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Abstract The COVID-19 pandemic is an unprecedented healthcare emergency causing mortality and illness across the world.
Although primarily affecting the lungs, the SARS-CoV-2 virus also affects the cardiovascular system. In addition to
cardiac effects, e.g. myocarditis, arrhythmias, and myocardial damage, the vasculature is affected in COVID-19, both
directly by the SARS-CoV-2 virus, and indirectly as a result of a systemic inflammatory cytokine storm. This includes
the role of the vascular endothelium in the recruitment of inflammatory leucocytes where they contribute to tissue
damage and cytokine release, which are key drivers of acute respiratory distress syndrome (ARDS), in disseminated
intravascular coagulation, and cardiovascular complications in COVID-19. There is also evidence linking endothelial
cells (ECs) to SARS-CoV-2 infection including: (i) the expression and function of its receptor angiotensin-
converting enzyme 2 (ACE2) in the vasculature; (ii) the prevalence of a Kawasaki disease-like syndrome (vasculitis)
in COVID-19; and (iii) evidence of EC infection with SARS-CoV-2 in patients with fatal COVID-19. Here, the
Working Group on Atherosclerosis and Vascular Biology together with the Council of Basic Cardiovascular
Science of the European Society of Cardiology provide a Position Statement on the importance of the endothelium
in the underlying pathophysiology behind the clinical presentation in COVID-19 and identify key questions for
future research to address. We propose that endothelial biomarkers and tests of function (e.g. flow-mediated
dilatation) should be evaluated for their usefulness in the risk stratification of COVID-19 patients. A better under-
standing of the effects of SARS-CoV-2 on endothelial biology in both the micro- and macrovasculature is required,
and endothelial function testing should be considered in the follow-up of convalescent COVID-19 patients for early
detection of long-term cardiovascular complications.
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Introduction

Coronavirus disease 2019 (COVID-19) is caused by a single-stranded
RNA virus called severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) that probably crossed from bats to humans following a
gain-of-function mutation in the spike (S) protein that allows infection of
human cells.1 Though primarily known as a disease affecting the respira-
tory system, cardiovascular complications are common in COVID-19.2,3

These include myocarditis and myocardial injury that may lead to heart
failure. Myocardial infarction (MI) and Takotsubo syndrome has been
reported in patients with COVID-19.4,5 An increase in troponin levels
in COVID-19 is associated with more severe disease and mortality,
underlining myocardial injury as a prognostic factor.6 Increased levels of
N-terminal probrain natriuretic peptide (NT-proBNP) is also an inde-
pendent predictor of in-hospital death in COVID-19 patients, but at
lower levels than in heart failure,7 suggesting that relatively mild alter-
ation in cardiac function may critically determine outcome in COVID-
19. In addition, arrhythmias are remarkably prevalent among patients
with COVID-19, with an incidence of 16.7% reported in a Chinese
cohort.8 Cardiomyocytes are known to express angiotensin-converting
enzyme 2 (ACE2),9 which is the receptor for SARS-CoV-2; however,
direct evidence of cardiomyocyte infection is lacking.

In addition, underlying cardiovascular disease may aggravate the clini-
cal course of disease in COVID-19. Meta-analysis of data from Chinese
cohorts revealed that fatality rates in hospitalized patients with COVID-
19 were elevated in those with cardiovascular disease (10.5%), diabetes
(7.3%), or hypertension (6%) compared with patients without comor-
bidities (0.9%).10 Cohorts of patients from Italy and the USA11 also show
that hypertension, diabetes, and obesity are common comorbidities.

Increased D-dimer (fibrin degradation product) levels is a marker of
adverse COVID-19 outcomes,12 and disseminated intravascular coagula-
tion with significant risk of venous thrombo-embolism (VTE) and ischae-
mic stroke has been reported.13–15 A study of systematic duplex
ultrasound in 26 severe COVID-19 patients reported a cumulative VTE
incidence of 69% despite anticoagulation treatment.16 Ischaemic stroke
has been linked to COVID-19 progression because it had a higher
incidence in patients with severe disease compared with those with
milder symptoms.17 A report of six ischaemic stroke cases from the UK
revealed an association with elevated D-dimers, systemic inflammatory
changes, and antiphospholipid antibodies, which are indicative of hyper-
coagulability.18 However, caution should be exercised in attributing
stroke to viral infection since there were several potential confounding
factors including hypertension and atrial fibrillation, which enhance
stroke risk.

We refer the reader to Guzik et al.19 for a more complete description
of cardiac effects in COVID-19. The aim of this Position Statement from
the Working Group on Atherosclerosis and Vascular Biology together
with the Council of Basic Cardiovascular Science of the European
Society of Cardiology is to draw attention to the importance of the
endothelium in COVID-19 and to encourage research on endothelial
dysfunction and biomarkers to tackle the COVID-19 pandemic and its
potential long-term cardiovascular complications.

Endothelium and COVID-19

The characteristic hyperinflammatory and procoagulatory state of
COVID-19 implies a critical role of the endothelium, both as an effector
contributing to inflammation and thrombosis, and as a target organ,

whose dysfunction may contribute to poor outcome.20 Of particular
note, there is also evidence of SARS-CoV-2 infection of vascular endo-
thelial cells (ECs).21–24

The vascular endothelium forms a critical interface between the circu-
latory system and underlying tissues, and has vital and ubiquitous roles in
cardiovascular homeostasis by regulating the transport of cells, nutrients,
and metabolites between the circulation and underlying tissues.25

Several risk factors for cardiovascular disease including diabetes, obesity,
dyslipidaemia, smoking, and disturbed blood flow can induce EC dysfunc-
tion which is characterized by a spectrum of phenotypes.26–28 These in-
clude loss of integrity (e.g. via apoptosis) which is associated with
increased permeability; induction of cytokines and adhesion molecules
to capture inflammatory cells from the circulation; metabolic changes; a
prothrombotic phenotype; and de-differentiation.26,29 This is exemplified
in multiple studies showing that quantification of EC function provides a
useful marker for early disease detection and stratification of patients
with cardiovascular disease.30,31 The European Society of Cardiology re-
cently reviewed this subject and called for further investigation of EC
pathophysiological states, optimization and standardization of methodol-
ogies for clinical measurement of EC function, as well as larger clinical tri-
als to establish reference values and assess clinical utility.25

Emerging evidence indicates that EC dysfunction is a central feature of
COVID-19. This is evidenced by the critical role of the vascular endothe-
lium in inflammation, which is the key driver of cytokine dysregulation in
ARDS as well as multiple cardiovascular pathologies. Additionally, the
prothrombotic phenotype and disseminated intravascular coagulation
observed in COVID-19 reflect dysfunction of ECs, which enhances
thrombosis by reduced integrity leading to exposure of prothrombotic
subendothelial material, capture of platelets and regulation of clotting
cascades, thrombin activation, and fibrin production.32

There are several other lines of evidence that substantiate the role of
endothelium in COVID-19 (Figure 1) as detailed below.

Recruitment of leucocytes, immune
response, and tissue injury
Leucocytes play an important role in the pathogenesis of SARS-CoV-2.
The importance of the leucocyte–EC axis is exemplified by the observa-
tions that patients with severe disease demonstrate a marked increase in
blood neutrophils which is associated with lymphopenia, with both
CD4þ T cells and CD8þ T cells being lower in severe compared with
moderate cases.33 Moreover, histological examination of a severe case
who died of SARS-CoV-2 demonstrated lung interstitial mononuclear in-
flammatory infiltrates, dominated by lymphocytes.34 Through the sys-
temic inflammatory response in COVID-19, referred to as the cytokine
storm, or cytokine release syndrome, the endothelium will be directly
exposed to proinflammatory cytokines that initiate transcriptional pro-
grammes, that in turn induce adhesion molecules and chemokines, driv-
ing leucocyte recruitment and inflammation.35 This process can also lead
to EC death that contributes to increased vascular permeability and end-
organ damage. Through an amplification loop of the inflammatory re-
sponse, the endothelium may constitute a significant source of proin-
flammatory cytokines, such as interleukin (IL)-1 and IL-6, that
characterize the cytokine storm in COVID-19.36,37 Since the process of
lymphocyte trafficking in chronic inflammatory and autoimmune diseases
is a major therapeutic target, it is possible that anti-inflammatory thera-
pies developed for these conditions could be repurposed to treat SARS-
CoV-2 infection.
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..It is uncertain whether modulating EC function during the inflamma-
tory response to SARS-CoV-2 would be beneficial, with the dilemma
that anti-inflammatory agents might be counterproductive and compro-
mise the immune response against the virus. However, in mouse models
of pathogenic influenza and respiratory syncytial virus (RSV) infection,
where there is evidence that the EC orchestrate a CD8þ T cell-
mediated cytokine storm, agonists of the S1P1 receptor are effective in
improving survival.38–40 It is also noteworthy that adiponectin is protec-
tive in models of sepsis and ARDS through suppression of EC activa-
tion.41 Such observations raise the question of whether the immune
response itself may contribute to the chronic inflammatory process in
severe SARS-CoV-2 infection. The immunology of SARS-CoV-2 infec-
tion has recently been comprehensively reviewed by Vabret et al.42 who
noted that in SARS-CoV-1 patients, survival was associated with immu-
nity skewed towards a CD8 cytotoxic response.43 Indeed, there is evi-
dence that expansion of virus-specific CD4 T cells and a robust Th2

response (including increases in plasma IL-4, IL-5, and IL-10) are associ-
ated with death in SARS-CoV-1.44 Whether this is the case in SARS-
CoV-2 remains to be established. It does, however, appear that the adap-
tive immune response is an important arbiter of outcomes in SARS-
CoV-2, as there is a reported association between plasma IgA titres and
severity of disease.45 It is possible that in SARS-CoV-2, antibody-depen-
dent enhancement (ADE) of inflammation plays a role in EC activation
and pathology. In this phenomenon, non-neutralizing antibodies facilitate
Fc-mediated uptake of virus into macrophages, resulting in their activa-
tion and liberation of inflammatory cytokines, leading to the secondary
recruitment of inflammatory leucocytes by local ECs. The phenomenon
of ADE is readily demonstrable in a number of experimental models of
SARS infection, but there is currently no evidence that ADE contributes
to pathology in SARS-CoV-2.42 Since the process of EC-dependent leu-
cocyte trafficking in chronic inflammatory and autoimmune diseases is a
major therapeutic target, it is possible that anti-inflammatory therapies

Figure 1 Endothelial dysregulation by SARS-CoV-2. Healthy endothelium (left) is characterized by quiescence, intact junctions, anticoagulant anti-inflam-
matory phenotype, and an intact vasodilation phenotype. The cell in the centre (endothelitis) is infected with SARS-CoV-2, whereas the cells to the right
have been activated as a result of cytokine release and activation of prothrombotic pathways. Infection with SARS-CoV-2 is via ACE2 which is subsequently
endocytosed, potentially reducing ACE2-mediated regulation of vascular tone. SARS-CoV-2 infection causes endothelial dysfunction at multiple levels in-
cluding inflammatory activation, cytokine storm, leucocyte infiltration, increased permeability, thrombosis, platelet aggregation, vasoconstriction, production
of reactive oxygen species (ROS), and apoptosis.
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developed for these conditions could be repurposed to treat SARS-
CoV-2 infection. Indeed, the recent success of low dose dexamethasone
in the RECOVERY trial, and its adoption as a front-line therapy for
SARS-CoV-2 in the UK, is an exemplar of the utility of such an approach
(see below).

Endothelium and thrombosis
When dysfunctional, the thrombotic and coagulant properties of the en-
dothelium change.35 In particular, a decreased antiaggregatory prostacy-
clin production from ECs and an increased proaggregatory
thromboxane synthesis from activated platelets46 may skew the homeo-
static situation towards a prothrombotic and proinflammatory pheno-
type. Interestingly, under some inflammatory conditions, ECs express
adhesion receptors such as von Willebrand factor on their surface. Both
in vitro and in vivo, these conditions have been demonstrated to support
the recruitment and activation of platelets to intact endothelial mono-
layers.47 This in turn can lead to the platelet-dependent secondary
recruitment of circulating leucocytes, either by leucocyte interactions
with platelets adherent to ECs,48 by the recruitment of circulating
heterotypic aggregates of platelets and leucocytes,49 or by the transfer
of platelet-borne receptors such as glycoprotein Ib (GPIb) to the leuco-
cyte membrane by platelet-derived microvesicles.50 It is reasonable to
assume that such tricellular aggregates (EC–platelet–leucocyte) on the
walls of smaller vessels would be sufficient to cause loss of microvascular
perfusion in the lungs and other organs. Indeed, compromise of myocar-
dial perfusion could play a role in the elevated levels of troponin evident
in many SARS-CoV-2 patients. Intravascular thrombosis and coagulation,
in addition, may further damage the endothelium and contribute to en-
dothelial inflammation and dysfunction.35 In some patients with COVID-
19, severe microvascular endothelial injury directly mediated by
activation of the alternative and lectin complement pathways has been
demonstrated and associated with a procoagulant state.51 It remains to
be established, however, whether anticoagulation or platelet inhibition
in COVID-19 improves endothelial function, and if dampened endothe-
lial inflammation would attenuate the procoagulant state in COVID-19.

ACE2 expression and function in
endothelium
ACE2 is intimately linked to cardiovascular physiology as part of the re-
nin–angiotensin–aldosterone system (RAAS), which controls blood
pressure by altering vascular tone and function. The related molecule
ACE converts angiotensin (Ang) I to Ang II, which promotes vasocon-
striction, hypertension, and vascular inflammation. Because of these
properties, antihypertensive drugs have been developed to reduce the
production [ACE inhibitors (ACEIs)] or downstream effects [Ang II re-
ceptor blockers (ARBs)] of Ang II. The effects of ACE are opposed by
ACE2, which converts Ang II into Ang 1-7 molecules thereby promoting
vasodilatation and reducing hypertension.52 Since ACE2 is expressed in
cells of the cardiovascular system,53 there has been considerable interest
in the hypothesis that this class of antihypertensive drugs may increase
the risk of SARS-CoV-2 infection by increasing the expression of ACE2
in vascular cells.54 However, population-based studies revealed that
ACEIs and ARBs do not enhance the risk of COVID-19 or disease sever-
ity,55,56 and the European Society of Cardiology and other learned socie-
ties recommend that patients should continue with their usual
antihypertensive medications during the pandemic [https://www.escar
dio.org/Councils/Council-on-Hypertension-(CHT)/News/position-state-
ment-of-the-esc-council-on-hypertension-on-ace-inhibitors-and-ang].

The S protein of the coronaviruses mediates viral entry into target
cells. Entry depends on physical interactions of the surface unit, S1, of
the S protein with a host cell receptor, which facilitates viral attachment
to the surface of the target cells. SARS-CoV-2 engages ACE2 as the pri-
mary receptor,57–59 and hence it is plausible that COVID-19 may cause
reduced bioavailability of ACE2 due to endosomal/lysosomal process-
ing.52 Treatment of COVID-19 patients with recombinant ACE2 is cur-
rently under clinical trial because this may act as a decoy receptor,60

hence limiting viral entry. It is notable that recombinant ACE2 treatment
may have additional beneficial effects, by increasing its bioavailability
at the endothelial surface. The S2 domain of the S protein facilitates
membrane fusion, which requires conformational flexibility, achieved by
proteolytic cleavages. The cleavage event employs the cellular trans-
membrane protease, serine 2 (TMPRSS2), and has profound implications
on virulence. A TMPRSS2 inhibitor, approved for clinical use, was shown
to block entry and might constitute a treatment option.57 It has been
reported that TMPRSS2 expression is below the level of detection in mi-
crovascular ECs61 and only up-regulated in ECs actively undergoing an-
giogenic or tubulogenic responses. Further studies are needed to better
understand the physiological expression and function of TMPRSS2 in
adult ECs. However, the expression of TMPRSS2 alone may not be pre-
dictive of its function since serine proteases, such as TMPRSS2, are regu-
lated by nitrosylation.62 Therefore it is plausible that enothelial nitric
oxide sytnase (eNOS) activity and subsequent production of nitric oxide
(NO) may influence viral infection of ECs by altering TMPRSS2 activity.
Taken together, the S protein mediates entry by connecting the virus
to the plasma membrane, and by catalysing subsequent virus–cell
membrane fusions.

SARS-CoV-2-induced endothelitis
In addition to the respiratory tract, SARS-CoV-2 viral load is detected in
the kidneys, liver, heart, and brain,63 which are all highly vascularized tis-
sues. Indeed, Monteil et al. provided an early indication of SARS-CoV-2
tropism for vascularized tissues by demonstrating that this virus can in-
fect human blood vessel and kidney organoids via ACE2.59 It was sug-
gested by Varga et al., by electron microscopy and histology, that SARS-
CoV-2 can be detected in ECs of the kidney (glomerular capillaries),
small bowel, lung, and myocardium,21 but these data were recently
disputed.64 Ackerman et al.22 have shown abnormalities within the pul-
monary microvasculature with congestion and microthrombi similar to
Menter et al.,23 and by electron microscopy there is endothelial injury
and congestion with cell fragments and degenerate organelles in the lu-
men. Scanning electron microscopy of corrosion casts shows microvas-
culature of larger diameter with an irregular surface, which may be due
to endothelial injury and/or platelet aggregates/fibrin. Intriguingly there
was also evidence of intussusceptive angiogenesis, and the authors spec-
ulate that this feature may distinguish the pulmonary pathobiology of
COVID-19 from other viral infections. SARS-CoV-2 has also been
detected in skin ECs,24 and circulating ECs are elevated in patients admit-
ted to hospital with COVID-19.65

Taken together, these studies point to endothelial SARS-CoV-2 infec-
tion as a possible direct trigger of endothelial adverse effects in COVID-
19. Indeed, SARS-CoV-2-infected endothelium has been associated with
EC apoptosis, suggesting a possible mechanism though which the endo-
thelium may become dysfunctional in COVID-19.21 The recent reports
of a Kawasaki disease-like syndrome associated with COVID-19 infec-
tion in children highlights the importance of the virus on the vascula-
ture.66,67 Kawasaki disease is a systemic vasculitis most commonly seen
in children which particularly targets the myocardium and coronary
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arteries. Although the aetiology of Kawasaki disease is unknown, infec-
tious agents including RNA viruses have been previously postulated as
the cause, and the first link to a coronavirus infection was published in
2005.68 The current outbreaks following infection by SARS-CoV-2 are
the subject of intense investigation. A recently reported group of 58 hos-
pitalized children were diagnosed with paediatric inflammatory multisys-
tem syndrome temporally associated with severe acute respiratory
syndrome coronavirus 2 (PIMS-TS). Of note, important differences were
noted when compared with Kawasaki disease.69 Moreover, anecdotal
cases with evidence of medium and large vessel vasculitis suggest that
similar complications may be seen in some adults with COVID-19.

Pericytes
Pericytes are multifunctional mural cells of the microvasculature and are
essential for the maintenance of the integrity of the endothelium.70

Studies suggest that they are involved in COVID-19-related vasculop-
athy. Recent single-cell or single-nucleus RNA sequencing analyses have
shown that ACE2 is highly expressed in pericytes of various organs, such
as the heart, both in mouse and in man.71,72 In alveolar capillaries of
SARS-CoV-2-infected lung, pericytes are markedly decreased, probably
through apoptosis.73 In a genetically modified mouse model with
pericyte deficiency (pdgf-bret/ret mouse74) induced by deletion of the

PDGF-B (platelet-derived growth factor-B) retention motif, loss of
pericyte-induced thrombogenic reactions was seen in ECs.72 Therefore,
pericytes, by acting as a direct target for SARS-CoV-2 infection, could
play a crucial role in microvascular dysfunction and coagulopathy. It is
suggested that a permeable endothelial barrier as observed in hyperten-
sion, diabetes, and obesity, which are comorbidity factors in severe cases
of COVID-19, allows the virus to reach the pericytes.72

Therapeutic targets

It remains to be determined whether the endothelial dysfunction and in-
jury seen in COVID-19 predominantly reflects direct infection of ECs by
SARS-CoV-2 or indirect bystander injury by factors including cytokines,
leucocytes, neutrophil nets, and complement activation.75 Nevertheless,
an important consideration is the effect of current cardiovascular drugs
in this setting (Figure 2). On the one hand, they may offer enhanced en-
dothelial protection, while on the other they may increase endothelial
susceptibility. To date, there are only retrospective data to rely upon,
and prospective clinical studies in COVID-19 with clearly defined cardio-
vascular endpoints are required. Drugs including HMG-CoA reductase
inhibitors (statins), alpha- and beta-adrenergic blockers, and RAAS

Figure 2 Potential interventions to reduce endothelial injury and activation. Endothelial infection with SARS-CoV-2 causes dysregulation of the RAAS, ap-
optosis, thrombosis, and inflammation (red tones). Several interventions (green tones) can reduce endothelial dysfunction in COVID-19, including modula-
tors of the RAAS (ACE-i, ARBs, ACE2); anti-inflammatory molecules (cytokine inhibitors, dexamethasone, statins); inhibitors of ROS/apoptosis (statins);
platelet inhibitors; and anticoagulants. A healthy lifestyle may also reduce endothelial dysfunction in patients with COVID-9.
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antagonists are widely prescribed in those with diabetes mellitus, hyper-
tension, and coronary artery disease, groups known to be at the highest
risk from COVID-19. Understanding how these drugs influence out-
comes is therefore essential.

In pre-clinical studies, statins increase expression of ACE2. However,
in disease models this may reflect a return to normal levels. Moreover,
enhanced expression of ACE2 has cardiovascular benefit.76 Previously
observed beneficial effects in influenza and actions of statins including
their ability to reduce CD147 expression, optimize lipid raft function,
regulate autophagy, minimize endothelial activation, down-regulate pro-
thrombotic pathways, and enhance antithrombotic effects, alongside im-
munomodulatory actions, suggest that statins may exert important
endothelial protective effects both against and during SARS-CoV-2 infec-
tion.77–79COVID-19 clinical trials incorporating statins (NCT04333407,
NCT04348695, and NCT04380402) have commenced and the results
are awaited with interest.

Reported beneficial effects of beta-adrenergic blockers in ARDS and
respiratory failure, alongside a potential ability to reduce viral entry by
down-regulating ACE2, have resulted in these drugs being suggested as
an adjunct therapy for COVID-19, even in those without a primary indi-
cation.80 Retrospective studies underway will help inform this hypothe-
sis. An intriguing large, retrospective analysis of alpha-1-adrenergic
receptor antagonists in patients suffering from ARDS or pneumonia has
revealed that those incidentally prescribed alpha-blockers were less
likely to require ventilation or to die following onset of ventilator sup-
port. In contrast, beta-adrenergic blockers had no effect. The clinical
study was inspired by pre-clinical data, which demonstrated that alpha-
blockade can prevent the ARDS-associated cytokine storm and death
in mice by interfering with a catecholamine loop.81 These findings
suggest that alpha-1-adrenergic receptor antagonists merit retrospective
and prospective analysis in COVID-19. The identification of the SARS-
CoV-2-associated cytokine storm as a potential therapeutic target is
also supported by the early data from the dexamethasone arm of the
COVID-19 RECOVERY trial.82

The ability of SARS-CoV-2 to utilize ACE2 as a co-receptor for cellu-
lar entry has led to significant interest in the impact of ACEIs and ARBs.
Similarly to statins, these commonly used drugs enhance ACE2.76

Although clinical data are sparse, ACEIs and ARBs are reported to im-
prove outcomes in ARDS.83 There has also been speculation that a dys-
functional RAAS is important for COVID-19 disease pathogenesis.84

Initial concern regarding potential susceptibility to SARS-CoV-2 infection
and/or exacerbation of its effects in those taking ACEIs or ARBs have
been allayed by retrospective clinical studies.85–87 Current advice is to
continue taking these drugs prescribed for hypertension, cardiac failure,
and chronic renal disease, and for physicians to prescribe them for new
clinical indications as normal.84 Prospective studies and clinical trials are
now urgently needed. Two clinical trials will study the impact of losartan
on COVID-19 (NCT04311177 and NCT04312009). Interest will also
focus upon Ang 1-7 peptides, ACE2 itself,76,84 and monoclonal antibod-
ies that prevent SARS-CoV-2 binding to ACE2.88

Position statements

Further research is urgently needed to combat the COVID-19 pan-
demic, and we emphasize that the role of the vascular endothelium
requires close scrutiny. There are today several outstanding questions
that need to be addressed to elucidate more precisely the role of EC in
COVID-19 and to investigate potential routes to clinical translation.

i. Endothelial biomarkers and tests of function (e.g. flow-mediated dilation,
arterial stiffness) should be monitored in studies of COVID-19 outcome
and treatment effects. High-quality data collection is needed, with
follow-up studies amongst the survivors of acute infection since there
are few or no data available on EC function testing in COVID-19. Indeed,
collaborative networks have already been established to analyse RNA
biomarkers89 and arterial stiffness (CARTESIAN STUDY) to assess vas-
cular consequences of COVID-19. This may help to enable stratification
of COVID-19 patients with the highest prothrombotic and cardiovascu-
lar risk and allow tailored treatments.

ii. The significance of SARS-CoV-2-mediated endocytosis and down-
regulation of ACE2 on cardiovascular health is uncertain, but data from
ongoing clinical trials to test recombinant ACE2 may be instrumental in
addressing this question.

iii. The principle effects of SARS-CoV-2 on endothelial function should be
determined, including studies of EC activation, leucocyte recruitment,
platelet activation, turnover, signalling, etc. ECs from both the micro-
and macrovasculature should be investigated. Ageing is an important de-
terminant of COVID-19 outcome, thus the influence of cellular senes-
cence, oxidative stress, and other features of ageing on SARS-CoV-2
infection of the endothelium should also be assessed. The influence of
gender on endothelial responses to SARS-CoV-2 and how this relates to
the susceptibility and outcome of COVID-19 patients should be
investigated.

iv. The effects of common cardiovascular drugs such as statins and beta-
blockers on endothelial responses to SARS-CoV-19 should be explored,
including their influence on ACE2 expression and viral infectivity.

v. The long-term cardiovascular effects following recovery from COVID-
19 must be determined during planned patient follow-up so that appro-
priate preventive measures can be taken in time if needed. Measuring en-
dothelial function in addition to myocardial injury and respiratory
function markers in convalescent patients may represent a possible
means for early detection of vascular sequelae post-COVID-19.
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