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Two-pore channels (TPCs) have been a hot topic in recent literature. Their

involvement in various diseases such as viral infections and cancer is of

great interest for drug research. Due to their localization in the endolysoso-

mal system and the lack of cell-permeable activators, complex techniques

were required for studying channel functions. Here, we review the first pub-

lished lipophilic small-molecule activators of TPCs. In independent high-

throughput screens, several new agonists were discovered, which now allow

simple and fast investigation of TPCs in more detail in intact cells and

in vivo. Zhang et al. identified tricyclic and phenothiazine antidepressants

as TPC1 and TPC2 activators by screening a library of approved drugs. In

contrast, Gerndt et al. screened an extensive compound library with mostly

new chemotypes and drug structures. The latter resulted in two structurally

distinct high-affinity agonists, which are able to selectively activate TPC2

in either an NAADP- or PI(3,5)P2-like manner. Here, we discuss the

advantages and drawbacks of the identified molecules and their structural

features. The versatility by which TPCs can be activated indicates many

opportunities for future studies.

Introduction

In 2009/2010, TPCs were first described as NAADP-ac-

tivated nonselective, calcium-permeable cation channels

in endolysosomes [1–5]. In 2012/2013, two groups chal-

lenged this view and claimed TPCs to be sodium-selec-

tive channels activated by the endolysosomal

phosphoinositide PI(3,5)P2 which also activates the

related endolysosomal cation channels TRPML1,

TRPML2, and TRPML3 (mucolipins 1, 2, and 3) [6,7].

Both views received independent support in the proceed-

ing years [8–13] without really solving the debate.

Despite this, TPCs have emerged in recent years as

highly exciting potential novel drug targets for a num-

ber of diseases associated with the endolysosomal sys-

tem. Thus, TPCs have been demonstrated to play a

role in various infectious diseases such as Ebola filo-

virus, Middle East respiratory syndrome coronavirus

(MERS-CoV), COVID-19 coronavirus, or HIV-1

retrovirus infections [16–20]. In addition, several bacte-

rial toxins such as diphtheria toxin, anthrax toxin,

cholera toxin, or pasteurella multocida toxin [21,22]
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have been shown to require functional TPCs for traf-

ficking and release of the toxins into the cytosol.

Besides their role in viral and bacterial infections, loss

of TPCs has also been found to inhibit cancer cell

migration and neoangiogenesis [23,24], to result in the

endolysosomal accumulation of cholesterol [9] and to

delay growth factor trafficking (EGF, PDGF) [9,21],

to reduce glucagon secretion [25], and to increase mel-

anin production and pigmentation [26–29]. Finally,

Parkinson’s disease caused by LRRK2 mutations [30],

mature-onset obesity [31], and b-adrenoceptor signal-

ing in the heart [32] has all been linked to TPC

function.

Selective, potent, lipophilic small-molecule inhibitors

and agonists are urgently needed to better understand

the different physiological and pathophysiological roles

of TPCs and to further establish TPCs as novel drug

targets. In 2019/2020, two groups performed indepen-

dent compound library screenings to identify novel

lipophilic small-molecule activators of TPCs [14,15].

While Gerndt et al. identified TPC2-selective agonists,

Zhang et al. found nonselective TPC1/2 activators.

Here, we summarize these recent developments.

Table 1. Structure variations and EC50 values of TPC2-A1-N (1) and

the most potent analogs. No significantly increased efficacies were

observed by EC50 values (Fluo-4-based Ca2+ imaging experiments)

[15].

N
H

O

CN

OH
R1

R2

Compound R1 R2 EC50

TPC2-A1-N (1) 4-CF3 3,5-Cl2 7.8 µM

SGA-33 (11) 2,4-F2, 3-Cl 3,5-Cl2 23 µM

SGA-85 (18) 3,5-(CF3)2 3,5-Cl2 3.0 µM

SGA-86 (19) 4-OCF3 3,5-Cl2 9.5 µM

SGA-90 (20) 2,4-F2, 3-Cl 3,5-Br2 12 µM

SGA-108 (21) 4-CH3 3,5-(CF3)2 7.1 µM

SGA-111 (22) 4-CF3 3,5-(CF3)2 6.2 µM

SGA-132 (24) 4-CF3 3-Br, 5-I 5.3 µM

Fig. 1. Structures of TPC2 activators, identified by Gerndt et al. [15]. (A) Structure of TPC2-A1-N (1) and the 23 active analogs. Nonactive

analogs are not shown. Differences in structure are marked in green. (B) Structures of the approved drugs teriflunomide (26) and prinomide

(27) and analog SGA-32 (28), all of which were not able to activate TPC2 in Ca2+ imaging experiments.
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Novel small-molecule activators of
TPCs

Selective TPC2 activators—modulation of

Na+/Ca2+ permeability

Gerndt et al. [15] published two novel, yet very

differently acting lipophilic small-molecule agonists

of TPC2, one called TPC2-A1-N (1, 2-cyano-3-(3,

5-dichlorophenyl)-3-oxo-N-(4-(trifluoromethyl)phenyl)

propanamide), and the other TPC2-A1-P (2, 5-(5-

bromo-2-(trifluoromethoxy)phenyl)-1-(cyclohexylme-

thyl)-2-methyl-1H-pyrrole-3-carboxylic acid). Both

compounds were identified in a high-throughput

screening approach using the calcium indicator dye,

Fluo-4. Two libraries from Roche comprising in total

80 000 natural and synthetic small molecules (X30

and X50; Roche, Basel, Switzerland) were screened

with a HEK293 cell line stably expressing a plasma

membrane variant of human TPC2 containing muta-

tions in its N-terminal lysosomal targeting motif

(TPC2L11A/L12A). As a control, HEK293 cells stably

expressing a plasma membrane variant of the unre-

lated lysosomal membrane protein CLN3 was used,

likewise containing mutations in its lysosomal target-

ing motif (CLN3L253A/I254A). TPC2-A1-N (1) and

TPC2-A1-P (2) showed EC50 values of 7.8 and

10.5 µM, respectively, in Fluo-4 calcium imaging exper-

iments. Results were subsequently confirmed in Fura-2

calcium imaging and endolysosomal patch-clamp

experiments. EC50 values in endolysosomal patch-

clamp experiments were both 0.6 µM. The authors dis-

covered that TPC2-A1-N (1) rendered the channel

more calcium-permeable, whereas TPC2-A1-P (2)

increased sodium permeability. The authors further

demonstrated that TPC2-A1-P (2) has a reversal

potential and a Ca2+/Na+ permeability similar to PI

(3,5)P2, while the corresponding values obtained with

TPC2-A1-N (1) resembled those obtained with

NAADP. In conclusion, TPC2 emerges as a highly

unusual cation channel with malleable ion selectivity

depending on the activating ligand. Both agonists nei-

ther activated TPC1 nor activated TRPML1,

TRPML2, and TRPML3. Thus, a single screen identi-

fied high-affinity, isoform-selective probes that mim-

icked very different physiological cues.

In an attempt to identify more potent/efficacious

variants of TPC2-A1-N (1) and TPC2-A1-P (2), sev-

eral structure modifications were performed and the

modified compounds subsequently tested. Surprisingly,

none of the 46 modified versions of TPC-A1-N (1)

showed significantly increased efficacies or potencies

(Table 1). Replacing the p-trifluoromethyl group on

the aniline side of the molecule (R1; orange) with other

electron-withdrawing groups in para-position did not

cause significant changes, even the introduction of

electron-releasing groups in para-position was tolerated

to some extent (SGA-4 (5), SGA-84 (17)). The appar-

ent enhancement of activity of SGA-85 (18) is

explained by the fact that control cells showed

increased levels of activation in these experiments as

well [15]. For the substitution pattern of the acylated

phenyl ring system (R2, green), meta-disubstitution

patterns are most beneficial. More drastic changes in

this aromatic region (replacement by methyl or pyrrole

residues), as demonstrated for the approved drugs teri-

flunomide (26) and prinomide (27) as well as the 4-tri-

fluoromethyl variant of prinomide (SGA-32; 28), led

to a complete loss of activity (Fig. 1). Teriflunomide

(26) was introduced for the treatment of multiple scle-

rosis and prinomide (27) for rheumatoid arthritis

[33,34]. TPC-A1-N (1) itself and some of its analogs

bearing residues in para-position at the acylated aro-

matic ring are known anthelmintic agents [35]. In

Table 2. Structure variations (selected examples) of TPC2-A1-P (2)

and EC50 values on TPC2. Even slight changes in structure of the

original hit lead to decrease or loss of activity. Activity on the ion

channel was determined by Fura-2-based single-cell Ca2+ imaging

experiments, as previously described [15]. cy, cyclohexyl.

N
R3

O
OR

R2R1

Compound R R1 R2 R3 EC50

TPC2-A1-P (2) H 2-OCF3

5-Br

CH2cy CH3 10.5 µM

SGA-150 (29) H 2-OCF3

5-Br

benzyl CH3 34 µM

SGA-50 (30) H - CH2cy CH3 n.a.

SGA-55 (31) H 2-OCH3

5-Br

CH2cy CH3 n.a.

SGA-140 (32) CH2CH3 2-OCF3

5-Br

CH2cy CH3 n.a.

SGA-149 (33) H 2-OCF3

5-Br

Pentyl CH3 n.a.

SGA-152 (34) H 2-OCF3

5-Br

CH2cy CH2CH3 n.a.

SGA-153 (35) H 2-OCF3

5-Br

iPr CH3 n.a.

SGA-154 (36) H 2-OCF3

5-Br

CH2cy phenyl n.a.

SGA-162 (37) H 2-OCF3 CH2cy CH3 n.a.
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conclusion, the TPC-A1-N (1) chemotype shows a very

flat structure–activity relationship for TPC2.

Similarly, modified versions of TPC2-A1-P (2)

showed no improvement of efficacy [15]. In a collec-

tion of 20 analogs, prepared by systematic variation of

the substituents, every change in structure resulted in a

decrease or total loss of function (Table 2). Analysis

of structure–activity relationships revealed that the free

carboxylic acid is essential for the activating effect, as

the ester SGA-140 (32) is no longer active. Possibly, it

might serve as a prodrug of TPC-A1-P in living sys-

tems, but this has not been investigated yet. Both the

trifluoromethoxy and the bromine substituent at the

phenyl ring are essential for activating TPC2, as

exemplified by the inactive methoxy (SGA-55, 31) and

des-bromo SGA-162 (37) analogs. Even moderate

expansion of the size of the substituent at 2 position

of the pyrrole (methyl in TPC2-A1-P (2) vs ethyl in

SGA-152 (34); see also phenyl analog SGA-154 (36))

has the same effect. The only fairly tolerated structure

modification was replacing the cyclohexylmethyl moi-

ety in 1 position of the pyrrole ring by a benzyl resi-

due (SGA-150, 29), whereas linear or branched alkyl

chains (SGA-149 (33), SGA-153 (35)) induced loss of

activity.

There are only few reports in the literature about

the biological activities of TPC2-A1-P-like compounds.

TPC2-A1-P (2) itself is mentioned as a precursor in

Fig. 2. Structures and EC50 values of TACs (A), related phenothiazines (B), and riluzole (45, D) as TPC2 activators. EC50 values were

obtained from whole-cell recordings at �140 mV [14]. (C) Structure of inactive carbamazepine and phenothiazine.

Fig. 3. Structures of the TPC2 activator

triflupromazine (44) and the TPC2 inhibitor

fluphenazine (46) [14,18]. Differences are

marked in red.
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the synthesis of cannabinoid-1 receptor (CB1R) inverse

agonists, whereas the final active compounds contained

a carboxamide group instead of the free carboxylic

acid function [36]. Phenylpyrrolecarboxamides derived

from SGA-50 (30) bind to 5-HT2A and 5-HT2C recep-

tors and also the 5-HT transporter, and were thus

evaluated as antidepressant compounds [37].

In summary, the two high-throughput screening hits

TPC2-A1-N (1) and TPC2-A1-P (2) can be regarded

as strong chemical tools with the need of fully analyz-

ing their pharmacological properties.

Activators of TPC1 and TPC2—voltage-dependent

gating

Zhang et al. [14] have likewise used a calcium imaging-

based high-throughput screening approach to identify

activators of TPCs. This was despite their claim in

2012 that TPCs were not calcium-permeable but rather

sodium-permeable channels [6]. In contrast to the

80 000 compound-strong Roche Xplore libraries used

by Gerndt et al., Zhang et al. screened the Sigma

LOPAC library which contains 1280 compounds. In

this screening, 23 compounds induced calcium

increases in TPC2-expressing cells but not in control

cells expressing TRPML1 albeit in the plasma mem-

brane. These hits from diverse chemical classes were

further submitted to electrophysiological characteriza-

tion using whole-cell recordings in TPC2LL/AA-express-

ing HEK293 cells similar to those used by Gerndt

et al. In this test, only five out of the 23 compounds

showed significant currents, all of them belonging to

the chemically closely related classes of dibenzazepine-

type tricyclic antidepressants (TCAs) and

phenothiazine-based antidepressants. Subsequently,

other TCAs were also tested. In summary, the TCAs

clomipramine (38), desipramine (39), imipramine (40),

amitriptyline (41), and nortriptyline (42) (named

LyNa-VA1.1 to LyNa-VA1.5 by the authors), as well

as the phenothiazines chlorpromazine (43) and tri-

flupromazine (44) (named LyNa-VA2.1 and LyNa-

VA2.2), were found to activate TPC2. The EC50 values

were between 43 and 112 µM and thus approximately

two orders of magnitude less potent than TPC2-A1-N/

P (Fig. 2A,B). None of the compounds were found to

activate TRPML1 but TCA-induced currents exhibited

strong inward rectification, which is characteristic of

TRPML channels (TPCs normally show no rectifica-

tion upon activation). In a separate screen, Zhang

et al. identified another compound, riluzole (45,

Fig. 2D) which also activates TPC2 but showing linear

currents typical for TPC2 as reported before

[6,7,10,29]. Currents elicited with TCAs were strongly

voltage-dependent while riluzole (45) activation was

voltage-independent, suggesting that the voltage

dependence of TPC2 can be unmasked by extrinsic

agonists rather than being a fixed intrinsic property of

the channel. What the origin of the proposed agonist-

mediated voltage dependence in the otherwise voltage-

independent TPC2 is remains unclear. In contrast to

Gerndt et al. [15] who identified two agonists (TPC2-

A1-N (1) and TPC2-A1-P (2)) altering cation perme-

ability in an agonist-dependent manner, the activators

identified by Zhang et al. all showed similar cation

selectivity, that is, low calcium, high sodium perme-

ability. Likewise in contrast to Gerndt et al. who

found that their compounds (1 and 2) only activate

TPC2 but neither block nor activate TPC1, Zhang

Fig. 4. Modeling of TPC2 activators. The human TPC2 structure was recently resolved by cryo-EM in various states [44]. (A) Using the

experimentally resolved apo-state hTPC2 structure (grey, accession 6nq1) [44], we docked TPC2-A1-P (2, blue), clomipramine (38, pink), and

chlorpromazine (43, yellow) to the channel. PI(3,5)P2 (red) was added to its cryo-EM-resolved site. Residues forming polar bonds with the

ligand are highlighted in red letters. PyMOL v2.3.4 was used to assemble the structure. AutoDockTools (ADT) version 1.5.6 Sep_17_14 was

utilized to prepare the protein and ligand. The channel pore was excluded from docking analyses by drawing two grid boxes, each

demarcating one half of the protein, preserving peripheral pockets. AutoDock Vina 1.1.2 was used to carry out the docking simulation

(exhaustiveness = 200). Binding sites were visualized in PyMOL v2.3.4. Following identification of agonist-binding sites, ‘sticky’ sites were

excluded from further analysis: TPC2 agonist classes were previously discovered [15], showing TPC2 to be gated by distinct mechanisms

(PI(3,5)P2-like, NAADP-like gating). TCAs furthermore display another distinct, voltage-dependent gating mechanism. Since various modes of

activation suggest distinct binding sites, sites of single-class binding were kept, and promiscuous binding sites excluded. Tricyclic

antidepressants do not directly activate TPC2, rather rendering the channel voltage-gated. Subsequently, sites of individual agonist binding

were removed, and binding sites where various activators bound maintained. Agonists were docked de novo within these binding pockets

(30 9 30 9 30 �A search space), rendering residues within 6 �A of the docked agonist flexible. The following free energies were obtained by

flexible docking (in kcal per mol): TPC2-A1-P (2, �7.4), clomipramine (38, �8.2), and chlorpromazine (43, �7.0). (B) Human and mouse TPCs

were aligned using NCBI Protein BLAST to compare TPC2-A1-P-interacting residues. Residues found by docking to form polar bonds with

TPC2-A1-P (bold) are fully conserved between human and mouse TPC2, but differ in TPC1. Red shade indicates positively charged residues,

yellow polar residues, grey hydrophobic residues, and green glycine (no side chain). Dots indicate PI(3,5)P2-interacting residues (red) and

charge transfer center arginines (black), previously described for HsTPC2 (above, [44]) and MsTPC1 [45].
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et al. found that some TCAs also activate TPC1 in a

voltage-dependent manner, namely clomipramine (38)

and desipramine (39), while the phenothiazine chlor-

promazine (43) and riluzole (45) inhibit TPC1.

Unfortunately, the authors did not perform system-

atic structure variations of the hit compounds. Thus,

within the seven identified structures it is barely possi-

ble to analyze structure–activity relationships. Never-

theless, the dibenzazepine carbamazepine and native

phenothiazine (Fig. 2C) did not activate TPC2, high-

lighting the necessity of the aminoalkyl side chain at

the central ring of the tricyclic core. At this stage,

more detailed structure–activity analyses would be

desirable, as only slight changes in these structures are

most likely to convert an activator into an inhibitor.

The phenothiazines triflupromazine (44) and fluphena-

zine (46), recently published by Penny et al. [18], are a

striking example for this phenomenon: Triflupro-

mazine (44) activates TPC2, while fluphenazine (46)

inhibits TPC2 currents evoked by PI(3,5)P2 with an

IC50 of 8 µM (Fig. 3) [18].

Riluzole (45) blocks TTX-sensitive sodium channels,

kainite receptors, and NMDA receptors [37–40]. At

higher concentrations, it also strongly potentiates
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postsynaptic GABAA responses. Of interest, riluzole

(45) has neuroprotective effects and it is currently

approved for the treatment of amyotrophic lateral scle-

rosis (ALS) [41]. Riluzole (45) is the only drug to pro-

long survival for ALS, and it is associated with a 35%

reduction in mortality [42]. TCAs were introduced into

clinics in the 1950s and are used to treat, for example,

depression, bipolar disorder, panic disorder, chronic

pain, and insomnia. TCAs inhibit monoamine (sero-

tonin, norepinephrine, dopamine) reuptake and block

cholinergic, histaminic, and alpha-adrenergic transmis-

sion. Although TCAs have a wide range of unwanted

effects, they served as first-line treatment for depres-

sion for 30 years, until the selective serotonin reuptake

inhibitors (SSRI) were introduced. Of note, amitripty-

line (41), imipramine (40), and clomipramine (38) are

also potent CYP450 inhibitors, significantly inhibiting

CYP450 2C19 and 1A2 [43].

Modeling of TPC activators

The recently published TPC2 agonists from both

groups [14,15] were docked to the apo-state hTPC2

structure [44] to compare their binding sites (Fig. 4).

We previously demonstrated that the TPC2K204A

mutation located within the PI(3,5)P2 binding pocket

blocks TPC2-A1-P (2) activity. Accordingly, our dock-

ing results show TPC2-A1-P (2) to dock in close prox-

imity to experimentally resolved PI(3,5)P2. Based on

our docking results, K204 does not directly interact

with TPC2-A1-P (2), but is likely still required to

transduce TPC2-A1-P-evoked signals to the channel

pore. The putative amino acids required for TPC2-A1-

P binding are highlighted in Fig. 4. K143, N155,

Q197, N198, and S200 highlighted in red appear to

form hydrogen bonds with the docked agonist. In

TPC1 (based on the alignment performed by She et al.

[45]), these residues correspond to K143K (conserved),

N155H, Q197V, N198D, and S200G. Thus, only one

of the TPC2-A1-P-interacting amino acids is conserved

in TPC1, while they are 100% conserved between

human and mouse TPC2. This may potentially explain

why TPC2-A1-P activates TPC2 but not TPC1. In

contrast to TPC2-A1-P, TPC2-A1-N (1) did not dock

within the PI(3,5)P2 pocket. Supporting distinct bind-

ing sites, TPC2-A1-N (1) activity is unaffected by the

TPC2K204A mutation [15] and thus likely binds else-

where on the channel. Similarly to TPC2-A1-N (1),

riluzole (45) is also unaffected by the TPC2K204A

mutation [14]. Further investigations into the channel

permeability evoked by riluzole (45) would be interest-

ing, as its mechanism of action might mimic NAADP

rather than PI(3,5)P2. The voltage-dependent TPC2

activators clomipramine (38) and chlorpromazine (43)

share one binding site, located between IS5, ISPH, and

IIS6. This site is particularly interesting, as the homol-

ogous site forms the target of agonists activating the

distantly related TRPML channels—ML-SA1 for

TRPML3 [46] and ML2-SA1 for TRPML2 [47]. While

several of these findings still require further validation,

our analysis identifies numerous binding pockets on

the TPC2 protein, and highlights the various means by

which TPC2 can be activated, each with different out-

comes.

Summary

Two independent groups identified small-molecule

activators of TPCs by high-throughput screenings.

Zhang et al. focused on drug repurposing and thereby

identified tricyclic antidepressants (TCAs; Fig. 2A, 38,

39, 40, 41, 42), phenothiazines (Fig. 2B, 43, 44), and

the benzothiazole riluzole (Fig. 2D, 45) that activate

TPC2 with EC50 values in the range of 43–112 µM.

None of these compounds was found to activate

TRPML1. Clomipramine (38) and desipramine (39)

also activate TPC1 in a voltage-dependent manner,

while chlorpromazine (43) inhibits TPC1 [14]. Hence,

additional analysis of structure–activity relationships

is needed, as slight changes in structures seemingly

can reverse the activity on two-pore channel isoforms.

Gerndt et al. performed a high-throughput screening

using a library with 80 000 compounds and identified

two TPC2 activators, TPC2-A1-N (1) and TPC2-A1-P

(2). Both agonists did not activate or inhibit TPC1 or

TRPML1, TRPML2, and TRPML3, which indicates a

high selectivity for TPC2. Mimicking the physiological

actions of NAADP and PI(3,5)P2, respectively, TPC2-

A1-N (1) rendered the channel more calcium-perme-

able, whereas TPC2-A1-P (2) increased sodium perme-

ability. Numerous analogs of TPC2-A1-N (1) and

TPC2-A1-P (2) were synthesized and tested yielding

unusually flat and steep structure–activity relation-

ships.

Comparing the results of both screenings, there is

comprehensive knowledge on the pharmacological pro-

files (including undesired effects) of the repurposed

TCA/phenothiazine-type TPC2 activators due to their

long history in therapy, while the new activators iden-

tified by Gerndt et al. still need full pharmacokinetic

and pharmacological characterization.

The two reviewed publications illustrate that

researchers now have the opportunity to choose from

an impressive and highly diverse collection of new

lipophilic small-molecule activators for either TPC2

only or both TPC1 and TPC2 with the caveat that
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some of the compounds also block TPC1. With cell-

permeable small-molecule activators, an important

milestone has been reached as physiology and patho-

physiology of TPCs can now be studied in more detail.

Most importantly, the novel tools allow studies in

intact cells and they may also be applicable for in vivo

studies and perhaps even for therapeutic purposes.
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