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The important role of microRNAs as major modulators of various physiological processes,
including immune regulation and homeostasis, has been increasingly recognized.
Consequently, aberrant miRNA expression contributes to the defective regulation of T
cell development, differentiation, and function. This can result in immune activation and
impaired tolerance mechanisms, which exert a cardinal function for the onset of islet
autoimmunity and the progression to T1D. The specific impact of miRNAs for immune
regulation and how miRNAs and their downstream targets are involved in the
pathogenesis of islet autoimmunity and T1D has been investigated recently. These
studies revealed that increased expression of individual miRNAs is involved in several
layers of tolerance impairments, such as inefficient Treg induction and Treg instability. The
targeted modulation of miRNAs using specific inhibitors, resulting in improved immune
homeostasis, as well as improved methods for the targeting of miRNAs, suggest that
miRNAs, especially in T cells, are a promising target for the reestablishment of
immune tolerance.

Keywords: immune regulation, islet autoimmunity, type 1 diabetes, miRNA, regulatory T cell, biomarker
INTRODUCTION

In type 1 diabetes (T1D), the loss of immune tolerance to beta cells in the pancreatic islets of
Langerhans leads to an immune cell-mediated destruction of these insulin-producing cells. This
progressive loss of beta cell mass is associated with insufficient insulin secretion, resulting in
hyperglycemia and the risk of severe acute and chronic complications (1). The autoimmune attack
in T1D is mainly driven by the infiltration of the pancreas by autoreactive T cells. These cells are
normally repressed by Foxp3+ regulatory T cells (Tregs), which are critical mediators of immune
tolerance in the periphery. Impaired tolerance and consequently autoimmune activation, which are
major drivers of T1D pathogenesis, are, among others, caused by impairments in Treg induction,
stability, and function. microRNAs (miRNAs) are small non-coding RNAs, which have been
recently shown to fine-tune the expression of important genes in various immune cell types,
including Tregs and thereby critically add to immune regulation. The broad regulatory potential of
miRNAs in the immune system indicates the potential of specific miRNA targeting to interfere with
n.org November 2020 | Volume 11 | Article 6063221
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aberrant immune reactions and autoimmunity. In this review, we
discuss the complex role of miRNA regulatory networks
contributing to the pathogenesis of autoimmune T1D, with a
particular focus on Tregs. Furthermore, we address three studies,
which reported a direct relationship between the upregulation of
T cell-specific miRNAs during the onset of islet autoimmunity
and impairments in Treg induction, function, and stability, as
well as the therapeutic potential of these recent findings.
TYPE 1 DIABETES

Immune Tolerance
Diseases with an autoimmune etiology are characterized by
impaired immune tolerance, which results in an overshooting
immune reaction directed against the body’s own healthy cells
and tissues. The steady state of the immune system is a complex
and precisely regulated balance between immunity and
tolerance, which requires the accurate control of various
immune mechanisms and cell types. One hallmark of proper
immune function is the discrimination between the organism’s
own structures and pathogens, enabling the elimination
of potentially harmful invaders without affecting own cells
and tissues.

Due to its crucial role for proper immune function, this
discrimination between self and non-self and the control of
tolerance is mediated by two distinct mechanisms: During
their development in the thymus, lymphocytes with a high
affinity for self-antigens are negatively selected by deletion
(apoptotic cell death) or functional inactivation (anergy). This
mechanism is called recessive tolerance, and it was first proposed
in the clonal selection theory.

Some autoreactive immune cells can circumvent the recessive
tolerance and exit the thymus. To prevent fatal autoimmune
attacks of these cells in the periphery, a second control
mechanism maintains self-tolerance in the periphery. This
peripheral tolerance is termed dominant tolerance and it is
carried out by a specific T cell lineage called regulatory T
(Treg) cells that can actively suppress other immune cells,
including autoreactive T cells.

The dysregulation of these important control processes in the
periphery promotes the maintenance and activation of
autoreactive lymphocytes, which critically drives the
development of autoimmune disorders.

Islet Autoimmunity and Type 1 Diabetes
To date, more than 80 autoimmune diseases have been
described. They can be classified into systemic diseases, such as
systemic lupus erythematosus and Sjogren’s syndrome, and
organ-specific diseases, such as multiple sclerosis and T1D.
T1D shows a rising incidence worldwide and is the most
common autoimmune disease in children (2).

T1D is characterized by the infiltration of the pancreas by
immune cells and the destruction of the beta cells in the islets of
Langerhans. The major drivers of the pathogenesis are impaired
immune tolerance mechanisms. The beta cells in the islets of
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Langerhans are crucial for the maintenance of blood glucose
homeostasis, by sensing the level of glucose and releasing insulin
as required. Once the beta cell mass is reduced, the scarce supply
of insulin prevents the body’s tissues from taking up glucose
from the blood stream, which is essential for the maintenance of
proper tissue functioning and homeostasis. This loss of blood
glucose control has been generally lethal until the establishment
of insulin replacement therapy. To date, this remains the only
way of controlling the disease, as no curative treatments are
available. However, even with lifelong insulin supply, precise
glycemic control remains challenging, and secondary
complications like kidney failure and heart diseases occur
regularly (3).

Multiple factors have been shown to be involved in the
pathogenesis of T1D, in particular genetic and environmental
factors such as diet and exposure to microbes and certain viruses
influence the risk of developing the disease. The genetic
predisposition is well studied and is, besides others, indicated
by an increased risk of up to 10 times in children with a first-
degree relative with T1D (4–7). The most robust predictor of
genetic risk to develop the disease is the human leucocyte antigen
(HLA) class II, with the genotype HLA-DR4, HLA-DQ8,
conveying a risk of around 5% of developing T1D, even
without a family history of the diseases (7, 8).

Multiple autoantibodies against islet autoantigens, such as
insulin (9), the tyrosin phosphatase IA2 (10), glutamic acid
decarboxylase (GAD) (11), and zinc transporter 8 (ZNT8)
(12), appear before clinical symptoms of T1D arise. This
presymptomatic phase of autoimmunity is termed islet
autoimmunity and its duration is highly variable (13, 14). The
time of progression from the first appearance of islet
autoantibodies to clinically overt T1D can range from only
several months to more than two decades. This heterogeneity
in progression of islet autoimmunity indicates plasticity in
immune activation and multiple layers of immune tolerance
impairments. A multitude of recent studies focused on drivers of
T1D pathogenesis; however, the precise cellular and molecular
mechanisms underlying the loss of immune tolerance and
their contribution to the highly heterogeneous progression
from islet autoimmunity to symptomatic diabetes remain
insufficiently investigated.

Mediators of Beta Cell Destruction
In T1D, immune cell infiltration into the pancreatic islets,
termed insulitis, initiates the destruction of the beta cells (15).
Interestingly, both the architecture of the islets and the level of
insulitis differ remarkably between the human disease and mouse
models of T1D like the non-obese diabetic (NOD) mouse, which
exhibits much higher numbers of infiltrating cells (16). During
insulitis, several immune cell types infiltrate the islets, including
T cells, B cells, macrophages, dendritic cells (DCs), and natural
killer (NK) cells, with CD8+ T cells being the most abundant cell
type (17). Besides the islet infiltration by immune cells, insulitis is
characterized by an increased expression of HLA-I molecules in
the islet cells (15, 18). This hyperexpression is accompanied by
the production of interferon and is thought to contribute to the
high abundance of CD8+ T cells in the pancreatic infiltrates.
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Despite this high abundance of CD8+ T cells, CD4+ T cells are
critically involved in the pathogenesis of several autoimmune
diseases including T1D, multiple sclerosis (19), rheumatoid
arthritis (20), and Crohn’s disease (21). In T1D, several subsets
of autoreactive, islet-infiltrating CD4+ T cells have been
identified, including Th1, Th2 (22), Th17 (23, 24), Th9, Th22
(25), and TFH cells (26, 27).

The contribution of multiple immune cell types, including T
cells, with both effector and regulatory characteristics, highlights
the complex pathogenesis of T1D. Many of the molecular
mechanisms underlying aberrant T cell activation and the
multiple layers of impaired immune tolerance remain largely
unexplored, not least because a multitude of mechanisms are
involved in the regulation of T cells. One of these mechanisms
are miRNAs, which have been recently highlighted as important
regulators in various biological settings, including the immune
system (Table 1).
miRNAs REGULATORS OF THE
IMMUNE SYSTEM

miRNA Basics
miRNAs are small single-stranded non-coding RNAs, which are
involved in almost all physiological processes, by precisely fine-
tuning the expression of regulatory genes. They are a member of
the family of small non-coding RNAs (sncRNAs), which are 20–
30 nucleotides long and function via Argonaute (AGO) proteins.
sncRNAs can be subdivided in three distinct regulatory families:
miRNA, which are most abundant in human tissues, siRNA
(small interfering RNA), and piRNA (PIWI-interacting RNA).
In the tissues, miRNAs are directly involved in the regulation of
tissue homeostasis and function, which is reflected by their
distinct tissue-specific expression (68, 69). Besides their high
abundance, several other characteristics of miRNAs highlight
their broad regulatory potential. To date, the miRNA database
MirBase contains about 2600 validated human miRNA
sequences (70), but based on the constant identification of new
miRNA sequences, the actual number of human miRNAs is
predicted to be significantly higher (71). Furthermore, the
miRNA-mediated gene regulation is a complex interplay of
many miRNAs, regulating the expression of the same mRNA.
Vice versa, the majority of target genes contain a multitude of
miRNA binding sites, and some of them are highly conserved
between species (68, 72, 73).

miRNAs are commonly 22 nucleotides in length, and their
biogenesis involves several processing steps, including
transcription, nuclear processing, export from the nucleus, and
cytoplasmic processing. First, RNA polymerase II binds to
the promoter of a miRNA gene and transcribes a stem-loop-
shaped miRNA precursor, which is much longer than the mature
miRNA and termed primary miRNA (pri-miRNA) (74). pri-
miRNAs can contain up to six miRNA precursors (75), which are
flanked by specific sequences facilitating their processing by a
complex of Drosha (76) and DGCR8 (77, 78). The resulting pre-
miRNA is exported into the cytoplasm where it is further
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processed by Dicer (79), yielding the final miRNA duplex. For
gene silencing, one strand is discarded while the other one
remains in contact with Dicer and associates to several
additional proteins such as AGO. In line with its mode of
action, the resulting complex is termed RNA-induced silencing
complex (RISC) (80).

The recognition of the respective target is facilitated by
complementary base pairing between the miRNA seed
sequence and the corresponding binding site of the mRNA.
The seed sequence is only six nucleotides long, comprising
nucleotides 2 to 7 of the mRNA. While the short seed
sequence facilitates the precise binding of the mRNA target,
this is not sufficient to induce miRNA mediated silencing of the
mRNA. For this, the complementary binding of additional
miRNA nucleotides, usually 8 and 13–16, to the mRNA target
is required (68). Some miRNAs form clusters, also called
families, which are characterized by almost identical seed
sequences and consequently similar target genes (72). The
majority of miRNA binding sites is conserved between species,
and they can be commonly found in the 3’ untranslated region
(UTR) or the coding region of the mRNA; however, their
abundance in the 3’ UTR is slightly increased (54, 73, 81).
Mechanistically, the regulation of gene expression is mediated
by the formation of the RISC, which induces translational
repression or mRNA degradation (82).

In line with the broad regulatory potential of miRNAs and the
high numbers of miRNA targets, the dysregulation of miRNA
expression is involved in multiple human diseases, such as
autoimmunity, cancer, and neurological diseases (83, 84).

miRNAs as Biomarkers for Islet
Autoimmunity and T1D
Based on the high numbers of miRNAs and their involvement in
virtually all biological processes, including immune regulation,
multiple studies investigated their biomarker potential in the
context of islet autoimmunity and T1D (42, 56, 66, 85–91). In
contrast to the majority of disease symptoms, biomarkers enable
the objectively quantifiable characterization of a disease and its
progression. This is critical for early and precise diagnosis and
treatment and facilitates strategies of personalized precision
medicine aiming at the maximum benefit for the patient.

Cell-Free Circulating miRNAs
Recent studies have investigated levels of circulating miRNAs in
blood or serum from T1D patients in order to evaluate their
biomarker potential for the prediction of T1D onset and
progression. Circulating miRNAs are particularly suitable as
biomarkers in clinical practice because their analysis is feasible
in small volumes of blood or serum. Several differentially
expressed miRNAs regulate both pancreatic beta cells and
immune cells (42, 66, 85). For example, the increased
abundance of circulating miR25 correlated with glycemic
control and residual beta cell function in patients with newly
diagnosed T1D (42). Similarly, levels of the miR23~27~24 cluster
were increased during disease progression in children with T1D
and correlated with osteoprotegerin abundance. Importantly,
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TABLE 1 | Selected miRNAs involved in immune regulation.

miRNA miRNA
regulation

miRNA target Effect Cell type Organism Reference

let7i Up IGF1R Decreased induction Treg Human (28)
miR10a Down BCL6, NCOR2 Reduced expression of Treg genes Tregs Mouse (29)
miR15a/16 Up Foxp3 Decreased Foxp3 abundance Treg Human (30)
miR15b/16 Up Rictor, mTor Increased induction Treg Mouse (31)
miR17 Up IKZF4 Decreased frequencies Treg Mouse (32)
miR17 Up CREB1, TGFBRII Decreased induction naive T cells Mouse (33)
miR19b Up PTEN Decreased frequencies Treg Mouse (32)
miR21 Up unknown Increased Foxp3 abundance Treg Human (34)
miR21 Down STAT3 Decreased frequencies Treg Human (35)
miR21-3p Up – Correlation islet autoimmunity, progression to T1D serum Human (36)
miR23b Up Trail, Trail-R2, Fas,

Faslg
Proliferation CD8+ T cells Human (37)

miR23/miR27/
miR24

Up TGFB signaling Decreased induction naive T cells Mouse (38)

miR23a-3p Down DP5, PUMA Apoptosis beta cells Human (39)
miR23b-3p Down DP5, PUMA Apoptosis beta cells Human (39)
miR24 Down Foxp3 Increased Foxp3 abundance Treg Human (40)
miR25 Up TGFB signaling Decreased suppression Treg Human (41)
miR25 Up – Correlation with glycemic control, residual beta cell function PBMCs Human (42)
miR29 Up Mc11 Reduced insulin mRNA levels, impaired insulin secretion, and induced

beta cell apoptosis
beta cells Human/

mouse
(43)

miR29a-3p Up – Correlation islet autoimmunity, progression to T1D serum Human (36)
miR31 Down Foxp3 Increased Foxp3 abundance Treg Human (34)
miR34a Up insulin, proinsulin Reduction of insulin and proinsulin beta cells Human/

mouse
(43, 44)

miR92a-3p Up KLF2 Decreased induction Treg Human/
mouse

(45)

miR95 Up unknown Increased Foxp3 abundance Treg Human (40)
miR98 Up Trail, Fas Proliferation CD8+ T cells Human (46)
miR99a Up mTor Increased induction Treg Mouse (47)
miR100 Up SMAD2/3 Decreased induction Treg Human (48)
miR101 Up Ezh2 Autoimmune activation naive CD4+ T

cells
Human/
mouse

(49, 50)

miR125a-5p Down CXCL13 Decreased frequencies Treg Human (51)
miR125-5p Up CCR2 Impaired migration Treg Human (52)
miR126 Down p85B Decreased induction Treg Human/

mouse
(53)

miR142-3p Up Tet2 Decreased induction and stability Treg Human/
mouse

(54)

miR142-3p Up Ccl2, Ccl17,
Cxcl10

Immune infiltration, beta cell death beta cells Human/
mouse

(55)

miR142-5p Up Ccl2, Ccl17,
Cxcl10

Immune infiltration, beta cell death beta cells Human/
mouse

(55)

miR146a Up insulin, proinsulin Reduction of insulin and proinsulin beta cells Human/
mouse

(43, 44)

miR146a Up anti-apoptotic
genes

Apoptosis beta cells Human/
mouse

(43, 44)

miR146a Down – Correlation with GAD and IA2 antibody levels PBMCs Human (56)
miR146a Down STAT1 Decreased suppression Treg Human (57)
miR146a Down STAT1 Decreased suppression Treg Mouse (58)
miR146b Up TRAF6 Decreased suppression Treg Human (59)
miR149-5p Down DP5, PUMA Apoptosis beta cells Human (39)
miR150 Up mTor Increased induction Treg Mouse (47)
miR155 Up Ccl2, Ccl17,

Cxcl10
Immune infiltration, beta cell death beta cells Human/

mouse
(55)

miR181a-5p Up PI3K signaling Decreased induction Treg Human/
mouse

(60)

miR182 Up Foxo1 Decreased frequencies Treg Mouse (61)
miR200a Up unknown Decreased frequencies Treg Human (62)
miR202-3p Up Cd247, Ccr7 Immune infiltration autoreactive T

cells
Mouse (46)

miR210 Down Foxp3 Increased Foxp3 abundance Treg Human (40)

(Continued)
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combining the levels of osteoprotegerin and the miR23~27~24
cluster in plasma of newly diagnosed T1D patients enabled the
prediction of insulin secretion 12 months after diagnosis (86).
Another study analyzed plasma miRNAs, immune cell subsets,
and specific features of T1D and revealed correlations between
miRNAs and T1D onset (let7c-5p, let7d-5p, let7f-5p, let7i-5p,
miR146a-5p, miR423-3p, miR423-5p), C-peptide levels in the
serum (miR142-5p, miR29c-3p), glycated hemoglobin (miR26a-
5p, miR223-3p), and ketoacidosis (miR29c-3p). Furthermore,
the analysis pointed towards a link between plasma miRNAs and
certain immune cell subsets, which was limited to T1D patients
(87). In diabetic NOD mice, miR409-3p was reduced in the
plasma as well as in islet infiltrates, and miR409-3p levels were
associated with insulitis severity. In human patients with recent
onset of T1D, plasma levels of miR409-3p were comparably
reduced and correlated inversely with the levels of HbA1c (88). A
recent work systematically reviewed and analyzed profiles of
circulating miRNAs in T1D patients and suggested a
combination of 11 miRNAs (miR21-5p, miR24-3p, miR100-5p,
miR146a-5p, miR148a-3p, miR150-5p, miR181a-5p, miR210-5p,
miR342-3p, miR375, miR1275), which are involved in several
facets of immune regulation and beta cell function, as biomarkers
for T1D (89).

miRNAs in Blood-Circulating Cells
In peripheral blood mononuclear cells (PBMCs), several
miRNAs were found to be correlated with T1D. miR21a and
miR93, two miRNAs involved in the regulation of apoptosis and
inflammation by targeting NF-kB signaling, were significantly
downregulated in patients with recently diagnosed T1D (85),
while other miRNAs such as miR20a and miR326 were
upregulated (90). The analysis of miRNA signatures in PBMCs
also revealed associations with autoantibodies in T1D patients,
with increased levels of miR326 correlating with GAD and IA2
antibodies (66) and reduced levels of miR146a correlating with
antibodies against GAD (56).

miRNAs as Biomarkers During Islet Autoimmunity
So far, most studies analyzed miRNA signatures in individuals
with established T1D. However, the relevance of islet
autoimmunity for the understanding of T1D pathogenesis as
well as for the development of intervention strategies suggests the
analysis of miRNA expression in this critical presymptomatic
phase. The analysis of miRNA profiles in the presymptomatic
phase of T1D was conducted in a recent study that analyzed
Frontiers in Endocrinology | www.frontiersin.org 5
miRNA signatures in the serum of individuals with a high
genetic risk for developing T1D and ongoing islet
autoimmunity, as indicated by the presence of multiple islet
autoantibodies (91). However, the resulting miRNA expression
patterns could not distinguish the islet autoimmunity group
from individuals with newly diagnosed T1D or healthy
individuals and was unable to predict the progression to
clinical T1D. Despite these limitations, a set of differentially
expressed miRNAs exhibited significant correlations with
glycemic status and antibody titers in individuals with islet
autoimmunity. Another study investigated signatures of
circulating miRNAs in the serum of autoantibody-positive
children vs. their autoantibody-negative siblings. In this
dataset, several miRNAs, in particular miR21-3p, miR29a-3p,
and miR424-5p, correlated with islet autoimmunity and the
progression to T1D (36). Despite these important insights,
additional evidence is needed to support the concept that
circulating miRNAs are a valuable tool for human T1D
risk assessment.

Limitations and Next Steps
Whole blood or serum samples of T1D patients are readily
available, but the potential of miRNA profiles in such samples
to reveal the underlying mechanisms of pathogenesis and
progression of organ-specific autoimmune diseases is limited
by several aspects. Firstly, profiles of circulating miRNAs most
likely do not accurately reflect the environment in the organ,
which is the target of the autoimmune attack. Secondly, whole
blood and PBMCs represent a highly diverse mixture of various
immune cell types. It appears likely that changes in the
composition of these immune cell subsets or their miRNA
expression have a more profound impact on miRNA profiles
than global changes in miRNA expression in the blood or serum.
Therefore, the analysis of relevant miRNAs in distinct immune
cell subsets, with a particular focus on mediators of
autoimmunity, such as effector T cells or Tregs, will provide
critical advantages in the analysis of mechanisms underlying
T1D pathogenesis. Furthermore, the dissection of miRNA
signatures in relevant immune cell subsets, directly in the
affected organs, appears to be crucial for the validation of
miRNA biomarker signatures with the goal to better
understand their contribution to immune activation and the
progression to clinical T1D. However, the analysis of miRNA
profiles in the respective target organ is often impeded by the
limited sample availability, especially during the important pre-
TABLE 1 | Continued

miRNA miRNA
regulation

miRNA target Effect Cell type Organism Reference

miR210 Up Foxp3 Decreased frequencies Treg Human (63)
miR214 Up PTEN Increased frequencies Treg Mouse (64)
miR326 Up Ets-1 Decreased frequencies Treg Human (65)
miR326 Up – Correlation with GAD and IA2 antibody levels PBMCs Human (66)
miR425-5p Up – Correlation islet autoimmunity, progression to T1D serum Human (36)
miR590-5p Up Trail, Fas Proliferation CD8+ T cells Human (37)
miR663 Up TGFB1 Decreased frequencies Treg Human/

mouse
(67)
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symptomatic phase. Furthermore, the affected organs generally
contain only very low numbers of the relevant immune cells
additionally hindering the broad applicability of these in
principle promising approaches.
miRNAs Involved in Immune-Mediated
Beta Cell Destruction
To understand the specific contribution of miRNAs to the onset
of islet autoimmunity and the progression to T1D, it is crucial to
shift the focus from miRNAs as biomarkers to a more
mechanistic dissection of their role for the upstream regulation
of autoimmune activation and tolerance impairments.

In addition to the broad regulatory impact of miRNAs in
various T cell subsets, modulating immune activation and
impaired tolerance, their potential to directly drive the
destruction of the pancreatic beta cells has been suggested as
an additional layer of regulation. In T1D, the beta cells respond
to the inflammatory milieu created by immune cell invasion with
the activation of several pathways, which can intensify the
immune reaction by inducing beta cell dysfunction, apoptosis,
and the secretion of proinflammatory cytokines, attracting more
immune cells into the islets (92). Several recent studies suggest
that these responses are among others mediated by
miRNAs (93).

Cytokines that are typically secreted by pancreas infiltrating
immune cells directly modulated miRNA expression in a murine
beta cell line (94). Beta cells were exposed to IL-1b, TNF-a, IFN-g,
or a combination of these cytokines for 24 h, and the assessment of
miRNA expression showed increased expression of miR21, miR34a,
and miR146a. Interestingly, a similar miRNA expression pattern
was observed in pancreatic beta cells of NOD mice with
considerable immune cell infiltration, while these miRNAs were
not upregulated in beta cells of mice that did not show any
infiltration in the pancreas (43). This indicates that the expression
of these three miRNAs is indeedmodulated by cytokines released by
infiltrating immune cells. Furthermore, the exposure of cultured
human islets to IL-1b resulted a comparable increase in expression
of miR21, miR34a, and miR146a. The analysis of gene expression
revealed that this short-term exposure to cytokines resulted in the
miRNA-mediated reduction of insulin and proinsulin mRNA,
which is also seen in T1D. In contrast, the sustained exposure to
a cytokine-induced inflammatory environment induces apoptosis in
human and murine beta cells (44). miR34a and miR146a could be
directly linked to cytokine-mediated cell death, while the role of
miR21 remains controversial. Inhibition of miR34a and miR146a
resulted in higher survival rates in murine beta cell cultures exposed
to proinflammatory cytokines, while the inhibition of miR21 had
the opposite effect. The dissection of this effect demonstrated that
during the exposure to inflammatory cytokines, miR21 triggers a
protective response, which is mediated by the downregulation of cell
death inducer PDCD4 (95). In addition, the exposure to IL-1b and
IFN-g resulted in differential regulation of 57 miRNAs in cultured
human islets. The reduced expression of three miRNAs—miR23a-
3p, miR23b-3p, and miR149-5p—upregulated the pro-apoptotic
Bcl-2 familymembers DP5 and PUMA and consequently promoted
apoptosis of beta cells (39).
Frontiers in Endocrinology | www.frontiersin.org 6
Another study demonstrated a gradual upregulation of the
miR29 family during the course of insulitis in NOD mice (96),
and this effect was also observed in cultured murine and human
islets when exposed to proinflammatory cytokines (43). This
upregulation resulted in reduced insulin mRNA levels, impaired
insulin secretion, and induced beta cell apoptosis by targeting
Mcl1, which is an anti-apoptotic protein and a confirmed target
of miR29.

Another mechanism of miRNA-mediated promotion of beta
cell death and its contribution to T1D have been described
recently. Both murine and human T cells release exosomes
containing miR142-3p, miR142-5p, and miR155-5p, which can
be transferred to beta cells and induce their apoptosis. The
inhibition of these miRNAs in beta cells prevented apoptosis
and protected NOD mice from diabetes development
accompanied by higher insulin levels, lower insulitis scores,
and reduced inflammation in these mice. Mechanistically, the
exosomal miRNAs increase the expression of several chemokine
genes, including Ccl2, Ccl7, and Cxcl10 in beta cells, promoting
immune infiltration and beta cell death (55).

In sum, these studies indicate that miRNAs are important
mediators of cytokine-induced beta cell destruction and
dysfunction by modulating several different pathways in
response to cytokine exposure and are in line with the concept
that they can function as communicators between cells of the
immune system and pancreatic beta cells.

miRNA Regulation in T Cells
T Cell Development
Dynamic changes of miRNA expression in hematopoietic
precursors indicate their importance for the development and
differentiation of various subsets of hematopoietic cells,
including T cells. Multiple miRNAs can be linked to T cell
differentiation, e.g., miR125b whose upregulation correlates with
the specification of progenitor cells into the lymphocyte lineage
and in later stages contributes to survival and maintenance of
these cells in mice (97). Furthermore, miR181a upregulation was
shown to be crucial for the development of both murine T and B
cells (98, 99).

The involvement of miRNAs in the development of T cells
was initially highlighted in mice by the deletion of Dicer, which
resulted in impaired CD8 T cell development in the thymus (100,
101). Furthermore, dynamic miRNA profiles could be linked to
distinct stages of murine T cell differentiation, suggesting
miRNA regulation of thymic T cell development (102). One
example is miR181a, which is highly abundant during the
CD4+CD8+ double-positive stage of T cell differentiation.
miR181a regulates TCR signaling by increasing the sensitivity
to antigenic stimulation (103), and it targets, among others, Bcl2
and CD69, which are involved in positive selection in the
thymus, highlighting the critical regulatory role of this miRNA
for T cell development.

T Cell Function
The activation and proliferation of T cells in response to antigen
exposure is a crucial facet of the immune system, which depends
on signaling via the TCR and co-stimulatory molecules such as
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CD28. These signals lead to an upregulation of miR214, which
targets PTEN, a negative regulator of T cell activation, resulting
in enhanced T cell proliferation in mice (104). Similarly, IL2
signaling upregulates miR182, which, in turn, downregulates
Foxo1 in human and murine activated T cells thereby
promoting their clonal expansion (105). In contrast, high levels
of miR155 and miR221 collectively downregulate PIK3R1, which
inhibits human CD4+ T cell proliferation and cytokine
production (106).

The transcription factor c-Myc, an important regulator of
T cell proliferation and apoptosis, executes its function by
modulating the miR17~92 cluster in humans and mice (107).
C-Myc binds the miR17~92 locus and induces its expression.
Two members of this cluster, miR17-5p and miR20a, regulate the
expression E2F1 and thereby facilitate precise control of T cell
proliferation. In murine Th1 cells, members of the miR17~92
cluster drive the immune response of these cells by targeting
PTEN and CREB1, enhancing proliferation and cytokine
production, while inhibiting apoptosis (33).

While the miR17~92 cluster is important for the fine-tuning of
T cell activation and proliferation, it can also have deleterious
consequences when expressed at very high levels. In mice,
the high abundance of this cluster is associated with
lymphoproliferative disease and autoimmunity, presumably by
inhibiting PTEN and the proapoptotic protein Bim (108).
Furthermore, by targeting members of important apoptosis
pathways, including Bcl2 and Akt/p53, miRNAs can directly
regulate T cell apoptosis in the context of human autoimmune
diseases and cancer (109, 110).

Peripheral T Cell Subsets
Besides their importance for T cell development in the thymus
and T cell function, miRNAs are furthermore involved in the
differentiation of distinct T cell subsets.

Naive, effector, and memory CD8+ T cells exhibit distinct
miRNA signatures, both during and after their differentiation. In
murine effector T cells, let7f, miR15b, miR142-3p, miR142-5p,
miR150, and miR16 are expressed at low levels when compared
to the other subsets, while miR21 is upregulated (99). In vitro
differentiation experiments showed that miR150, miR155, and
miRNAs of the let7 family are involved in memory T cell
differentiation in mice, among others by targeting KCNIP1
(111). Similarly, human T cell subsets exhibit distinct miRNA
patterns. For example, the naive state of human CD4+ T cells is
maintained by miR125b, which regulates the expression of genes
involved in the differentiation to effector cells, such as IFNG,
IL2RB, IL10RA, and PRDM1 (112).

Regarding the differentiation into Th subsets, Dicer deficiency
in murine CD4+ T cells results in a strong bias toward Th1
differentiation, the inability to develop into the Th2 phenotype,
and increased IFN-g production (100). In contrast, miR155-
deficient mice exhibit a CD4+ T cell compartment, which is
strongly shifted towards the Th2 phenotype, including a high
abundance of Th2 cytokines, while the function of Th1 cells is
altered (113).

Especially the regulation of Th17 cells in autoimmunity has
been extensively studied. To date, more than 30 miRNAs have
Frontiers in Endocrinology | www.frontiersin.org 7
been identified as contributors to function and plasticity of these
cells and the Th17/Treg balance in human and murine
autoimmunity (114).

Autoreactive T Cells
As described above, autoreactive CD4+ and CD8+ T cells are
major drivers of immune infiltration and beta cell damage.

A recent study investigated alterations in T cell gene
expression during the development of T1D in NOD mice and
revealed the upregulation of several genes involved in auto-
reactivity, inducing the infiltration of the pancreas by
autoreactive T cell clones. Furthermore, the analysis of miRNA
signatures in these cells demonstrated that these changes in gene
expression are mediated by differential regulation of miRNAs.
For example, miR202-3p targets the Ccr7 chemokine receptor
and Cd247, which have been shown to control autoimmunity in
NOD mice (46).

Furthermore, a set of miRNAs (miR23b, miR98, and miR590-
5p) drives the proliferation of diabetogenic CD8+ T cells in T1D
patients by downregulating apoptotic genes such as Trail, Trail-
R2, Fas, and Faslg (37). Importantly, the forced expression of this
set of miRNAs in T cells induced rapid expansion of diabetogenic
T cells, indicating that the observed effect is indeed
miRNA-mediated.

In islet autoimmunity and T1D naive CD4+ T cells can exhibit
dysregulated miRNA signatures, which can alter T cell function
and bias them toward autoimmune activation. For example,
miR101 is upregulated in naive T cells during islet
autoimmunity. This miRNA targets Ezh2, leading to a shift
toward the Th1 lineage in humans and mice (49, 50).
TREGS AND THEIR REGULATION BY
miRNAs

Characterization of Tregs
Although the destruction of the beta cells is mediated by immune
cells, in particular T cells, the contribution of T cells to the
development of islet autoimmunity is not limited to these
autoreactive processes. One major driver of the activation of
autoreactive T cells and their invasion into the pancreas are
impaired tolerance mechanisms in the periphery. These
impairments are particularly the result of aberrations in Tregs,
which can directly suppress various immune cells, including
autoreactive T cells, making them the main mediators of
peripheral immune tolerance (115).

Tregs express the surface markers CD4 and CD25, which is
the interleukin 2 receptor a chain. However, since effector T cells
also express these surface proteins, the transcription factor Foxp3
is of particular importance for their identification. The high
expression of this lineage defining factor is indispensable
for differentiation, maintenance, and function of Tregs. (115,
116). Mutations in the Foxp3 gene lead to fatal autoimmune
disorders in both humans (IPEX—immunodysregulation,
polyendocrinopathy, enteropathy, X-linked syndrome) and
mice (scurfy mice), highlighting the critical role of Foxp3 for
November 2020 | Volume 11 | Article 606322

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Scherm and Daniel miRNA-mediated immune regulation in T1D
Tregs and consequently immune homeostasis (117, 118).
Similarly, the depletion of Tregs in newborn mice results in
impaired immune regulation and severe autoimmune disease
(119, 120).

Since its discovery, the major impact of Foxp3 on Tregs has
been studied extensively, revealing a complex network of
regulatory interactions termed the Foxp3 interactome (121).
Specifically, these studies identified the structure of Foxp3
including its functional domains (122–124) and described
multiple target genes (125–127) and interactions partners of
Foxp3 (128–132). In addition, several studies demonstrated
regulatory regions in the Foxp3 promoter and other noncoding
sequences of the Foxp3 gene. These regions control the
expression of Foxp3 and are regulated by various mechanisms
including epigenetic modifications (133, 134) and transcription
factor binding (135, 136).

Tregs in Islet Autoimmunity and T1D
Importantly, several studies analyzing longitudinal samples of
children at different stages of T1D showed that these
impairments occur during the phase of islet autoimmunity,
before the onset of clinical symptoms, indicating that they are
critical triggers of autoimmune activation rather than a
consequence. Long-term autoimmunity without progressing to
symptomatic T1D is associated with increased frequencies of
insulin-specific Tregs (45, 137). Furthermore, in vitro Treg
induction potential of naive T cells from individuals with islet
autoimmunity is reduced both at the insulin-specific and polyclonal
level (60). These findings illustrate the crucial role of Tregs for the
maintenance of immune homeostasis and the potential of boosting
Tregs to interfere with autoimmune progression.

The complex regulatory network in Tregs, which is cardinal
for immune tolerance, consists of various components, which
could be regulated by miRNAs. In fact, several studies have
shown miRNA-mediated regulation of Tregs in different stetting,
including autoimmunity.

miRNA Regulation of Tregs
The major impact of miRNAs on Tregs and consequently
immune tolerance was indicated by studying the lineage-
specific deletion of Dicer and Drosha. The deficiency of these
enzymes involved in miRNA processing leads to reduced
numbers of thymic and peripheral Tregs and reduced
suppressive function resulting in fatal systemic autoimmunity
in mice (101, 138–140). Additional studies identified individual
miRNAs, which contribute to these defects, by affecting virtually
all aspects of Treg biology, including their development,
induction, stability, suppressive function, as well as the
expression of critical genes.

In T1D patients, high levels of miR125a-5p were found in
Tregs isolated from pancreatic lymph nodes, resulting in
decreased expression of CCR2 and consequently impaired Treg
migration to the pancreas (52). Furthermore, miR510 was shown
to be upregulated in Tregs from individuals with T1D, while the
levels of miR342 and miR191 were reduced (141). In mice,
miR26a levels were reduced in Tregs during T1D progression
Frontiers in Endocrinology | www.frontiersin.org 8
and the forced expression of this miRNA promoted Treg
expansion and suppressed T1D in NOD mice (142).

In line with the complex regulatory network of Foxp3, there
are miRNAs, which are involved in Foxp3-mediated regulatory
loops. For example, miR155, which is highly expressed in Tregs,
is induced by Foxp3 and suppresses signaling pathways, which
would interfere with Treg homeostasis. The ablation of this
miRNA in mice leads to impairments in Treg development,
including decreased levels of Foxp3, which result in reduced
frequencies of thymic and splenic Tregs (143, 144). During Treg
development in mice, miR155 downregulates SOCS1 (suppressor
of cytokine signaling 1) consequently promoting the activity of
STAT5, which is critically involved in IL2 signaling and
consequently Treg homeostasis (145).

However, the absence of miR155 does not affect the in vitro
induction or suppressive function of Tregs, as indicated by the
ability of miR155-deficient Tregs to prevent autoimmunity in
murine transfer models (143).

Retinoic acid promotes the development of Tregs through
several mechanisms, some of which are mediated by miRNAs.
For example, miR10a-5p, whose expression is restricted to Tregs,
is induced by retinoic acid. In mice, miR10a-5p downregulates
several effector T cell genes, such as BCL6 and NCOR2, which
promotes the expression of Treg-specific genes (29, 146).
Although high levels of miR10a-5p correlate with reduced
susceptibility to autoimmune diseases in mice, miR10a-5p
deficiency does not lead to autoimmunity, suggesting a
compensatory effect of other miRNAs with overlapping targets
(29, 146).

The importance of miRNAs for efficient Treg induction in
vitro was shown by impaired Foxp3 expression in murine Tregs
induced from Dicer or Drosha deficient naive T cells (101, 138).
The investigation of individual miRNAs revealed both inhibitory
and promoting effects on in vitro Treg induction, and several
miRNAs form complex regulatory networks to regulate human
and murine Treg induction (47). For example, miR150 and
miR99a cooperatively promote Treg induction by targeting
mTOR (47), and likewise, miR15a-16 improves Treg induction
only in presence of 15b-16 and vice versa (31). In line with the
important role of the PI3K/Akt/mTOR signaling for regulating
Treg induction vs. T cell activation, this pathway is regulated by
several miRNAs, such as miR126 (53). This miRNA contributes
to efficient Treg induction in humans and mice by
downregulating p85b, which is a regulatory subunit of PI3K,
reducing PI3K/Akt/mTOR pathway activity. Accordingly, the
inhibition of miR126 impairs Treg induction by increasing PI3K/
Akt/mTOR signaling (53). As described above, miR155 targets
SOCS1 to promote thymic Treg development. The same
mechanisms, promoting STAT5 activity, also support efficient
murine Treg induction in vitro (147). Besides these miRNAs
promoting Treg induction, there are also miRNAs with a
negative effect on Treg induction in vitro (47). In mice, high
levels of two miRNAs of the miR17~92 cluster, miR17 and
miR19, interfere with efficient Treg induction while thymic
Treg development is unaffected (33). The effect of miR17 is
mediated by the targeting of two proteins, which are important
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for efficient Treg induction: the cAMP-responsive element
binding protein 1 (CREB1) and the TGFb-receptor II. The
latter pathway is additionally regulated by the miR23-miR27-
miR24 family, which downregulates important components of
TGF signaling in mice and consequently impairs Treg
induction (38).
IN-DEPTH DISSECTION OF miRNA
MEDIATED TOLERANCE IMPAIRMENTS

As indicated above, several recent studies have investigated the
role of specific miRNA in various immune cell subsets, which has
significantly driven our understanding of the importance of
miRNA-mediated regulation of immune cell differentiation and
function as well as immune homeostasis. However, aiming at the
ultimate goal of developing future intervention strategies to
interfere with aberrant immune activation and delay or even
prevent T1D autoimmunity, it is of major importance to
understand the underlying mechanisms in more detail.
Therefore, the dissection of pathways interfering with immune
tolerance and triggering the onset of islet autoimmunity is an
important next step following the identification of miRNAs
differentially expressed in islet autoimmunity. On this account
and given the importance of Treg impairments for insufficient
tolerance induction and autoimmune activation, our laboratory
has recently investigated the association of individual miRNAs in
T cells during the onset of islet autoimmunity and Treg
impairments. In three studies, we reported a direct link
between dysregulated miRNA expression and defects in Tregs
(Figure 1).

miR92a-3p
The first study investigated the role of miR92a-3p in humans and
mice, revealing that the T cell-specific increased expression of
this miRNA during islet autoimmunity favors the development
of T follicular helper (TFH) cell precursors and simultaneously
impairs the efficient Treg induction, two mechanisms that can
critically contribute to the onset and progression of islet
autoimmunity (Figure 1) (45).

TFH cells are a subset of CD4+ T cells, and their ability to
provide support to B cells for the production of high-affinity
antibodies makes them an essential part of the humoral immune
response (148). TFH cell precursors circulate in the blood where
they mediate the induction of antibody responses, suggesting
that these cells are an important effector T cell subset involved in
the development of autoimmune diseases, which can be
mediated by autoantibodies (149, 150). This provided the
rationale for the analysis of the role of these cells for the
development and progression of islet autoimmunity, which
showed increased levels of insulin-specific and polyclonal TFH
precursor cells during islet autoimmunity (45). The analysis of
differential miRNA expression identified miR92a-3p to be
upregulated in T cells from children with recent onset of islet
autoimmunity compared to T cells from children with long-term
autoimmunity or healthy controls. Furthermore, miR92a-3p
Frontiers in Endocrinology | www.frontiersin.org 9
expression in T cells directly correlated with the TFH
precursor abundance in the peripheral blood. During TFH
induction in vitro, the specific inhibition of miR92a-3p resulted
in decreased TFH cell induction, while a miR92a-3p mimic had
the opposite effect. The analysis of known targets of miR92a-3p
revealed that high levels of the miRNA resulted in the reduced
expression of several negative regulators of T cell activation,
including PTEN, PHLPP2, FOXO1, and CTLA4.

Besides the effect on TFH cells, the modulation of miR92a-3p
also limits efficient Treg induction by downregulating PTEN and
consequently activating the PI3K pathway. These findings
indicate that miR92a-3p functions as a shared signaling
mediator by controlling negative regulators of T cell activation
such as PTEN, which is involved in the control of TFH cells as
well as Tregs and their induction. Consequently, in vivo high
levels of miR92a-3p during the onset of islet autoimmunity were
accompanied by reduced frequencies of insulin-specific Tregs
and in vitro a miR92a-3p mimic impaired efficient Treg
induction. The effect of the mimic was reduced upon PI3K
inhibition and increased upon PTEN blockade, indicating
that these two pathways control the regulation of TFH cell
induction vs. Treg induction. Furthermore, KLF2 was
identified as a previously unknown target of miR92a-3p. KLF2
promotes S1pr1 expression and BLIMP1 upregulation, which
consequently inhibits the TFHmaster regulator BCL6 (151), thus
offering a second mode of action of miR92a-3p to regulate
TFH differentiation.

miR181a-5p
In a second study, we showed that high levels of a specific
miRNA in T cells from individuals with recent onset of islet
autoimmunity diminish Treg induction capacity in naive CD4+

T cells (Figure 1). The defective Treg induction occurred in
individuals with recent onset but not with long-term
autoimmunity without progression to clinical T1D or in the
absence of islet autoimmunity.

The impaired Treg induction was accompanied by excessive T
cell activation as indicated by higher frequencies and increased
proliferation of CD4+Foxp3int T cells, which in turn interfered
with Treg induction (60).

This enhanced T cell activation could be linked to increased
levels of miR181a-5p, which has been identified as a modulator
of T cell signaling by fine-tuning the thresholds of antigenic
stimulation (152). miRNA modulation in vitro demonstrated
that high levels of miR181a-5p, induced by a miR181a-5p mimic,
resembled Treg impairments during the onset of human and
murine islet autoimmunity. Conversely, miR181a-5p inhibition
could correct these defects and resulted in higher Treg induction
efficacy. The increased expression of miR181a-5p in T cells was
accompanied by reduced expression of its direct target PTEN.
Low levels of PTEN contribute to excessive T cell activation by
enhancing PI3K signaling and increasing abundance and activity
of nuclear factor of activated T cells 5 (NFAT5) (153). In
addition, high expression of miR181a-5p was accompanied by
increased levels of CD28, which is a costimulatory molecule
involved in PI3K activation (154), NFAT5 upregulation, and T
cell activation. These findings show that miR181a-5p is involved
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in the regulation of T cell activation vs. Treg induction during
islet autoimmunity. High levels of the miRNA downregulate
PTEN, which results in higher NFAT5 and CD28 expression,
consequently favoring T cell activation and interfering with
Treg induction.

In line with these findings, miR181a-5p levels were increased
in NOD mice with islet autoimmunity, accompanied by elevated
NFAT5 and low PTEN levels, resulting in reduced Treg
induction capacity of naive CD4+ T cells. The in vivo
Frontiers in Endocrinology | www.frontiersin.org 10
inhibition of miR181a-5p was able to improve islet
autoimmunity in these mice, as indicated by reduced levels of
pancreas-infiltrating immune cells. This improvement was
mediated by increased PTEN levels and decreased expression
of NFAT5 and CD28. The important role of NFAT5 was
confirmed using NFAT5 deficient mice as well as a NFAT5
inhibitor. Both approaches resulted in improved Treg induction
efficiency by upregulating levels of PTEN and of Foxo1, another
positive regulator of Treg induction (155).
FIGURE 1 | Role of T cell-specific miRNAs for the loss of immune tolerance. High levels of miR-142-3p, miR-181a-5p, and miR-92a-3p and their downstream
pathways contribute to multiple layers of tolerance impairments and aberrant immune activation during onset and progression of islet autoimmunity.
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Given the broad regulatory potential of individual miRNAs, it
is most likely that the effect of the miRNAs described above is not
limited to islet autoimmunity. In line with this hypothesis,
several studies revealed a contribution of miR92a-3p and
miR181a-5p to other autoimmune disorders such as
neuroinflammation, Th17-mediated inflammation, and
lymphoproliferation (32, 108, 156).

miR142-3p
The third study demonstrated that miRNA-mediated
dysregulation of DNA methylation drives islet autoimmunity by
interfering with Treg homeostasis in humans and mice (Figure 1)
(54). Using unbiased approaches including miRNA sequencing
and high-throughput sequencing of RNA isolated by crosslinking
immunoprecipitation (HITS-CLIP), we identified a set of miRNAs
that could contribute to the onset of islet autoimmunity. In this
study, we investigated the role of miR142-3p as well as its direct
targets and downstream pathways. The reported increased
expression of miR142-3p during the onset of islet autoimmunity
and its high abundance in the RISC complex, suggesting a critical
role of this miRNA in the regulation of CD4+ T cells. During early
islet autoimmunity, high levels of miR142-3p reduced the
expression of an important mediator of DNA demethylation:
the methylcytosine dioxygenase Tet2, which was confirmed as a
direct target of miR142-3p using a combination of molecular and
cellular approaches.

Tet2 belongs to the family of ten-eleven translocation (Tet)
methylcytosine dioxygenases that are involved in the regulation of
various cellular processes, including the differentiation of CD4+ T
cells in humans and mice. Tet2 catalyzes the conversion of
methylcytosine in the DNA to 5-hydroxymethylcytosine, which is
Frontiers in Endocrinology | www.frontiersin.org 11
the first intermediate step of DNA demethylation. The
demethylation of regulatory regions of the genome facilitates
increased binding of transcription factors and consequently the
regulation of gene expression. In Tregs, the stable expression of
Foxp3 is maintained by the demethylated state of the conserved
non-coding sequence 2 (CNS2) within the Foxp3 gene (157–159).
As a direct mediator of DNA demethylation, Tet2 is of critical
importance for sustained Foxp3 expression and consequently the
Treg phenotype. The miR142-3p mediated silencing of Tet2
resulted in higher levels of DNA methylation at the Foxp3 CNS2,
which was accompanied by decreased abundance of pancreatic
Tregs in islet autoantibody positive NOD mice.

Importantly, the inhibition of miR142-3p in vitro and in vivo
was able to correct the defects resulting from elevated levels of
miR142-3p during islet autoimmunity. In vitro, miR142-3p
inhibition restored Tet2 levels, resulting in improved Treg
induction and stability. The application of the miR142-3p
inhibitor to islet autoantibody positive NOD mice resulted in
increased levels of Tet2, proper DNA demethylation of the Foxp3
CNS2 locus, higher Treg frequencies in the pancreas, and
reduced islet autoimmunity. Furthermore, similar patterns
were observed in preliminary experiments using humanized
mouse models, indicating the relevance of these findings for
established human T1D.

In addition to Tet2, the analysis of potential miR142-3p
targets revealed several genes that are involved in Treg
homeostasis, such as Smad3, TGFb receptors, and Stat5. TGFb
plays an important role for immune regulation and Treg
homeostasis: by phosphorylating Smad proteins, it ensures the
expression of Foxp3 (160). Stat5 is induced by IL-2 signaling and
is an important regulator of Treg development (161). Like Tet2
FIGURE 2 | Facets of miRNA-mediated immune regulation in islet autoimmunity and T1D. Aberrant miRNA expression contributes to various aspects of impaired
immune regulation, including T cell development in the thymus, differentiation of Th subsets, apoptosis/proliferation of effector T cells, activation of autoreactive T
cells, impaired Treg induction and stability, and cytokine-induced beta cell dysfunction and apoptosis.
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signaling, both pathways are involved in the maintenance of Treg
homeostasis, by regulating Foxp3 induction and stability,
indicating that miR142-3p regulates a complex network of
important regulators of Treg differentiation and function.

The results of this study highlight that miR142-3p levels are
increased during islet autoimmunity, which, via Tet2
downregulation and aberrant CNS2 demethylation, interferes
with Treg induction and stability and consequently drives
autoimmune activation. Therefore, the modulation of the
miR142-3p/Tet2 signaling pathway, by targeted miR142-3p
inhibition or enhancing Tet2 abundance or activity, could be a
promising strategy in order to improve Treg induction and
stability to interfere with the onset of islet autoimmunity.
DISCUSSION

The highly complex pathogenesis of T1D, which is driven by
several immune cell types, including T cells, with both effector
and regulatory characteristics, hinders the development of
efficient prevention and treatment strategies. Most of the
molecular mechanisms underlying aberrant T cell activation
and the multiple layers of impaired immune tolerance remain
largely unexplored, not least because a multitude of mechanisms
are involved in the regulation of T cells. A better understanding
of the molecular and cellular mechanisms triggering
autoimmune activation and promoting the progression to
clinical T1D requires deeper insights into the molecular
regulation of important mediators of autoimmunity, such as
specific T cell subsets. One of these regulatory mechanisms are
miRNAs, which are critically involved in the regulation of proper
functioning of the immune system, including T cell
development, differentiation, and in particular Treg induction
Frontiers in Endocrinology | www.frontiersin.org 12
and function (Figure 2). For this reason, recent studies
investigated T cell-specific miRNAs during ongoing islet
autoimmunity and how these miRNAs modulate T cell
function and consequently contribute to both activation and
progression of autoimmunity. These studies demonstrated that
the targeting of individual miRNAs can induce relevant changes
in expression of their target genes and modulate downstream
signaling pathways, resulting in reduced islet autoimmunity in
mouse models.
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71. Rodrıǵuez-Galán A, Fernández-Messina L, Sánchez-Madrid F. Control of
immunoregulatory molecules by miRNAs in T cell activation. Front
Immunol (2018) 9:2148. doi: 10.3389/fimmu.2018.02148

72. Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function.
Cell (2004) 116:281–97. doi: 10.1016/S0092-8674(04)00045-5

73. Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs
are conserved targets of microRNAs. Genome Res (2009) 19:92–105.
doi: 10.1101/gr.082701.108

74. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are
transcribed by RNA polymerase II. EMBO J (2004) 23:4051–60.
doi: 10.1038/sj.emboj.7600385

75. Berezikov E. Evolution of microRNA diversity and regulation in animals.
Nat Rev Genet (2011) 12:846–60. doi: 10.1038/nrg3079

76. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III
Drosha initiates microRNA processing. Nature (2003) 425:415–9.
doi: 10.1038/nature01957

77. Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of
primary microRNAs by the Microprocessor complex. Nature (2004)
432:231–5. doi: 10.1038/nature03049

78. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N,
et al. The Microprocessor complex mediates the genesis of microRNAs.
Nature (2004) 432:235–40. doi: 10.1038/nature03120

79. Hutvágner G, McLachlan J, Pasquinelli AE, Bálint É, Tuschl T, Zamore PD.
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