FACS results are presented as mean ± standard deviation (± SD) from at

least three independent experiments with the exception of the phagocytic assay at 6 months where

two independent experiments were performed (Figure 9J and K). Statistical significance (p-value)

was calculated using the unpaired two-tailed Student’s t-test. Phagocytic assay was analyzed by the

Dunnett’s multiple comparison test of the Two-way ANOVA. Both statistical analysis were performed

in GraphPad Prism. P-value of <0.05 was considered statistically significant (*; p<0.05, **; p<0.01,

***; p<0.001 and ****; p<0.0001, n.s.=not significant).

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium

via the PRIDE partner repository (Perez-Riverol et al., 2019) with the dataset identifier PXD016075.
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Boddeke EW, Eggen BJ. 2015. Induction of a common microglia gene expression signature by aging and
neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathologica Communications 3:31.
DOI: https://doi.org/10.1186/s40478-015-0203-5, PMID: 26001565

Holtzman DM, Morris JC, Goate AM. 2011. Alzheimer’s disease: the challenge of the second century. Science
Translational Medicine 3:77sr1. DOI: https://doi.org/10.1126/scitranslmed.3002369, PMID: 21471435
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Kleinberger G, Yamanishi Y, Suárez-Calvet M, Czirr E, Lohmann E, Cuyvers E, Struyfs H, Pettkus N, Wenninger-
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Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rübe CE, Walter J, Heneka MT, Hartmann T, Menger MD,
Fassbender K. 2012. TLR2 is a primary receptor for Alzheimer’s amyloid b peptide to trigger neuroinflammatory
activation. The Journal of Immunology 188:1098–1107. DOI: https://doi.org/10.4049/jimmunol.1101121,
PMID: 22198949

Mathys H, Adaikkan C, Gao F, Young JZ, Manet E, Hemberg M, De Jager PL, Ransohoff RM, Regev A, Tsai LH.
2017. Temporal tracking of microglia activation in neurodegeneration at Single-Cell resolution. Cell Reports 21:
366–380. DOI: https://doi.org/10.1016/j.celrep.2017.09.039, PMID: 29020624

Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ. 2010.
Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. DOI: https://doi.org/10.
1126/science.1197623, PMID: 21148344

Mazaheri F, Snaidero N, Kleinberger G, Madore C, Daria A, Werner G, Krasemann S, Capell A, Trümbach D,
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