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Rhythms in immunity manifest in multiple ways, but perhaps most prominently by

the recurrent onset of inflammation at specific times of day. These patterns are of

importance to understand human disease and are caused, in many instances, by the

action of neutrophils, a myeloid leukocyte with striking circadian features. The neutrophil’s

short life, marked diurnal variations in number, and changes in phenotype while in the

circulation, help explain the temporal features of inflammatory disease but also uncover

core features of neutrophil physiology. Here, we summarize well-established concepts

and introduce recent discoveries in the biology of these cells as they relate to circadian

rhythms. We highlight that although the circadian features of neutrophils are better known

and relevant to understand disease, they may also influence important aspects of organ

function even in the steady-state. Finally, we discuss the possibility of targeting these

temporal features of neutrophils for therapeutic benefit.
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GENERAL FEATURES OF CIRCADIAN IMMUNITY

The rotational period of the Earth creates variations in sunlight exposure and provides regular
diurnal cues to organisms (1). Sensing of these cues synchronizes organismal physiology and
behavior with external conditions (2), thus providing an evolutionary advantage by allowing
organisms to anticipate and adapt to a changing environment (1). These cyclic biological changes
create circadian rhythms which are endogenous, self-maintained oscillations that display a
periodicity of∼24 h (3). These rhythms are entrainable by periodic changes in environmental cues,
such as light or food (4, 5). Central and peripheral mechanisms regulating circadian oscillations in
organisms and in cells have been reviewed extensively, including in the immune system, and will
not be further reviewed here (6, 7).

Circadian rhythms are present in many cellular and humoral components of the immune
system. Granulocytes and monocytes exhibit circadian oscillations in their numbers in blood,
both in humans (8) and mice (9), and these oscillations are also robust in T- and B-lymphocytes
(10–12). Circadian variations in clock gene expression have also been reported in many
types of immune cells, including monocytes (13, 14), macrophages (15, 16), neutrophils
(17, 18), dendritic cells (12), or lymphocytes (10, 12). This suggested the presence of
functional, intrinsic clockworks in immune cells, and recent studies have demonstrated
that many immune processes are under direct circadian control. For example, rhythmic
leukocyte recruitment is regulated by circadian expression of pro-migratory factors within
endothelial cells (9), circadian trafficking of lymphocytes through lymph nodes is controlled
by Bmal1-dependent expression of the receptor CCR7 (19), and the response of phagocytes
to Leishmania infection is abolished in mice lacking the molecular clock in innate immune

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00576
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00576&domain=pdf&date_stamp=2020-04-03
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ahidalgo@cnic.es
https://doi.org/10.3389/fimmu.2020.00576
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00576/full
http://loop.frontiersin.org/people/937172/overview
http://loop.frontiersin.org/people/905333/overview
http://loop.frontiersin.org/people/507697/overview


Aroca-Crevillén et al. Circadian Neutrophils

cells (20). Overall, these and many other observations have
expanded the ascribed role of circadian clockworks and
oscillatory signals within the microenvironment in the control
of immune cell trafficking and host-pathogen interactions.
Consistent with variations in the immune cell number and
function, inflammatory diseases display circadianmanifestations.
Prominent among these are those that affect the cardiovascular
system, with acute vascular events displaying rhythmic patterns
in both onset and severity. For instance, myocardial infarction
in mice and humans shows circadian variations in both onset
(for humans) and infarct size depending on the time of day, with
evidence supporting changes in leukocyte infiltration rates into
the myocardium (17, 21–23). Occurrence of ischemic stroke also
has a peak of incidence in the morning (24), in coincidence with
higher atherosclerotic plaque rupture at this time (25). Likewise,
certain autoimmune disorders such as rheumatoid arthritis
exhibit daily variations in joint inflammation with stiffness and
pro-inflammatory cytokines peaking in the morning (26, 27).
Finally, sepsis modeled by caecal ligation or lipopolysaccharide
(LPS) injection also shows circadian variations, with increased
severity during the night in mice (9, 28). Below, we focus our
discussion on the circadian properties of neutrophils, a type
of leukocyte whose short life cycle appears to have adapted
optimally and in multiple ways to the circadian rhythms of
mammals (29, 30).

CIRCADIAN FEATURES OF NEUTROPHILS
IN THE BONE MARROW

Neutrophils are mainly produced within the bone marrow
(BM) through a process known as granulopoiesis. A complex
interplay between the transcription factors PU.1, enhancer-
binding proteins (C/EBPs), Gfi-1 and GATA-1 determines the
commitment of immature progenitors to the myeloid-lineage
[reviewed in (31)]. From this point on, C/EBPα induces
the expression of the granulocyte colony stimulating factor
receptor (G-CSFR/CSF3R), which allows signals delivered by the
cytokine granulocyte-colony stimulating factor (G-CSF/CSF3)
to promote granulopoiesis (32). Insights based on single
cell analyses have additionally defined committed neutrophil
precursors reliant on the transcription factor C/EBPε (33, 34)
(Figure 1). Recent reviews have already described basic aspects of
granulopoiesis, including the different stages of maturation both
under homeostasis or emergency (30, 35, 36), and will not be
discussed here further. A more detailed characterization of the
signals that control these developmental stages will be needed to
determine the possible existence of a circadian component that
boosts granulopoiesis at certain times of the day.

The BM maintains a neutrophil pool ready to be released
under homeostatic and stress conditions. Given the toxic
potential of neutrophils, granulopoiesis, and subsequent release
must be tightly regulated to balance their numbers in the
circulation. This is achieved by massive daily production [up
to 2 × 1011 cells per day in humans (37)] and temporally-
gated release into blood (38). Circulating neutrophils ultimately
infiltrate tissues after only 6–10 h in the circulation, which makes

them one of the shortest-lived cells in our bodies. It is noteworthy
that the percentage of mature neutrophils in human and mouse
peripheral blood is between 50–70 and 10–25%, respectively
(30). These differences can make difficult to accurately translate
findings across species. Under homeostatic conditions immature
neutrophils are largely absent from the circulation in both
human and mice (33). However, under inflammatory conditions
the number of immature neutrophils increases in blood, as
shown by the increase of the CD101-negative population in
the circulation of tumor-bearing mice (33) or the release of
CD16-dim neutrophils from the BM in a model of human
endotoxemia (39).

Oscillatory signals within the BM are believed to play an
important role in both release and clearance. Studies in mice have
shown that the chemokine CXCL12, acting through its receptor
CXCR4, provides a key retention signal for neutrophils (and
other cells) within the BM (40, 41). Importantly, regulation of
CXCL12 levels in the mouse BM appears to be controlled by
neural signals. Sympathetic nerves that innervate the BM deliver
diurnal adrenergic signals to stromal cells through β3-adrenergic
receptors, which inhibit CXCL12 expression and generate
oscillatory expression of the chemokine (42). Cholinergic signals
from the parasympathetic nervous system (PNS), in turn, have
been shown to inhibit adrenergic activity of the murine SNS
at night (43), altogether establishing tight temporal patterns
in the BM. In mice, downregulation of CXCL12 at daytime
drives the circadian egress of HSCs (42), and the release of
neutrophils at this same time also coincides with decreased
CXCL12 (40) (Figure 1). Several lines of evidence suggest that
timed release through CXCL12 underlies the circadian variations
of neutrophil numbers in blood: first, administration of a CXCR4
antagonist mobilizes neutrophils from the BM in both mice (44)
and humans (45, 46), although another study found that the
antagonist mobilized neutrophils from the lungs of both mice
and macaques (47); second, genetic deletion of Cxcr4 only in
myeloid cells results in massive neutrophilia in blood (41), and
interestingly also results in blunted oscillations of neutrophils
in blood (17). In addition to the CXCL12/CXCR4 axis, CXCR2
also plays an important role in neutrophil trafficking (44, 48)
as its absence leads to neutrophil retention in the BM, and
partly counteracts CXCR4 to regulate the egress of neutrophils
(49). Interestingly, the CXCR2 ligands CXCL1 and CXCL2 are
constitutively expressed by BM endothelial cells and osteoblasts
(49) (Figure 1), and their expression can be also enhanced by
external stimuli, including G-CSF (49) or thrombopoietin (50),
thus contributing to neutrophil mobilization. Together, these
results highlight the tight regulation of cues driving neutrophil
egress, all of which are likely subjected to circadian control in a
manner similar to CXCL12, but this needs to be explored further.

After circulating for several hours, mature neutrophils are
ultimately cleared in different tissues (see discussion below).
Among these, it is interesting that the BM is one of the major
clearance sites for neutrophils (51, 52) in a process also controlled
by the CXCL12/CXCR4 pathway in both humans and mice
(41, 44, 48, 53). Adoptive transfer experiments showed that
the population of neutrophils that preferentially homes to the
BM expresses higher levels of CXCR4, which agrees with the
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notion that CXCR4HI aged neutrophils (those that have remained
longer in the circulation; see below) gain tropism for the BM
as part of their programmed lifecycle (44). There are, however,
contradictory observations as homing experiments indicated that
CXCR4HI aged neutrophils have a similar ability to infiltrate the
BM as CXCR4LO neutrophils (53). In addition to neutrophil-
intrinsic changes, other studies have shown the importance of
environmental factors in modulating the circadian recruitment
of leukocytes into tissues under homeostatic conditions. For
example, expression of P- and E-selectins as well as VCAM-1,
controlled by the SNS, oscillate in a circadian fashion in the BM
vasculature, and favor the recruitment of leukocytes at night in
mice (9).

Adding to these circadian aspects of neutrophil trafficking
to and from the BM, clearance of neutrophils in this organ
has been shown to regulate the hematopoietic niche. Studies
in mice showed that aged neutrophils entering the BM are
engulfed by BMmacrophages (51). Through a process dependent
on the LXR nuclear receptors, these cells trigger reductions
in CXCL12 expression and alter the cellular composition of
the hematopoietic niche, altogether promoting the egress of
hematopoietic stem cells (HSCs) into the circulation (53)
(Figure 1). The return of neutrophils to the BM at the end of

the resting phase (in mice; between ZT5 and ZT13) is promoted
by SNS-dependent, circadian regulation of CXCL12 and other
molecules required for HSC homing (9). These highly-regulated
processes contribute to control neutrophil numbers and the
properties of the BM throughout the day.

CLOCK-DRIVEN PHYSIOLOGY OF THE
CIRCULATING NEUTROPHIL

The remarkably short lifespan of neutrophils in blood implies
that many resources must be employed in their production (54).
This feature likely relates to evolutionary trade-offs for a cell
that is key to immune defense, but is also highly cytotoxic and
can incite vascular inflammation (55). A consequence of this
rapid turnover is that neutrophil numbers follow strong circadian
changes in blood. Remarkably, these circadian oscillations also
affect the phenotype of circulating neutrophils, a property
referred to as neutrophil aging (29). Most data on neutrophil
aging classically derived from in vitro studies revealing, for
example, increased surface levels of CXCR4 (44), and decrease
of CXCR2 (49) or L-selectin (56). The physiological impact of
this circadianally-regulated phenomenon, and the underlying
molecular mechanisms, have remained unclear until recently.

FIGURE 1 | Circadian regulation of neutrophils in bone marrow and blood. Mature neutrophils are produced in the bone marrow during granulopoiesis. The

transcription factors PU.1, Gfi-1, GATA-1 and different enhancer-binding proteins (C/EBPs) are involved in this process, but the existence of oscillatory changes in their

expression is unknown. The sympathetic nervous system releases cues (adrenaline and noradrenaline) that act on stromal cells to generate circadian changes in

CXCL12 levels. This ultimately decreases the expression of CXCL12 and promotes the circadian release of neutrophils into the bloodstream. In turn, the

parasympathetic nervous system suppresses the activity of the SNS trough cholinergic signals (acetylcholine). In addition to the CXCR4/CXCL12 axis, signaling

through CXCR2 by the chemokines CXCL1 and CXCL2 produced by osteoblasts and bone marrow endothelial cells, also mediates neutrophil egress, however the

circadian regulation of this axis needs further investigation. Neutrophils undergo aging in circulation following circadian patterns and are finally cleared into the bone

marrow and other tissues. The engulfment of aged neutrophils by macrophages activates LXR signaling, which in turn blunts expression of CXCL12 to promote the

circadian egress of hematopoietic stem and progenitor cells (HSPCs). Note that cell morphologies are characteristic from mice.
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Using a model of neutrophil transfer into antibiotic-treated
mice, a study proposed that neutrophil aging is controlled by
extrinsic, microbiota-derived and TLR4-dependent signals (57).
A caveat of these studies was that no links were established
with actual circadian timing, thus making the temporal relevance
of the findings unclear. More recently, another study reported
that neutrophil aging was controlled cell-intrinsically by the core
clock gene Arntl (encoding Bmal1), was entrained by light, and
was dependent on antagonistic CXCR2 and CXCR4 signaling
(17). Interestingly, neutrophil-intrinsic Bmal1 regulated the
circadian expression of CXCL2, a chemokine that signaled in an
autocrine fashion through CXCR2 to promote the transcriptional
and phenotypic changes associated with neutrophil aging. In
the proposed model, CXCR4 counteracted signaling through
CXCR2, thereby blocking this program (17). This is consistent
with studies in humans showing circadian variations in plasma
levels of CXCL12 (the ligand for CXCR4) in antiphase with
the aging phenotype (17, 18), although it is noteworthy that
these studies found that the levels of BMAL1 are very low
in human peripheral neutrophils. Thus, circadian neutrophil
aging appears to be cell-intrinsically regulated by the molecular
clock, and extrinsically through CXCR4 signaling. Because the
same chemokine receptors that control the egress of neutrophils
from the BM (49) also control aging, we propose that CXCR4
signaling temporally coordinates the release of neutrophils
into blood with the onset of aging only in peripheral blood,
possibly protecting the BM from the potentially toxic activity
of activated neutrophils. Since CXCR4/CXCL12 signaling is
controlled circadianally by sympathetic signaling under steady-
state conditions (9, 58) it will be interesting to explore how
chronic or acute inflammation alter the circadian properties
of neutrophils.

An intriguing finding from these studies was that aged
neutrophils are preferentially cleared out from the circulation
into healthy tissues under steady-state conditions (17), whereas
non-aged cells (“fresh” neutrophils) are preferentially recruited
to inflammatory sites. This was explained by the progressive
loss of microvilli needed for efficient rolling as neutrophils
aged over time (17). Further, expression of CXCR2 is reduced
in aged neutrophils and we have recently shown that these
cells feature reduced granule content and NET-forming capacity
relative to fresh neutrophils (59), altogether suggesting blunted
inflammatory properties for aged neutrophils. However, these
blunted inflammatory properties are in apparent contradiction
with reports showing elevated inflammogenic properties of
aged neutrophils in mice (57), as well as increased adhesion,
ROS production and phagocytic capacity in human aged
neutrophils (18). The reason for these discrepancies deserves
further investigation.

The pathophysiological consequence of this clock-controlled
behavior of circulating neutrophils has been put in manifest
in the context of infection and vascular inflammation. For
example, enhanced seeding of tissues like the kidney by (aged)
neutrophils at night protected from fungal infection. In a model
of Candida albicans infection, pathogen clearance was superior
at night, a time when neutrophils had already entered the
tissue, and exaggerated neutrophil aging by deletion of CXCR4

markedly protected against infection. In contrast, deletion of
Arntl rendered mice more susceptible to infection at night
(17). Similar outcomes were found in the context of sterile
inflammation, as the circadian differences in ischemic stroke
or myocardial infarction were also sensitive to the deletion of
Bmal1 in neutrophils (17). An interesting conclusion from these
experiments is that neutrophil numbers in blood, which have
been correlated with vascular disease and used for prognosis in
the clinics (60), may not be the key factor in disease outcome
while, at least in mice, the aging phenotype of the cells is a better
predictor of the immune response.

NEUTROPHIL IN TISSUES AND
CIRCADIAN PATHOPHYSIOLOGY

Commonly believed to be eliminated only in the BM, spleen and
liver (61), neutrophils have now been shown to infiltrate many
other tissues in the steady-state (at least in mice), including the
intestine, lung, white-adipose tissue (WAT), skin, skeletal muscle,
lymph nodes, kidneys and heart (52). Notably, infiltration of
neutrophils into most naïve tissues follows circadian patterns
with a peak at night, with exceptions in the intestine, liver
and WAT in which no circadian oscillations were detected (52)
(Figure 2). Remarkably, the function of neutrophils in most of
these tissues remains virtually unexplored.

An outstanding question is whether tissue-infiltrating
neutrophils organize in specific areas that enables particular
functions in each tissue. In the intestine, for example, neutrophils
distribute in clusters around isolated lymphoid follicles, and
are surrounded by CD169+ macrophages (52). In this case,
the proximity to IL-23-producing cells predicted regulation
of the levels of this cytokine and downstream production of
G-CSF, an important mobilizing cytokine. Indeed, we identified
a role for gut-infiltrating neutrophils in regulating systemic
G-CSF levels and subsequent mobilization of hematopoietic
stem and progenitor cells (HSPCs) from the BM (52) (Figure 2).
Intriguingly, this regulatory role appeared to be unrelated of the
circadian release of HSPC in blood (42, 53). Whether neutrophils
in the gut coordinate with other oscillatory signals within this
environment, such as the intestinal microbiota (62), remains to
be explored.

Contrary to the gut, neutrophil infiltration of the lungs
follows tight circadian patterns (52). The need to defend
against colonizing bacteria may explain the existence of a large
marginated pool of neutrophils within the lung microcirculation,
as shown both in human and mice (63). In mice, the lung
has been proposed to be an “education” site for neutrophils
incoming from injured tissues to promote their return to the
BM (64). Interestingly, in the mouse lungs neutrophils were
shown to entrain global circadian transcription that appeared
to predispose to organ invasion by metastatic cells (52),
thereby suggesting that diurnal neutrophil clearance in the lung
may influence the temporal dynamics of patho-physiological
processes. The mechanisms underlying diurnal regulation of
circadian expression in this tissue, and whether this could
be extended to other tissues, remains unknown. Reciprocal
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FIGURE 2 | Circadian functions of neutrophils in tissues. In homeostasis, neutrophil infiltration into most tissues is circadian, but not in the intestine or the liver.

Neutrophils perform different functions in a circadian-independent manner: In the intestine, they control G-CSF production to mobilize HSC. In other tissues they

regulate circadian processes, such as transcriptional programs and tumor invasion in the lung. The circadian influence in other tissues is not well-defined. For

example, metabolism or detoxification control in the liver, gut microbiota regulation in the intestine, or their own re-education and immune defense in the spleen or

lymph nodes, respectively. In inflammatory scenarios, neutrophil recruitment oscillates and influences disease outcome. During bacterial infection in the lung,

bronchiolar cells modulate CXCL5 expression to control the oscillatory recruitment of neutrophils. In models of cardiac ischemia, increased infiltration into the heart

accounts for exacerbated cardiac damage at different times depending on the type of injury performed.

regulation is also possible, and indeed extrinsic regulation of
circadian recruitment of neutrophils during bacterial infection
is potently mediated by bronchiolar cells, whose expression of
attractant chemokine CXCL5 is regulated by glucocorticoids and
Bmal1 in a circadian manner (65) (Figure 2).

The liver is a preferential site for neutrophil elimination
(30) (Figure 2). In this organ, many physiological functions
such as energy metabolism or detoxification are under circadian

control (66) and disruption of the hepatic clock promotes disease,
including cirrhosis, hepatic steatosis and liver cancer (66), some
of which have been shown to be regulated by neutrophils
(67). Whether timed infiltration of neutrophils in this tissue
influences these or other physiological liver functions remains to
be explored.

In hematopoietic and lymphoid tissues other than the BM,
such as the spleen, neutrophils have been reported to promote
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maturation, differentiation, and antibody production of B cells
(68). Neutrophils at different stages of maturation have also been
postulated to perform antimicrobial functions in the spleen, and
facilitate clearance of Streptococcus pneumonia (69). Recently,
a study has shown that MHCII+ neutrophils in lymph nodes
interact with dendritic cells and macrophages, presumably to
modulate T cell activation (Figure 2), with the caveat that this
was largely shown ex vivo using bone marrow-derived cells (70).
Given the rhythmic recruitment of neutrophils to both spleen
and lymph nodes (52, 71), it is conceivable that certain aspects of
adaptive immunity and antimicrobial properties of these organs
are circadianally regulated by neutrophils, but this too needs
further investigation.

A key question is what dictates the temporal pattern of
neutrophil entry into the different tissues. A recent study
found that cell-intrinsic signals regulated by Bmal1, as well
as environmental oscillations of migratory factors orchestrate
the rhythmic trafficking of neutrophils and other leukocytes
to different tissues in both homeostatic and inflammatory
conditions, in human and mice (71). Blockade experiments
performed at ZT13, coinciding with neutrophil exit from the
circulation, showed that CXCR4 and ICAM-1 in the BM, L-
selectin in the lymph nodes and spleen, and VCAM-1 in the liver,
are the main factors that guide neutrophil emigration to those
tissues, with oscillations in both neutrophils or endothelial cells
(71). These detailed studies raise the possibility of exploiting this
circadian signature of migration for chronotherapy.

The rhythmic recruitment of neutrophils could be also
responsible for the circadian manifestation of various
inflammatory diseases. In a model of myocardial ischemia,
the exacerbated infiltration of neutrophils at night (ZT13)
accounted for increased cardiac damage at this time (22). In
this case, the differential recruitment appeared to be CXCR2-
dependent (22). This correlates with data showing increased
CXCR2 expression on neutrophils at night (17). Interestingly,
in the context of myocardial ischemia-reperfusion, infarct sizes
were larger in the morning (17, 23), suggesting that the type of
injury (ischemic or after reperfusion) follows distinct circadian
patterns. Altogether, these studies uncovered the importance
of circadian neutrophil infiltration across different tissues, with
potential implications in the treatment of inflammatory disease
(Figure 2).

TARGETING THE CIRCADIAN
PROPERTIES OF NEUTROPHILS FOR
THERAPY

Several studies have demonstrated the importance of the
(circadian) time parameter in clinical settings, which raised the
possibility of using these temporal physiological features for
therapeutic benefit (i.e., chronotherapy). Indeed, administration
of drugs at specific times of day in diseases such as cancer or
asthma, or the performance of surgical procedures at specific
times, has often resulted in enhanced therapeutic success
(7). These findings highlight the possibility of “personalizing”
medicine at the temporal level.

The historical reticence to target neutrophils therapeutically
is explained by their essential antimicrobial function. However,
a wealth of studies in the past few years have identified
heterogeneity among neutrophils, raising the possibility of
targeting only specific, disease-causing subsets. In arthritic
mice, G-CSF receptor blockade decreases disease progression
by inhibiting neutrophil accumulation and local production of
pro-inflammatory cytokines without affecting their defensive
function (72). In vivo interference with the production of
neutrophil extracellular traps (NETs) has been shown to be
protective in systemic lupus erythematosus (SLE) (73) and
transfusion-related acute lung injury (TRALI) (74), whereas the
β1-adrenergic-receptor antagonist metoprolol decreases infarct
size during AMI by interfering neutrophil recruitment and
neutrophil-platelet interactions (75). These and other examples
postulate the possibility to target neutrophils therapeutically,
as reviewed recently (76, 77). Given the observation that the
molecular clock influences the effector functions of neutrophils,
an outstanding question is whether this “neutrophil clock” can be
targeted to prevent inflammatory disease.

An extensive transcriptomic study focused on rhythmic gene
expression in whole tissues revealed that many common anti-
inflammatory drugs, which in turn have short half-lives, can
be directed to circadian genes or their products, thus pointing
out the potential therapeutic benefit of targeting clock genes
and dosing clock-directed drugs at optimal times to improve
their effectiveness (78). As an example, disruption of the
circadian clockwork in macrophages eliminates the exacerbated
endotoxin-induced cytokine response observed at night by
suppressing the expression of the circadian repressor REV-ERBα

(79). This is of importance since a synthetic REV-ERB ligand
(GSK4112) was shown to attenuate cytokine production by
macrophages (79), in what was one of the first proof of concept
studies that targeted molecular clock proteins to modulate
inflammation. This aligned with studies showing the beneficial
effect of the REV-ERB agonist SR9009 in reducing atherosclerotic
plaque size in LDL receptor-deficient mice (80). In addition,
in vitro targeting of the repressor clock protein CRY with the
activator KL001 also demonstrated anti-inflammatory effects in
chronic arthritis (27). Despite the in vitro nature of these reports,
clock-mediated therapy for immune-mediated diseases emerges
as a valuable therapeutic tool, which we expect will be soon also
exploited in neutrophils.

Although the full extent of the physiological consequences of
circadian rhythms in neutrophils is still unclear, recent studies
have suggested its therapeutic potential. For example, disruption
of Bmal1 in club cells and adrenalectomy in the context of
circadian recruitment of neutrophils to lungs after LPS revealed
blunted glucocorticoid signaling, non-rhythmic expression of
CXCL5, neutrophilia and antimicrobial responses (65). Other
studies tested the possibility of targeting the circadian properties
of neutrophils and monocytes in atherosclerosis, by showing
arterial- and time-specific repression of leukocyte recruitment to
plaques upon inhibition of CCR2 (81). Timed CCR2 blocking at
nighttime (ZT17) decreased arterial myeloid cell recruitment and
atherosclerotic lesion formation, whereas the neutralization at
daytime (ZT5) had no effect, suggesting again the importance of
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chrono-pharmacology-based approaches (81). Finally, targeting
pro-migratory factors VCAM-1, ICAM-1 and CD49d during
inflammatory challenge with LPS affected neutrophil trafficking
and blunted inflammation (71). Overall, these findings have
provided strong evidence that targeting circadian mechanisms
specific to the immune system may have therapeutic value.
Moving forward, we propose that complete characterization
of the circadian features of neutrophils, including our recent
identification of a cell-intrinsic circadian “timer” (17), will yield
powerful new strategies to bring time, and immunity, on the
patient’s side.
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