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Among the various immunological and non-immunological tumor-promoting activities of

myeloid-derived suppressor cells (MDSCs), their immunosuppressive capacity remains

a key hallmark. Effort in the past decade has provided us with a clearer view of

the suppressive nature of MDSCs. More suppressive pathways have been identified,

and their recognized targets have been expanded from T cells and natural killer (NK)

cells to other immune cells. These novel mechanisms and targets afford MDSCs

versatility in suppressing both innate and adaptive immunity. On the other hand, a better

understanding of the regulation of their development and function has been unveiled. This

intricate regulatory network, consisting of tumor cells, stromal cells, soluble mediators,

and hostile physical conditions, reveals bi-directional crosstalk between MDSCs and

the tumor microenvironment. In this article, we will review available information on how

MDSCs exert their immunosuppressive function and how they are regulated in the tumor

milieu. As MDSCs are a well-established obstacle to anti-tumor immunity, new insights

in the potential synergistic combination of MDSC-targeted therapy and immunotherapy

will be discussed.

Keywords: myeloid-derived suppressor cells, immune suppression, tumor microenvironment, immunotherapy,

endoplasmic reticulum stress

INTRODUCTION

Myeloid cells are a group of highly diverse cells that are essential for the normal functioning of
innate and adaptive immunity. Mononuclear myeloid cells include monocytes, macrophages, and
dendritic cells (DCs), and granulocytic myeloid cells include neutrophils, eosinophils, basophils,
and mast cells. In steady state, myelopoiesis is under tight control and remains predominantly
quiescent. A wide range of pathological stimuli, such as infectious microorganisms, tissue
damage, and malignantly transformed cells, induce emergency myelopoiesis that largely leads to
robust expansion of activated monocytes and neutrophils to eliminate potential threats. If these
conditions terminate in time, the homeostasis of myeloid cells will be restored, leaving no negative
consequence to the host; conversely, the persistent presence of low-strength stimuli leads to the
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accumulation of immature myeloid cells characterized by
powerful immunosuppressive capacity, which may serve as a
protective mechanism to prevent excessive tissue damage caused
by unresolved immune response (1).

Studies since the 1970s have highlighted a group
of systematically expanded and pathologically activated
immature myeloid cells in tumor-bearing hosts. Based
on their myeloid origin and immunosuppressive potency,
these cells were termed myeloid-derived suppressor cells
(MDSCs) in 2007 (2). In addition to cancer, MDSCs are
implicated in other diseases, such as chronic inflammation
or infection, autoimmune disorder, trauma, and graft-versus-
host disease (2). MDSCs are a heterogeneous population
consisting of myeloid progenitor cells and immature
myeloid cells, characterized by the lack of surface markers
associated with fully differentiated myeloid cells and by their
morphological resemblance to granulocytic and monocytic
cells (3).

MDSCs are generally divided into two main subsets:
polymorphonuclear MDSCs (PMN-MDSCs, also known
as granulocytic MDSCs) and monocytic MDSCs (M-
MDSCs), which morphologically and phenotypically resemble
neutrophils and monocytes, respectively. In tumor-bearing mice,
MDSCs are generally defined as positive for myeloid lineage
differentiation markers CD11b and Gr-1, with PMN-MDSCs
being Ly6G+Ly6Clow and M-MDSCs being Ly6G−Ly6Chigh

(4). On the other hand, their counterparts in cancer patients
are less definite, since studies on human MDSCs have been
hampered by cellular diversity and a lack of unequivocal
markers. Nonetheless, human PMN-MDSCs are now commonly
defined as CD11b+CD14−CD15+ or CD11b+CD14−CD66b+

and M-MDSCs as CD11b+CD14+HLA-DR−/lowCD15− (4).
Another population of immature MDSCs has recently been
identified. These LIN− (including CD3, CD14, CD15, CD19,
and CD56) HLA-DR−CD33+ cells contain mixed groups
of MDSCs comprising more immature progenitors and
have been defined as “early-stage MDSCs (e-MDSCs)” (4).
However, the murine equivalent of these e-MDSCs has not yet
been defined.

Activated MDSCs actively participate in multiple aspects of
tumor progression, including immune evasion, angiogenesis,
pre-metastatic niche formation, and epithelial-mesenchymal
transition (EMT) (5–7). Among these tumor-promoting
activities, suppression of immune cells is the defining feature
of MDSCs. Since the aforementioned surface markers are
not exclusive to MDSCs and some are shared by other
myeloid cells, phenotyping together with suppressive
function assessment has been proven to be the optimal
strategy for identifying bona fide MDSCs (4). Studies in
the past decade have provided us with a clearer view of
the immunosuppressive nature of MDSCs. In this work,
we intend to thoroughly review the ever-expanding list
of suppressive machineries and cell targets of MDSCs
(Figure 1). The nature of MDSC-mediated immune
suppression will be discussed in detail, highlighting the
antigen specificity of suppression and the regulatory role of the
tumor microenvironment.

SUPPRESSIVE MECHANISMS AND CELL
TARGETS OF MDSCs

Nitric Oxide, Reactive Oxygen Species, and
Peroxynitrite
It is well-established that MDSCs are capable of inhibiting
T-cell function. MDSCs express a high level of inducible
nitric oxide synthase (iNOS), which produces nitric oxide
(NO) (8–11). It is reported that NO suppresses T-cell
proliferation, probably directly by inhibiting the Jak/STAT5
pathway or indirectly by inhibiting the antigen presentation
from DCs (11, 12). Meanwhile, NO induces apoptosis of
T cells (13). On the other hand, MDSCs produce a high
amount of reactive oxygen species (ROS) via NADPH
oxidase (NOX2) (8, 14). The inhibitory effect of ROS on
T-cell function is well-described (15). For MDSCs, this
suppression is caused by decreased expression of T-cell
receptor (TCR) ζ-chain and is abrogated by inhibiting ROS
production (14).

Studies have identified peroxynitrite (PNT), a potent oxidant
produced by reaction between NO and superoxide anion (O·−

2 ),
as a crucial effector molecule of MDSCs. Local production of
PNT in the tumor microenvironment is responsible for the non-
responsiveness of tumor-infiltrating cytotoxic T lymphocytes
(CTLs), and consistently, these CTLs are associated with a high
level of nitrotyrosine, a marker of PNT activity (16). PNT
suppresses T cells by nitrating the TCR complex, leading to
loss of response to specific antigen presented by MDSCs (see
below) (17). In addition to the TCR complex, it has recently
been shown that MDSCs inhibit T-cell activation by nitrating
Tyr394 of lymphocyte-specific protein tyrosine kinase (LCK),
an initiating tyrosine kinase in the TCR-mediated signaling
cascade (18).

Interference With the Trafficking of T Cells
MDSCs impede the access of T cells to target sites by interfering
with their trafficking (19). Expression of a disintegrin and
metalloproteinase 17 (ADAM17), a major sheddase of L-selectin
(CD62L), by MDSCs cleaves the ectodomain of L-selectin and
consequently reduces L-selectin on the surface of naïve CD4+

and CD8+ T cells, therefore limiting their homing to peripheral
lymph nodes and tumor sites (20). In another study, this MDSC-
mediated decreased L-selectin level on T cells is regulated by
high mobility group box protein 1 (HMGB1) in the tumor
microenvironment (21).

Besides directly interfering with T-cell trafficking, MDSC-
derived NO reduces E-selectin expression on endothelial cells,
and PNT causes nitration and inactivation of CCL2 chemokine,
both of which indirectly hamper the migration of T cells to the
tumor site (22, 23).

Depletion of Amino Acids Necessary for
T-Cell Response
MDSCs are able to deplete amino acids required for T-
cell activation and proliferation. A high level of arginase 1
(ARG1) expression by MDSCs depletes L-arginine in the tumor
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FIGURE 1 | Immunosuppressive mechanisms and cell targets of MDSCs. T cells are the primary target of MDSCs. MDSCs produce a high level of nitric oxide (NO),

reactive oxygen species (ROS), and peroxynitrite (PNT), which suppress T cells by inhibiting proliferation, inducing apoptosis, decreasing the TCR ζ-chain and nitrating

the TCR complex. MDSCs deplete amino acids essential for T-cell response. For instance, MDSCs decrease L-arginine and tryptophan level through arginase 1

(ARG1) and indoleamine 2, 3-dioxygenase (IDO), respectively, and reduce the cysteine availability through cystine uptake. CD39/CD73 expression by MDSCs

produces adenosine that inhibits T cells through adenosine receptors. By shedding CD62L (L-selectin) off the T-cell surface or by nitrating CCL2, MDSCs interrupt

T-cell trafficking to the periphery or tumor site. MDSCs express both programmed cell death-ligand 1 (PD-L1), which inhibits T cells through interaction with

programmed cell death protein 1 (PD-1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), whose precise role remains unclear. IL-10 and TGF-β, two major

immunosuppressive cytokines produced by MDSCs, are implicated in T-cell suppression and regulatory T cell (Treg) induction. MDSCs also induce Tregs through

CD40 in a contact-dependent manner and recruit Tregs through the production of various chemokines. In addition to T cells, MDSCs suppress natural killer (NK) cells

and dendritic cells (DCs), inhibit B cells, and induce regulatory B cells (Bregs). Lastly, tumor-infiltrating MDSCs, mostly M-MDSCs, may differentiate into suppressive

DCs and tumor-associated macrophages (TAMs). ADAM17, a disintegrin and metalloproteinase 17; iNOS, inducible nitric oxide synthase; NOX2, NADPH oxidase 2.

microenvironment, leading to downregulation of the CD3 ζ-
chain of the TCR complex and proliferative arrest of T cells (24).

On the other hand, MDSCs deprive T cells of
cysteine, an essential amino acid for T-cell activation,
by uptaking cystine and not exporting cysteine. Since
T cells depend on exogenously generated cysteine, the
decreased availability of cysteine in the tumor milieu
results in impaired T-cell activation (25). Furthermore,
it is also reported that indoleamine 2, 3-dioxygenase
(IDO) expression is upregulated in MDSCs isolated from
fresh breast cancer tissue and is responsible for MDSC-
mediated inhibition on T-cell proliferation and Th1
polarization (26).

Adenosine and Adenosine Receptors
Recent studies have identified adenosine, a purine nucleoside,
as a novel effector molecule of MDSCs. Extracellular ATP
or ADP is hydrolyzed by CD39 (nucleoside triphosphate
diphosphohydrolase) into AMP, which is in turn cleaved by
CD73 (ecto-5’-nucleotidase) into adenosine (27). Both CD39 and
CD73 are expressed by MDSCs from tumor-bearing mice and
cancer patients, suggesting that MDSCs are capable of producing
adenosine (28–30). TGF-β promotes the differentiation of
MDSCs into CD39+CD73+ terminally differentiated myeloid
cells with high adenosine production in tumor-bearingmice (31).
Consistently, another recent study has demonstrated that tumor-
derived TGF-β induces CD39/CD73 expression on MDSCs from
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lung cancer patients through the mammalian target of rapamycin
(mTOR)-hypoxia-inducible factor 1α (HIF-1α) pathway, and
these CD39+CD73+ MDSCs represent a distinct subpopulation
that expresses higher levels of HIF-1α, cyclooxygenase 2 (COX2),
IL-10, tumor necrosis factor (TNF)-α, and TGF-β as compared to
their counterparts (32).

It is well-studied that adenosine inhibits the activation and
effector function of T cells, which signals primarily through
A2A and A3 adenosine receptors (33). In the presence of CD73
substrate 5′-AMP, the inhibition of PMN-MDSCs on anti-
CD3/CD28-induced T-cell proliferation is potentiated (28). On
the contrary, CD73−/− MDSCs orMDSCs whose CD39 or CD73
enzymatic activity is inhibited show reduced capacity to suppress
T cells and natural killer (NK) cells (30, 32, 34). Furthermore,
it is reported that MDSCs promote chemoresistance through
the activity of CD39 and CD73 (32). Metformin, a biguanide
used for type 2 diabetes, reduces the expression and activity of
CD39 and CD73 on MDSCs, which leads to reduced MDSC-
mediated suppression of CD8+ T cells in vitro and in vivo, and
may partially account for the survival benefit seen in diabetic
ovarian cancer patients treated with metformin (30).

The adenosine receptors expressed on MDSCs contribute
indirectly to the adenosine-induced immune suppression.
Stimulation of A2B receptors preferentially expands PMN-
MDSCs (28). In mice with melanoma, blockade of A2B receptors
reduces IL-10, monocyte chemoattractant protein 1 (MCP-1),
and MDSCs in the tumor site, which is associated with increased
frequency of intratumoral CD8+ T cells, elevated levels of TNF-α
and IFN-γ, and delayed tumor growth (35). In another murine
melanoma model, selective deletion of A2A receptors in myeloid
cells leads to significantly reduced IL-10 production by MDSCs,
an increase in activated CD8+ T cells and NK cells, and delayed
primary tumor growth and metastasis (36).

CD39 and CD73 are also expressed on tumor cells, regulatory
T cells (Tregs), effector T cells, Th17 cells, and other stromal cells
(33). Ectonucleotidases are supposed to prevent excessive T cell-
mediated immune response and to regulate the balance between
pro-inflammatory ATP and immunosuppressive adenosine.
However, tumor hijacks this network to facilitate immune
evasion. In line with the abovementioned findings, Umansky
et al. have proposed two modes of adenosine signaling. Firstly,
MDSCs, Tregs, and tumor cells may produce extracellular
adenosine to suppress T-cell function in a paracrine manner.
Secondly, adenosine produced by ectonucleotidase on tumor-
infiltrating lymphocytes suppresses their own function in an
autocrine manner; the upregulated CD39 and CD73 expression
by MDSCs and Tregs also enables autocrine adenosine signaling
and potentiates their expansion and/or suppressive activity (33).

MDSC-Derived IL-10
MDSCs are a major source of IL-10 in tumor-bearing host (37–
40), and consistently, the frequency of MDSCs is correlated
with the IL-10 level in peripheral blood of cancer patients
(41). It is becoming clear that IL-10 serves as a non-redundant
suppressive mechanism of MDSCs, and accordingly, blockade
of IL-10 signaling or neutralization of IL-10 leads to alleviated
T-cell suppression, delayed tumor progression, and improved

therapeutic efficacy (37, 42). In addition to T-cell inhibition,
MDSC-derived IL-10 is implicated in the induction of Tregs and
the suppression of DCs (see below).

Recent studies are unraveling the regulation on IL-10
production by MDSCs, which involves cellular and non-cellular
participants. For instance, hypoxia significantly upregulates IL-
10 secreted by MDSCs (43). Exposure to lipopolysaccharide
(LPS), a Toll-like receptor (TLR) ligand, increases IL-10
production by MDSCs, which may require the MyD88 signaling
pathway (44). Transmembrane TNF-α (tmTNF-α), but not
the secretory form, activates MDSCs to upregulate IL-10 and
other immunosuppressive effector molecules through TNFR2
(45). The level of interferon regulatory factor 4 (IRF4),
an essential transcription factor required for lymphoid and
myeloid cell differentiation, reduces remarkably during the
development of MDSCs and modulates the suppression of T
cells through IL-10 and ROS production (46). Tumor cells, not
surprisingly, participate in the MDSC-derived IL-10 regulation.
For instance, knockdown of semaphorin 4D, a pro-angiogenic
factor overexpressed in many malignancies, in tumor cells
reduces the IL-10 production by MDSCs (47). Glioma stem
cell-derived exosomes induce systemic T-cell suppression by
polarizing CD14+ monocytes toward M-MDSC phenotype with
heightened IL-10 level (48). In another study, the NKG2D ligand
RAE-1ε expressed on tumor cells facilitated the expansion and
activation of MDSCs that display pronounced ARG1 activity and
IL-10 production (49).

Similarly, MDSCs developed in the settings of microbial
infection are also capable of producing IL-10 (50–52). In
patients with chronic hepatitis B, IL-10 induced by programmed
cell death protein 1 (PD-1) signaling is responsible for T-cell
suppression by MDSCs (50). In patients with chronic hepatitis C
virus infection, M-MDSCs have higher levels of phosphorylated
STAT3 and IL-10, while blocking STAT3 signaling reduces
hepatitis C virus (HCV)-mediated M-MDSC expansion and IL-
10 expression (51).

TGF-β
TGF-β is another well-documented immunosuppressive cytokine
secreted by MDSCs in tumor-bearing host (22, 43, 53). MDSCs
developed in non-cancer settings are also capable of producing
TGF-β (52, 54). Evidence for the regulation of MDSC-derived
TGF-β remains elusive. It was shown previously that TGF-β
produced by MDSCs is induced in vivo by IL-13 and CD1d-
restricted T cells that are most likely natural killer T (NKT)
cells (55). Recent studies have shown that TGF-β production
by MDSCs is regulated by tmTNF-α, ribosomal protein S19,
and semaphorin 4D (45, 47, 56). On the contrary, CD14+HLA-
DR−/low MDSCs from patients with liver cancer show no TGF-β
secretion (57). These findings suggest that TGF-β production by
MDSCs may be context-dependent.

MDSC-derived TGF-β contributes to T-cell suppression,
although it is probably not the principal mechanism (53).
CD14+HLA-DR−/low MDSCs isolated from melanoma patients
inhibit T cells via TGF-β with no involvement of ARG1 and
iNOS (58). Song et al. have shown that transfer of tumor-
derived MDSCs to asthmatic mice leads to reduced pulmonary
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recruitment of inflammatory cells, suppressed Th2 response, and
decreased IgE production in a TGF-β1-dependent manner (59).
Furthermore, TGF-β is essential in Treg induction by MDSCs
(see below).

Other immune cells are also inhibited by MDSC-derived
TGF-β. For instance, in a murine model of AIDS, M-MDSCs
suppressed B-cell response by superoxide, nitric oxide, PNT,
and TGF-β (54). CD14+HLA-DR−/low MDSCs from melanoma
patients inhibit NK cells primarily through TGF-β that is
stimulated by tumor-derived PGE2 (60). In addition to soluble
TGF-β, MDSCs expanded in tumor-bearing mice express and
utilize membrane-bound TGF-β to suppress NK cells and NKT
cells in a contact-dependent manner (61, 62).

In addition to immune suppression, TGF-β has been
implicated in the regulation of tumor metastasis facilitated by
MDSCs. A portion of tumor cells undergoes EMT to disseminate,
invade surrounding tissue, and metastasize. In a spontaneous
murine model of melanoma, Toh and colleagues have shown for
the first time that MDSCs use TGF-β, epidermal growth factor,
and hepatocyte growth factor to induce EMT and that depletion
of MDSCs results in reduced EMT and fewer metastases (63).
In another study, anti-TGF-β treatment in a murine model of
mammary tumor inhibited tumor growth and lung metastasis,
and depletion of MDSCs diminished this beneficial effect of
TGF-β neutralization (64). Another study from the same group
later demonstrated that specific deletion of gene encoding TGF-
β receptor II in myeloid cells significantly reduces metastasis,
which is mediated by decreased TGF-β1 and type 2 cytokine
production and by reduced ARG1 and iNOS expression. This
effect was largely ascribed to the CD11b+Ly6G+ myeloid
subset (65).

PD-L1 and CTLA-4 Expression by MDSCs
Immune checkpoint pathways act as negative regulators and
prevent excessive immune response. MDSCs assist tumor to
hijack this mechanism in order to promote T-cell anergy, which
signals mostly through the PD-1/programmed cell death-ligand 1
(PD-L1) pathway (66). MDSCs express PD-L1 in various tumor
models (43, 67–73). Meanwhile, numerous studies have found
PD-L1 expression in MDSCs from cancer patients (29, 42, 53,
72, 74–76). In liver cancer patients, the percentage of PD-L1+

MDSCs in peripheral blood correlates with disease stage and
correlates inversely with clinical outcome (76). On the other
hand, MDSCs developed during microbial infection also express
PD-L1 (77, 78).

PD-L1 is implicated in MDSC-mediated T-cell suppression.
PD-L1 blockade reduces the suppressive capacity of MDSCs on
T cells (29, 42, 53, 68, 73, 74, 77–79). In addition to conventional
T cells, in a murine model of liver metastasis, PD-L1 expression
by MDSCs impairs the proliferation of chimeric antigen receptor
cells, while MDSC depletion or PD-L1 blockade improves their
therapeutic efficacy (80). Blocking PD-L1 relieves inhibition on
DCs by MDSCs as well (81).

Several studies have shown that tumor-infiltrating MDSCs
express a higher level of PD-L1 than their peripheral
counterparts, suggesting microenvironmental regulation of
PD-L1 expression (43, 68, 72, 73, 75). For instance, tumor

cells upregulate the PD-L1 expression in MDSCs by interfering
with their arachidonic acid metabolism (82). Tumor-derived
soluble mediators are also responsible for PD-L1 induction in
intratumoral MDSCs (76, 80). Other microenvironmental signals
that regulate PD-L1 expression by MDSCs, such as hypoxia,
cytokines, and stromal cells, will be discussed in detail in the
following sections.

On the other hand, it is reported thatMDSCs express cytotoxic
T lymphocyte-associated antigen 4 (CTLA-4) (43, 71). However,
unlike PD-L1, the precise role and regulation of CTLA-4 is
less well-studied in MDSCs. It is reported that blocking or
silencing CTLA-4 reduces the frequency and ARG1 activity of
MDSCs (83).

Induction and Recruitment of Regulatory T
Cells
MDSCs inhibit effector T cells not only by themselves but also
by inducing and recruiting Tregs. The proliferation of Tregs is
relatively insensitive to suppression by MDSCs as compared with
effector T cells (84). Intratumoral accumulation of Tregs occurs
later than that of MDSCs, while depletion of MDSCs reduces
infiltrating Tregs, suggesting that MDSCs may facilitate the
development of Tregs (85). In non-cancer settings, co-culturing
CD4+ T cells with MDSCs from HIV+ individuals or chronic
hepatitis C patients significantly increases the differentiation of
Foxp3+ Tregs (51, 86).

The mechanism(s) for Treg induction by MDSCs is not
fully understood. During tumor progression, a subset of DCs
with an immature myeloid phenotype is licensed by tumor
cells to promote proliferation of Tregs by producing TGF-β
(87). Huang and colleagues have shown that MDSCs induce
Tregs both in vitro and in vivo, which requires activation of
T cells and is dependent on IFN-γ and IL-10. The authors
speculated that, in response to IFN-γ produced by activated T
cells, MDSCs secret TGF-β and IL-10, both of which participate
in the development of Tregs (88). Another study from this same
group later demonstrated that CD40 expression on MDSCs is
required for Treg induction, since adoptive transfer of CD40-
deficient MDSCs or administration of anti-CD40 antibodies fails
to induce Tregs (89). Treg induction by MDSCs is attenuated in
the Transwell system that separates the two cell types, suggesting
the requirement of direct cell-to-cell contact (90). In a murine
model of B-cell lymphoma, MDSCs promoted the expansion of
Tregs from pre-existing natural Tregs but not conversion from
naïve T cells. In that study, MDSCs induced tumor-specific Tregs
via antigen uptake, processing, and presentation, which requires
ARG1 but not TGF-β (91).

In addition, MDSCs may promote the recruitment of Tregs
to the tumor milieu. Tumor-infiltrating M-MDSCs produce
CCR5 ligands CCL3, CCL4, and CCL5, and meanwhile, Tregs
exhibit high surface expression of CCR5 and are recruited to
tumor tissue by CCL4 and CCL5. Accordingly, Tregs from
CCR5 knockout mice almost completely lost their ability to
migrate toward M-MDSCs in vitro (92). In a murine model
of glioblastoma multiforme, both M-MDSCs and Tregs were
recruited by CCL2 produced by tumor-associated macrophages
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(TAMs) and microglia (93). A recent study revealed a closed
loop between mast cells, MDSCs, and Tregs in the tumor
microenvironment. Mast cells induce infiltration of MDSCs to
tumor and induce their IL-17 secretion; MDSC-derived IL-17
attracts Tregs indirectly and potentiates their suppressive activity
and IL-9 production; IL-9 in turn promotes the survival and
tumor-promoting function of mast cells. In that study, IL-17
promoted Treg recruitment by increasing the level of CCL17 and
CCL22 in the tumor microenvironment (94).

Studies on the relation between MDSCs and Tregs in
cancer patients are relatively limited. A positive correlation
between MDSCs and Tregs in peripheral blood and tumor site
has been detected in cancer patients (40, 95). Hoechst and
colleagues have shown that CD14+HLA-DR−/low M-MDSCs
from hepatocellular carcinoma patients induce suppressive
CD4+CD25+Foxp3+ Tregs in a contact-dependent manner
when co-cultured with autologous CD3/CD28-stimulated CD4+

T cells (57). In addition, to induce Tregs from CD4+ T cells, a
study from the same group has shown that CD14+HLA-DR−/low

M-MDSCs are able to convert Th17 cells to Foxp3+ Tregs,
which is dependent on MDSC-derived TGF-β and retinoic acid
(96). Jitschin et al. have shown that M-MDSCs from chronic
lymphocytic leukemia (CLL) patients suppress T-cell activation
and promote Treg induction, which is partly dependent on IDO
activity (95). Furthermore, the authors have also demonstrated
that after co-culture with CLL cells, monocytes from healthy
donors resemble the phenotypic, suppressive, and Treg-inducing
characteristics of M-MDSCs from CLL patients (95). In patients
with lung cancer, a novel tumor-infiltrating B7-H3+CD14+HLA-
DR−/low subset of MDSCs is reported to induce Tregs in vitro,
which is partly dependent upon IL-10 (40).

Interestingly, there are also reports revealing no clear
association between MDSCs and Tregs. In mice bearing T-cell
lymphoma, the percentage of intratumoral Tregs is invariably
high throughout tumor growth and does not relate to the
accumulation kinetics of MDSCs (9). In another study, the T-
cell non-responsiveness induced by adoptive transfer of MDSCs
was not caused by Treg induction (97). Furthermore, in contrast
to the abovementioned Treg-inducing action of M-MDSCs, it is
reported that PMN-MDSCs impair TGF-β-mediated generation
of inducible Tregs (iTregs) from naïve T cells and inhibit
proliferation of naturally occurring Tregs (nTregs) without
affecting Foxp3 expression (98). These discrepancies need to be
clarified by further study.

Suppression of Natural Killer Cells
NK cells are another major target of MDSCs. The reduced
number and impaired function of NK cells in tumor-bearing
mice are inversely correlated with the increased level of MDSCs
and are restored by depletion of MDSCs (61, 99). A similar
inverse correlation is also observed in patients with non-Hodgkin
lymphoma (39). It is shown that the enhanced lactate production
by tumor cells inhibits NK cells not only directly by inhibiting
their cytotoxicity but also indirectly by increasing the number of
MDSCs (100). Interestingly, a recent study has demonstrated that
a portion of immature NK cells is converted into MDSCs in the

presence of GM-CSF and that this conversion is abolished by IL-
2 exposure (101). This novel developmental pathway of MDSCs
may account, at least partially, for the reduced level of NK cells in
tumor-bearing host.

In murine models, the cytotoxicity, NKG2D expression, and
IFN-γ production of NK cells are inhibited by MDSCs both in
vitro and in vivo (61, 102). This suppression is contact-dependent
and requires membrane-bound TGF-β1 on MDSCs (61, 102). In
a recent study, Elkabets et al. identified a novel subset of Gr-1high

PMN-MDSCs that is induced by IL-1β and lacks Ly6C expression
(Ly6Cneg). These Ly6Cneg MDSCs produce higher levels of
iNOS and ROS than Ly6Clow MDSCs and, correspondingly,
exhibit stronger suppression of T cells and NK cells (103).
The MDSC-mediated NK cell suppression is associated with
increased metastasis in mice during gestation (104). In tumor-
bearing mice treated with medroxyprogesterone acetate, which
is commonly used as hormone replacement therapy and as a
contraceptive, MDSCs exhibit higher suppression of NK cells as
compared with MDSCs from control mice, implying a potential
mechanism for increased breast cancer incidence associated with
prolonged medroxyprogesterone acetate administration (105).

In patients with liver cancer or advanced melanoma,
CD14+HLA-DR−/low MDSCs suppress autologous NK-cell
cytotoxicity and IFN-γ production (60, 106). This suppression
is independent of ARG1 and iNOS but requires cell-to-cell
contact through NK-activating receptor NKp30 on NK cells,
suggesting expression of NKp30 ligand(s) by MDSCs (106).
In addition, TGF-β produced by MDSCs from melanoma
patients, which is stimulated by PGE2, also serves as a
major mechanism for NK-cell suppression (60). In addition,
MDSCs from cancer patients inhibit Fc receptor-mediated signal
transduction and downstream effector function of NK cells,
including antibody-dependent cellular cytotoxicity and cytokine
production, probably through NO production (107).

As an essential defensive mechanism of the innate immune
system, it is not surprising that NK cells are suppressed by
MDSCs generated in microbial infection. It is shown that
polymorphonuclear neutrophils and PMN-MDSCs dampen
the activation and cytotoxic activity of NK cells toward
Aspergillus fumigatus (108). In another study with mice
infected by vaccinia virus, PMN-MDSCs negatively regulated
the proliferation, activation, and function of NK cells, which
helped to contain excessive NK cell activity (109). In HCV
infection, CD33+CD11blowHLA-DRlow MDSCs suppress the
IFN-γ production of NK cells by depleting L-arginine via ARG1
(110). Interestingly, CD66b+CD33b+HLA-DRlow PMN-MDSCs
increase strikingly in the cord blood of neonates when compared
with peripheral blood of healthy children and adults. These cord
blood PMN-MDSCs are able to inhibit the function of T cells and
NK cells, which may be responsible for the impaired host defense
of neonates (111).

Conversely, there are studies showing NK cell activation by
MDSCs. For instance, Nausch et al. have found that MDSCs
from tumor-bearing mice express NKG2D ligand RAE-1 and
activate NK cells to produce IFN-γ, which is partially contact-
dependent and requires signaling throughNKG2D (112). Inmice
bearing NK-sensitive tumor, poly I:C treatment allows MDSCs
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to prime NK cells and consequently leads to delayed tumor
growth. MDSC-derived IFN-α after poly I:C administration
activates NK cells, which drives CD69 expression and IFN-γ
production but does not induce cytotoxic activity of NK cells
(113). A recent study has shown that M-MDSCs infiltrate in
the tumor microenvironment prior to NK cells and are required
for the tumoricidal activity of NK cells to eradicate galectin-
1-deficient GL26 glioma (114). Taken together, the seemingly
contradictory findings mentioned above suggest that the effect
of MDSCs on NK cells, either inhibitory or stimulatory, is most
likely context-dependent.

Impaired Function of Dendritic Cells by
MDSCs
Relatively less information is available on the direct impact of
MDSCs onDCs. Accumulation ofMDSCs in tumor-bearingmice
and cancer patients is associated with impaired differentiation
and accumulation of DCs (115–117). Unfortunately, the
underlying mechanism(s) is not fully understood. In a murine
model of allergic airway inflammation, LPS exposure promoted
the development of a group of myeloid cells in the lung that
resembled MDSCs phenotypically and functionally. These cells
inhibited the reactivation of primed Th2 cells by DCs (118). In
mice with hepatocellular carcinoma, MDSC-derived IL-10 was
found to be responsible for the impaired TLR ligand-induced
IL-12 production and T-cell stimulatory activity of DCs (116).
Recently, it was shown that MDSC-mediated suppression of
antigen presentation from DCs to CD4+ T cells depends on NO,
which may cause nitration of STAT1, a key mediator for antigen
presentation, and, consistently, this suppression is abrogated by
iNOS inhibitors (11). In another recent study, Notch and STAT3
signals were found to be required by MDSCs to suppress the
differentiation, maturation, and antigen presentation ability of
DCs in vitro and in vivo (119).

Due to their superior antigen presentation and T-cell
activation properties, DCs are utilized as cancer vaccines
to prompt immunity against malignant cells. DC vaccines
loaded with tumor antigens through various approaches aim to
induce and potentiate tumor antigen-specific T-cell response.
In line with MDSC-mediated suppression of DCs, favorable
therapeutic efficacy of DC vaccination is associated with a
reduced level of MDSCs in tumor-bearing mice (120, 121).
In cancer patients, when monocyte-derived DCs are used
as vaccines, the presence of CD14+HLA-DR−/low MDSCs in
the starting monocyte population causes impairment of DC
maturation, antigen uptake, migration, and T-cell stimulation
capacity (122). Therefore, it is reasonable to apply DC-based
vaccines in combination with agents that target MDSCs.
These agents include chemotherapeutics (e.g., all-trans retinoic
acid, gemcitabine, and cyclophosphamide) (123, 124), tyrosine
kinase inhibitors (e.g., sunitinib, axitinib, and dasatinib) (125–
127), lenalidomide (128), and anti-Gr-1 antibody (120), and
these combinations have shown reduced levels of MDSCs
and improved efficacy in pre-clinical studies. The initiation
of immune response by DC vaccines involves interaction
between multiple immune cell types. Therefore, to overcome the

immunosuppressionmediated byMDSCs andmaximize efficacy,
further research is still needed to accurately define the action of
MDSCs and other immune cells in DC vaccine-induced anti-
tumor immunity.

B Cells
In recent years, B cells have emerged as a novel target of MDSCs.
In an in vitro model of B lymphopoiesis, MDSCs induced
by adipocyte-derived factors inhibited B-cell development
through IL-1 production (129). PMN-MDSCs inhibited the
recruitment, proliferation, and cytokine secretion of B cells in the
central nervous system of mice with experimental autoimmune
encephalomyelitis (130). In the settings of retroviral infection
and autoimmune disease, several animal studies have revealed
that MDSCs impair B cell response by many of the mechanisms
utilized in T-cell suppression, such as ROS, iNOS, ARG1, TGF-β,
and PGE2 (54, 131). MDSCs from mice infected with retrovirus
express V-domain Ig-containing suppressor of T-cell activation
(VISTA), a negative checkpoint regulator that is homologous
to PD-L1 and inhibits T-cell response, and VISTA deficiency
in MDSCs or neutralization of VISTA by blocking antibody
partially rescues the impaired B-cell proliferation (132). Both
contact-dependent and contact-independent inhibition have
been implicated in these studies (54, 131).

Whether these suppressivemechanisms are used byMDSCs in
cancer settings is less well-elucidated. ROS, ARG1, iNOS PGE2,
and TGF-β have recently been suggested to exert suppressive
effects on B-cell proliferation and antibody production by tumor-
induced MDSCs (133). In a murine model of lung cancer,
the impeded B cell differentiation was associated with tumor
progression and MDSC infiltration; mechanistically, MDSCs
inhibit B cell response by TGF-β-mediated modulation of IL-7
and downstream STAT5 signaling, which are both essential in
B-cell differentiation and function (133). In another study, Ku
et al. showed that tumor-induced MDSCs reduce L-selectin on
naïve CD4+ and CD8+ T cells and that even moderate L-selectin
reduction is sufficient to profoundly disrupt homing of T cells to
distant lymph nodes. Interestingly, the loss of L-selectin has also
been found in B cells. In the study concerned, the shedding of
L-selectin from naïve T cells and B cells was contact-dependent
and was independent of major L-selectin sheddase ADAM17.
Since the trafficking of both naïve B cells and CD4+ precursors
of follicular helper T cells was hindered, the authors suggested
that the T cell-dependent antibody production in lymph nodes
may have been severely impaired (134).

Regulatory B cells (Bregs) are immunosuppressive and inhibit
the expansion of pathogenic T cells and other pro-inflammatory
lymphocytes through the production of IL-10, IL-35, and TGF-
β. In consistence with these properties, Bregs have been shown
to suppress anti-tumor immunity and promote tumor growth.
In patients with colorectal cancer, the level of Bregs positively
correlates with disease stage and with the frequency of MDSCs
(135). In a murine model of breast cancer, Shen et al. showed
that MDSCs upregulate PD-L1 expression on B cells and
dampen their anti-tumor response; more interestingly, MDSCs
may transform B cells into a novel subtype of Bregs that
possesses higher inhibitory capability on T cells as compared
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with other subsets of Bregs (136). In another study, MDSCs
induced the expansion of IL-10-producing Bregs, probably
through iNOS, and ameliorated autoimmunity in mice with
systemic lupus erythematosus (137). Conversely, in mice infected
with retrovirus, M-MDSCs inhibited the proliferation of IL-10-
producing Bregs in response to LPS stimulation (54).

ANTIGEN-SPECIFIC AND NON-SPECIFIC
SUPPRESSION OF CD8+ AND CD4+ T
CELLS

Among the various cell targets, suppression of T cells remains
the characteristic necessary to define bona fide MDSCs, provided
that the phenotypic criteria are met. With the abovementioned
mechanisms, MDSCs are capable of suppressing both antigen-
specific and non-specific T-cell response (Figure 2). It is
now generally accepted that ROS, and PNT in particular,
are responsible for antigen-specific suppression, provided
that MDSCs and T cells are in close contact, since these
substances are unstable and short-lived, while iNOS, ARG1,
and immunosuppressive cytokines are responsible for antigen-
non-specific suppression, since effector molecules of these
mechanisms have relatively longer half-lives and require cellular
proximity, but not close interaction, to exert inhibition (1).

Early studies have shown that Gr-1+ immature myeloid
cells isolated from tumor-bearing mice are able to uptake and
process soluble proteins and present the antigenic epitopes on
their surface (97). Their suppression of antigen-specific CD8+

T cells requires antigen presentation via MHC class I and
ROS production (14, 138). Studies in the last decade have
revealed that MDSC-induced antigen-specific T-cell tolerance
results from post-translational modification of the TCR complex.
MDSCs from gp91phox−/− mice produce little ROS and fail to
inhibit CD8+ T cells, and neutralization of PNT abrogates the
suppressive activity of MDSCs on T cells (17). Nagaraj et al.
demonstrated that the close and prolonged cell-to-cell contact
during antigen recognition allows MDSC-derived PNT to cause
nitration of tyrosines in the TCR-CD8 complex, which induces
conformational changes in these molecules and leads to loss
of binding ability to peptide-MHC complex (17). Consistently,
using double TCR transgenic CD8+ T cells, the same group
later showed that MDSCs induce CD8+ T-cell tolerance only
against the peptide presented by themselves, while they do not
affect T-cell response to peptide specific for other TCR that is
not presented by MDSCs (139). In accordance with previous
findings, the authors showed that nitration of surface molecules
of T cells is localized to the site of physical interaction between
MDSCs and T cells, which may lead to dissociation between TCR
and CD3ζ molecules, and consequently, nitrotyrosine positive
CD8+ T cells are rendered non-responsive to specific peptide
(139). In another study, however, ROS were found not to be
involved in antigen-specific T-cell suppression by MDSCs, and
MDSCs deficient in MHC class I showed no impairment in
antigen-specific suppression, which excludes the necessity of
antigen presentation (9).

Interestingly, PNT produced byMDSCs can facilitate immune
evasion of tumor cells even in the presence of normal functioning

FIGURE 2 | Antigen specificity of MDSC-mediated suppression of CD4+ and CD8+ T cells. The antigen specificity of T-cell suppression by MDSCs is determined

largely by the characteristics of the effector molecules involved. The short-lived reactive oxygen species (ROS) and peroxynitrite (PNT) are responsible for

antigen-specific suppression, provided that MDSCs and T cells are in close contact, while arginase 1 (ARG1), nitric oxide (NO), and immunosuppressive cytokines,

which have relatively longer half-lives, mediate antigen-non-specific suppression. During the close and prolonged interaction between MDSCs and CD8+ T cells in

antigen recognition, PNT causes nitration and conformational changes of the TCR complex and dissociation of CD3ζ molecules. CD8+ T cells consequently lose their

binding ability to peptide-MHC class I complex and are rendered non-responsive to specific peptide presented by tumor cells. PNT may also induce structural

changes of MHC class I on tumor cells, leading to reduced antigenic peptide binding. In this case, antigen-specific CD8+ T cells, even if functional, fail to recognize

tumor cells. For CD4+ T cells, antigen-specific suppression by MDSCs has been reported and may require sufficient MHC class II expression by MDSCs. iNOS, nitric

oxide synthase; NOX2, NADPH oxidase 2.
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T cells. PNT induces nitration and structural changes of MHC
class I molecules on tumor cells, which hampers their capacity to
bind antigenic peptide and subsequently impairs the recognition
by CTLs, therefore affording tumor cells resistance to antigen-
specific CTLs (140). These findings collectively suggest the
involvement of multiple mechanisms in antigen-specific CD8+

T-cell suppression by MDSCs.
On the other hand, evidence for MDSC-mediated antigen-

specific suppression of CD4+ T cells remains elusive, and
different results have been reported. It was previously indicated
that MDSCs fail to suppress antigen-specific CD4+ T-cell
proliferation, which may be due to the low MHC class II
expression onMDSCs, which precludes them from forming close
contact with CD4+ T cells (91, 138). However, MDSC-mediated
suppression of the proliferation of CD4+ T cells exposed to a
specific peptide has been reported, which is at least partially
due to cysteine deprivation by MDSCs (25, 88). Interestingly,
Nagaraj and colleagues have shown that MDSCs are able to
suppress antigen-specific CD4+ T-cell response in vitro and in
vivo, as long as their MHC class II expression reaches a sufficient
level (141). In different experimental systems, MDSCs are able
to blunt IFN-γ production of both tumor-specific CD8+ and
CD4+ T cells in the spleen of tumor-bearing mice in vivo (142).
In patients with liver cancer, depletion of CD14+HLA-DR−/low

M-MDSCs enhances IFN-γ secreting CD4+ T cells specific to
α-fetoprotein (57). These discrepancies might be explained, in
part, by the varied MHC class II level of MDSCs that has been
described in different tumor models and human studies, and
under some experimental conditions, MDSCs could inhibit the
proliferation of T cells without affecting the IFN-γ production
and vice versa (3, 4).

REGULATION ON THE SUPPRESSIVE
NATURE OF MDSCs

In most studies, immunosuppressive activity is detected only in
MDSCs derived from tumor-bearing host but not in their control
counterparts from tumor-free host, suggesting a tight control
over MDSCs by tumor. MDSCs carry out immune suppression
principally in the tumor microenvironment, which is a highly
dynamic complex and plays a crucial role in tumor development.
The constant bi-directional communication betweenMDSCs and
the ever-changing microenvironment shapes the phenotype and
function of MDSCs (Figure 3). For instance, tumor-derived M-
MDSCs show higher suppression of T cells than spleen- or bone
marrow-derived M-MDSCs from the same mice. Several cellular
and non-cellular components of the tumor microenvironment,
including the subset composition of MDSCs, tumor cells, stromal
cells, cytokines, metabolic state, and hypoxia, regulate the
suppressive nature of MDSCs.

Subset Composition and Antigen
Specificity and Capacity of
MDSC-Mediated Suppression
It is now clear that the suppressive machineries of MDSCs do
not act simultaneously, and subsets of MDSCs use different

mechanisms for T-cell suppression (9, 10, 92, 143). For instance,
M-MDSCs, whose activity mainly relies on ARG1, NO, and
immunosuppressive cytokines, inhibit both antigen-specific and
non-specific T-cell response (8, 10, 19, 92, 143, 144), while PMN-
MDSCs, whose activity largely depends on high ROS and PNT
production, inhibit T cells in an antigen-specific manner (10, 92).
In one study, only M-MDSCs, but not PMN-MDSCs, were able
to augment the activation-induced Fas upregulation of CD8+ T
cells through NO production and sensitize them to Fas-mediated
apoptosis and were able to impede the differentiation of mature
CTLs (143). Therefore, the suppressive nature of MDSCs is
influenced by their subset composition.

PMN-MDSCs is commonly the predominant subpopulation
in peripheral lymphoid organs in many murine tumor models,
and accordingly, antigen-specific T-cell tolerance is detected at
these sites (145, 146). This peripheral antigen-dependent T-cell
inhibition may partially explain the findings in some studies that
T cells in the periphery retain their responsiveness to other non-
specific stimuli (3, 17, 97). On the other hand, the proportion
of M-MDSCs is substantially higher in the tumor milieu (144,
145), and in spite of the common findings that PMN-MDSCs
may still be the prevalent subpopulation, M-MDSCs are more
suppressive than PMN-MDSCs on a per-cell basis (9, 119). As
a consequence, tumor-infiltrating MDSCs demonstrate higher
immunosuppressive capacity than their peripheral counterparts
and are able to inhibit both antigen-specific and non-specific
T-cell function (19, 147, 148).

In spite of these findings, it is noteworthy to point out that
similar or even stronger inhibitory capacity of peripheral MDSCs
has also been reported (140, 149, 150) and that non-specific
T-cell suppression is not uncommon in MDSCs derived from
peripheral lymphoid organs (149, 151).

It is common that the ratio between subgroups of MDSCs
varies in different tumor models. Unfortunately, many of
these studies have not addressed the subset composition of
intratumoral or peripheral MDSCs in detail, nor have they
assessed the suppressive capacity of PMN-MDSCs and M-
MDSCs separately. Therefore, the discrepancies on antigen
specificity and capacity of MDSC-mediated suppression, on the
one hand, should be interpreted with care, and on the other
hand, may suggest that subset composition of MDSCs is not
likely the sole nor a major determinant that influences their
suppressive nature.

Tumor-Derived Mediators
The generation of MDSCs includes two phases. Firstly, aberrant
myelopoiesis and blocked differentiation of immature myeloid
cells lead to the expansion of MDSCs, mainly driven by various
growth factors; secondly, these MDSCs are activated to be fully
functional, primarily promoted by pro-inflammatory factors.
This two-signal model of expansion and activation may answer
the question of why MDSCs are not generated under normal
physiological settings or during acute inflammation. In steady
state, growth factors stimulate normal hematopoiesis without
generating MDSCs due to the absence of pro-inflammatory
factors, whereas during acute inflammation, in the absence of
sustained growth factors, pro-inflammatory factors alone do not
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FIGURE 3 | Regulation on the suppressive nature of MDSCs by subset composition and the tumor microenvironment. Differential suppressive capacity and

mechanism(s) between PMN-MDSCs and M-MDSCs influence the suppression by MDSCs as a whole population (left). In peripheral lymphoid organs where

PMN-MDSCs predominate, suppression by MDSCs is mainly antigen-specific, since the activity of PMN-MDSCs depends largely on reactive oxygen species (ROS)

and peroxynitrite (PNT). In tumor where the proportion of M-MDSCs increases, suppression is more potent and is both antigen-specific and non-specific, since

M-MDSCs are more suppressive and mainly rely on arginase 1 (ARG1), nitric oxide (NO), and immunosuppressive cytokines. A network of cytokines, hostile physical

conditions, and cells in the tumor microenvironment regulates MDSCs in multiple aspects (right). Soluble mediators derived from tumor regulate the suppressive

activity of MDSCs and also drive their development. After being taken by MDSCs, the contents of tumor-derived exosomes, which act as intercellular messengers,

promote the expansion and potentiate the suppressive capacity of MDSCs. Like tumor cells, MDSCs undergo metabolic reprogramming to adapt to varying

surroundings. Hypoxia-inducible factor 1α (HIF-1α) induced by the mammalian target of rapamycin (mTOR) pathway enhances glycolysis and may potentiate

suppression by MDSCs, whereas glycolysis has also been reported to be a negative regulator. The heightened fatty acid oxidation (FAO) is associated with

upregulated ARG1 and increased NO and PNT production. Hypoxic signaling, primarily through HIF-1α, is another central regulator. HIF-1α promotes many

non-immunological activities of MDSCs, including differentiation, pro-angiogenesis, and pro-metastasis. HIF-1α augments MDSC-mediated suppression by

upregulating several effector molecules. The hostile conditions in the tumor milieu, such as oxidative stress, nutrient deprivation, and acidic waste accumulation,

causes ER stress and induce unfolded protein response (UPR) in MDSCs. ER stress response marker C/EBP homologous protein (CHOP) regulates ARG1,

superoxide, and PNT production by MDSCs. The bidirectional communication with stromal cells fine-tunes the induction, homeostasis, differentiation, and suppressive

function of MDSCs. Bregs, regulator B cells; CAFs, cancer-associated fibroblasts; DCs, dendritic cells; iNOS, nitric oxide synthase; LOX-1, lectin-type oxidized LDL

receptor-1; NK, natural killer; PD-L1, programmed cell death-ligand 1; Tregs, regulatory T cells.

lead to MDSC generation either, since immature myeloid cells
may rapidly differentiate into mature myeloid cells.

As discussed in the previous sections, many of the tumor-
derived mediators actively regulate the suppressive function of
MDSCs. In a murine model of tissue-specific inflammatory
response, MDSCs from inflammatory or tumor site are more
suppressive than MDSCs from spleen, and splenic MDSCs from
inflamed mice are more suppressive than splenic MDSCs from
naïve mice (148). Further study from the same group has shown
that MDSCs exposed to IFN-γ, IL-13, and GM-CSF in vitro or
MDSCs localized in inflammatory or tumor site in vivo have
elevated L-arginine transporter cationic amino acid transporter
2 expression, which parallels the expression of ARG1 and iNOS
and is required for optimal suppressive activity of MDSCs (146).
These findings suggest a priming effect of tumor-derived pro-
inflammatory cytokines. In a more recent study, tumor cells
upregulate tumor necrosis factor-α-induced protein 8-like 2
(TIPE2) in MDSCs through ROS, which in turn controls the

polarization of MDSCs by increasing pro-tumoral and inhibiting
anti-tumoral mediator expression (152).

Several pro-inflammatory factors are reported to enhance the
suppressive potency of MDSCs. For instance, PGE2 generated
by COX2 in tumor cells upregulates ARG1 expression of
MDSCs through the EP4 receptor (153). PGE2 promotes
hypermethylation and repression of a cluster of myeloid genes,
which is in contrast to the profile from DCs generated in
vitro or CD11b+ cells from healthy controls. This MDSC-
specific gain of methylation requires the upregulation of DNA
methyltransferase 3A, while its downregulation abolishes the
immunosuppressive properties ofMDSCs (154). It another study,
PGE2 potentiates the suppressive function of human M-MDSCs
induced by GM-CSF/IL-6 from peripheral blood mononuclear
cells (155). However, whether these actions of PGE2 occur in
vivo remains to be determined. IL-17 not only enhances tumor-
infiltrating MDSCs, probably by increasing CXCL1 and CXCL5
secretion by tumor cells, but also potentiates their inhibition on T
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cells through upregulation of ARG1 and IDO (156). The calcium-
binding pro-inflammatory proteins S100A8 and S100A9, which
are ubiquitously present in the tumor microenvironment, drive
the accumulation of MDSCs through increased recruitment to
primary tumor and pre-metastatic niche (150). It was recently
reported that S100A8 enhances T-cell suppression by MDSCs
(157) and that S100A9 induces IL-6 and IL-10 release by MDSCs
(158). Furthermore, MDSCs also express and secret S100A8/A9,
thus forming a positive feedback loop that helps to maintain
suppressive MDSCs in the tumor microenvironment (150).

Both type I and II interferons upregulate PD-L1 expression
in MDSCs. It is well-documented that IFN-γ functions as
a master regulator of PD-L1 expression in tumor. IFN-γ
neutralization reduces tumor-infiltrating PD-L1+ MDSCs in
vivo, and mechanistically, IFN-γ upregulates IRF1, which in
turn binds to IRF-binding sequence in cd274 promoter and
activates PD-L1 expression (72). The IFN-γ level in the tumor
microenvironment may be reduced due to MDSC-mediated
suppression of T cells and NK cells, which are important sources
of IFN-γ. As a compensatory mechanism, MDSCs may maintain
their PD-L1 expression by secreting IFN-α and IFN-β, which
bind to IFN receptor type I and upregulate PD-L1 in an autocrine
manner (159).

It is noteworthy to point out that many of the tumor-
derived mediators influence more than one aspect of MDSCs.
For instance, in addition to promoting expansion, GM-CSF
alone is able to promote immunosuppression by MDSCs (160).
GM-CSF increases IL-4Rα expression on MDSCs, which leads
to IL-13-induced ARG1 upregulation (161), and GM-CSF
drives PD-L1 and IDO expression of MDSCs through STAT3
activation (69, 80). Tumor-derived migration inhibitory factor
has been reported to promote the differentiation, recruitment,
and suppressive activity of MDSCs (162, 163). These pleiotropic
and redundant effects further complicate the regulatory network
of MDSC development.

Tumor-Derived Exosomes
Exosomes are small extracellular vesicles released by nearly all
cells and are present in most body fluids. These membrane-
bound vesicles contain proteins, DNA, mRNA, and miRNA
and act as intercellular messengers (164). Tumor constantly
produces and secrets exosomes. Upon contact with target
cells, tumor derived-exosomes are able to alter the phenotypic
and functional characters of the recipients, reprogramming
them into participants in tumor progression. In the early
phase of tumor growth, exosomes derived from immune cells
in the tumor microenvironment may facilitate anti-tumor
response, while in more advanced disease, tumor derived-
exosomes promote immune suppression by interfering with the
differentiation, maturation, and anti-tumor activity of immune
cells (164). Several recent studies have shown that MDSCs also
produce exosomes, whose contents are implicated in their own
chemotaxis, survival, pro-metastatic, and immunosuppressive
activity (165).

Studies have shown that tumor-derived exosomes promote
the expansion of MDSCs. Administration of tumor-derived
exosomes to healthy mice leads to increased frequency of

immature myeloid cells that acquire the phenotypic and
functional characters of MDSCs (166). Tumor derived-exosomes
induce accumulation of splenic and intratumoralMDSCs that are
able to promote tumor growth, which is dependent on exosomal
PGE2 and TGF-β (167). In multiple myeloma, exosomes derived
from both tumor cells and stromal cells expand MDSCs (168,
169). In addition, tumor derived-exosomes may contribute to
metastasis by inducing accumulation of MDSCs, PMN-MDSCs
in particular, in the pre-metastatic niche (170, 171).

Many of the suppressive machineries of MDSCs can be
potentiated by tumor derived-exosomes, including expression
of ARG1 and iNOS, and production of IL-10 and VEGF
(48, 167, 169, 172). The suppressive capacity of MDSCs
on T cells is accordingly heightened (48, 169). STAT3 is
implicated in this exosomal regulation onMDSCs (169). Chalmin
et al. have shown that HSP72 expressed on tumor derived-
exosomes induces suppressive activity of MDSCs, which activates
STAT3 in a TLR2/MyD88-dependent manner through autocrine
production of IL-6 (142). Similarly, in another study, MDSCs
were expanded and activated by exosomal HSP70, which induced
phosphorylation of STAT3 through the TLR2/MyD88 pathway
(172). In consistence with these findings, T-cell proliferation
is inhibited by MDSCs isolated from mice treated with tumor
derived-exosomes but not by MDSCs isolated from MyD88
knockout mice treated with tumor derived-exosomes (171).
Furthermore, stromal cell-derived exosomes are also reported
to enhance T-cell suppression by MDSCs, probably through the
STAT3 pathway as well (168).

Tumor-derived exosomes are able to mediate RNA transfer
from tumor cells to recipient cells. Ridder and colleagues have
shown that MDSCs are the major recombined cells in the
tumor microenvironment after the uptake of exosomes and
their RNA content and that MDSCs recombined with exosomal
RNA display enhanced ARG1, TGF-β, and PD-L1 expression as
compared to the non-recombined counterparts (173). In a recent
study, hypoxia increases exosome secretion by glioma cells.
Moreover, hypoxia upregulates miR-10a and miR-21 in glioma-
derived exosomes, which in turn potentiates the suppressive
function of MDSCs (174).

Metabolic Reprogramming of MDSCs
Along with disease progression, malignant cells undergo
dramatic alteration in their energy metabolism to meet the
demand for rapid tumor growth and to adapt to the varying
microenvironment. Meanwhile, it was recently demonstrated
that tumor-associated immune cells also experience metabolic
changes that help to shape their pro- and/or anti-tumor response
(175). In this regard, metabolic reprogramming is emerging as
a regulator of MDSCs. Using MSC-1 cells, an immortalized
murine MDSC cell line, early in vitro studies have revealed two
distinct bioenergetic states that coincide with the exponential and
stationary growth phases of MSC-1 cells (176) and that their
maturation and suppressive potential are accompanied by an
increase in the central carbon metabolism activity (177).

MDSCs exhibit a high glycolytic rate (175). The enhanced
glycolysis of MDSCs helps to keep their ROS level within a
safe range and promotes their survival and accumulation in
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tumor-bearing host (178). mTOR-mediated HIF-1α induction
is essential in glycolytic activation (175). Inhibiting the mTOR
pathway blocks the differentiation of M-MDSCs from precursors
by impairing glycolysis. Consistently, 2-deoxyglucose, which
inhibits glycolysis, blocks the differentiation of M-MDSCs, while
metformin, which promotes glycolysis, rescues the reduction in
M-MDSCs caused by mTOR inhibition (179). On the other hand,
glycolysis in tumor cells also contributes to the expansion of
MDSCs, which is mediated by increased production of G-CSF,
GM-CSF, and lactate (100, 180).

In addition to promoting expansion, glycolysis regulates
the function of MDSCs. A recent study has found that
enhanced glycolysis mediated by the mTOR pathway leads to
stronger suppressive capacity of tumor-infiltrating M-MDSCs as
compared with splenic M-MDSCs and that mTOR inhibition
by rapamycin reduces the glycolysis, intratumoral level, and
suppressive activity of M-MDSCs (181). Attenuated iNOS and
ARG1 may be responsible for the impaired function caused by
rapamycin-mediated glycolysis inhibition (179).

On the contrary, glycolysis as a negative regulator of MDSCs
has also been reported. It is shown that mTOR- and HIF-1α-
induced glycolytic activation is required for differentiation of
MDSCs to a less suppressive M1 phenotype (182). In the settings
of transplantation and autoimmune disorder, dexamethasone
expands MDSCs and strengthens their function. In a model of
immunological hepatic injury, dexamethasone inhibits HIF-1α-
dependent glycolysis in MDSCs and promotes their suppressive
activity to protect against inflammatory injury (183). In addition,
there are studies showing that mTOR inhibition by rapamycin
potentiates the suppressive activity of MDSCs, which protects
against acute graft-versus-host disease and acute kidney injury
(184, 185); yet, unfortunately, the glycolytic or other metabolic
characteristics of MDSCs were not determined in these studies.
These seemingly conflicting results indicate the complexity and
the possibly context-dependent manner in which glycolytic rate
determines the function of MDSCs.

Recently, it is shown that tumor-infiltrating MDSCs have
increased fatty acid oxidation (FAO), which is accompanied by
upregulated ARG1, increased NO, and PNT production, and
that FAO inhibition impairs the suppressive activity of MDSCs
in vitro and in vivo (186). Only intratumoral MDSCs, and
not splenic MDSCs, have increased FAO, suggesting that the
microenvironment is responsible for this metabolic alteration
(186). Consistently, a further study from the same group
demonstrated that tumor-derived cytokines, such as G-CSF and
GM-CSF, induce the expression of lipid transport receptors
in intratumoral MDSCs through the activation of STAT3 and
STAT5, which leads to increased uptake of lipids that are
present at high concentrations in the tumor microenvironment;
intracellular accumulation of lipids in turn increases the oxidative
metabolism and suppressive activity of MDSCs (187).

Hypoxia and HIF-1α
Hypoxia caused by excessive oxygen consumption by tumor cells
and aberrant organization of tumor vasculature is a common
feature of the tumor microenvironment and plays a central
role in tumor progression, primarily through HIF-dependent

signalings.Multiple activities ofMDSCs are regulated by hypoxia.
For instance, hypoxia facilitates the recruitment of MDSCs
to tumor site (188, 189). Intratumoral MDSCs preferentially
localize in poorly perfused and hypoxic regions, and their
pro-angiogenic capacity is generally enhanced by hypoxia (6).
The homeostasis of tumor-infiltrating MDSCs is fine-tuned by
the hypoxic microenvironment, since hypoxia promotes the
differentiation of intratumoral MDSCs to TAMs (190), while it is
also reported that hypoxia promotes the maintenance of MDSCs
by upregulating ectonucleoside triphosphate diphosphohydrolas
2 in tumor cells, which forms a 5′-AMP-rich microenvironment
and prevents differentiation of MDSCs (191).

It is now generally accepted that microenvironmental hypoxia
directly augments the suppressive function of MDSCs (1).
In a tumor model with similar PMN-MDSC to M-MDSC
ratios in spleen and tumor site, Corzo et al. found that the
inhibition on T cells is antigen-specific by splenic MDSCs, which
display higher ROS production, while it is both antigen-specific
and non-specific by tumor-infiltrating MDSCs, which exhibit
upregulated ARG1 and iNOS. Exposure of splenic MDSCs to
hypoxia leads to non-specific T-cell suppression, suggesting
that the hypoxic microenvironment may convert MDSCs into
non-specific suppressors. This conversion is mediated by HIF-
1α (190). A similar difference in suppressive mechanisms
and antigen specificity is detected in MDSCs obtained from
peripheral blood and tumor tissue of patients with head and
neck cancer (190). Similarly, it was recently reported that HIF-
1α potentiates the immunosuppressive activity of splenic MDSCs
in a murine model of chronic Leishmania infection (192).

Noman et al. have shown that the PD-L1 level is higher on
intratumoral MDSCs than on splenic MDSCs and that hypoxic
stress upregulates PD-L1 on splenic MDSCs through HIF-1α.
More importantly, hypoxia potentiates the ability of splenic
MDSCs to suppress both specific and non-specific stimuli-
mediated T-cell proliferation, while PD-L1 blockade abrogates
the enhanced suppression under hypoxia, in part by decreasing
the production of suppressive cytokines, particularly IL-6 and
IL-10, in hypoxic MDSCs (43). The authors have also found
that hypoxia increases the secretion of IL-6, IL10, and TGF-
β from MDSCs (43). In another study from the same group,
tumor-infiltrating MDSCs expressed an increased level of miR-
210 as compared with splenicMDSCs, and hypoxia inducedmiR-
210 in splenic MDSCs via HIF-1α. MiR-210 in turn enhanced
the suppressive capacity of splenic MDSCs by increasing their
ARG1 activity and NO production without affecting ROS, IL-6,
or IL-10 production or PD-L1 expression (67). In a more recent
study, HIF-1α acted as a transcriptional activator of VISTA, a
negative checkpoint regulator in the B7 family, in MDSCs and
consistently, antibody blockade or genetic ablation of VISTA
abolished MDSC-mediated suppression of T cells under hypoxic
but not normoxic conditions (193). These findings suggest
that hypoxia regulates MDSC-mediated suppression through
multiple pathways.

MDSCs actively participate in tumor metastasis by inducing
EMT, increasing the invasiveness and stemness of tumor
cells, and stimulating angiogenesis (5, 6). Unfortunately, the
precise roles of hypoxia and hypoxic signalings in these
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MDSC-driven steps of metastatic cascade are not well-defined.
On the other hand, MDSCs actively participate in pre-
metastatic niche formation. MDSCs, especially the granulocytic
subset, reach the pre-metastatic site prior to the arrival of
disseminated tumor cells, which is regulated indirectly by
hypoxia in the primary tumor. In a murine mammary tumor
model, tumor that grows in pre-irradiated mammary tissue
has decreased vascular density and is more hypoxic and
metastatic, recapitulating the clinical features of locally relapsed
breast cancer after radiation therapy; HIF-1-dependent Kit
ligand expression by hypoxic tumor cells mobilizes c-Kit+

PMN-MDSCs to home to pre-metastatic lungs to promote
metastasis (194). In other studies, PMN-MDSCs are recruited
by MCP-1 or G-CSF derived from hypoxic tumor cells to pre-
metastatic lungs, where they may inhibit the cytotoxicity of NK
cells (195, 196).

Endoplasmic Reticulum Stress and
Unfolded Protein Response
In homeostatic settings, the endoplasmic reticulum (ER)
readily handles the folding of secretory and transmembrane
proteins. The hostile conditions in the tumor milieu, such as
hypoxia, oxidative stress, nutrient deprivation, and acidic waste
accumulation, impair the protein-folding capacity of ER, thus
provoking a cellular state of ER stress. When the misfolded
proteins exceed a tolerable level, PKR-like ER-resident kinase
(PERK), inositol-requiring enzyme 1α (IRE1α), and activating
transcription factor 6α (ATF6α) detect the presence of ER stress
and trigger unfolded protein response (UPR) to improve the
folding efficiency in ER (197). These ER-localized sensors are
held inactive by chaperone BiP in steady state, while upon
ER stress, the dissociation of BiP activates all three sensors:
PERK phosphorylates the translation initiation factor eIF2α,
which restricts cap-dependent translation and in turn upregulates
activating transcription factor 4 (ATF4) and its downstream
target C/EBP homologous protein (CHOP); IRE1α cleaves the
X-box-binding protein 1 (XBP1) mRNA, and the spliced mRNA
is re-ligated to produce highly active XBP1s that regulates gene
expression involved in protein folding; ATF6α fine-tunes UPR by
regulating the transcription of ER chaperone genes (197).

Unresolvable ER stress often leads to cell death, while
tolerable defect in protein-folding capacity may fuel tumor cell
survival, metastasis, angiogenesis, and therapeutic resistance.
The immunosuppressive effect of ER stress is receiving growing
attention (197). Mahadevan et al. have shown that stressed tumor
cells actively regulate the function of myeloid cells. For instance,
tumor cells undergoing ER stress release yet unidentified soluble
mediators that lead to upregulated UPR markers and pro-
inflammatory cytokines in responder macrophages (198). This
transmissible ER stress also imprints bone marrow-derived DCs
with increased ARG1 and decreased ability to cross-present
antigen to CD8+ T cells (199). On the other hand, intrinsic ER
stress regulates the myeloid cell activity as well. STAT3 synergizes
with STAT6 in macrophages to promote cathepsin secretion and
tumor invasion through the IRE1α pathway (200). ER stress
and XBP1 activation in tumor-infiltrating DCs lead to abnormal

lipid accumulation, which impairs their antigen presentation
capacity (201).

In line with macrophages and DCs, MDSCs exhibit clear
signs of ER stress and UPR. MDSCs isolated from tumor-
bearing host have a higher level of ER stress response markers as
compared with monocytes and neutrophils from the same host
or healthy control (202). Furthermore, the CHOP level in tumor-
infiltrating MDSCs is higher than in splenic MDSCs or other
tumor-infiltrating immune cells (203).

Recent studies have demonstrated that ER stress response
regulates the homeostasis and suppressive function of MDSCs.
ER stress induces apoptosis of MDSCs through upregulation of
TRAIL-R or through the eIF2α-ATF4-CHOP pathway; though
the lifespan of MDSCs is shortened by ER stress, it may stimulate
myelopoiesis and the turnover of MDSCs in tumor-bearing host
(202, 203). Administration of the ER stress inducer thapsigargin
promotes infiltration of MDSCs in tumor and enhances their
suppressive capacity through upregulation of ARG1, iNOS, and
NOX2 (204).

Thevenot et al. have elaborately shown that the suppressive
activity of MDSCs is regulated by ER stress response marker
CHOP (203). In CHOP-deficient mice, tumor growth is
significantly retarded, while it is partially restored by depletion
of MDSCs, suggesting a reversal of the tumor-promoting
activity of MDSCs. Consistently, functional assessment of tumor-
infiltrating CHOP−/− MDSCs reveals reduced suppression of T
cells, which is associated with decreased ARG1, superoxide, and
PNT; furthermore, these CHOP−/− MDSCs acquire a DC-like
phenotype and are able to stimulate immune response.

In another study, ER stress-related genes were found
to be among the most upregulated in PMN-MDSCs, as
compared with neutrophils from the same cancer patient
or a healthy individual (205). Surface expression of lectin-
type oxidized LDL receptor-1 (LOX-1), which is regulated by
ER stress, effectively distinguishes immunosuppressive PMN-
MDSCs from neutrophils in cancer patients (205). ER stress
induced by thapsigargin promotes LOX-1 upregulation in human
neutrophils and converts them into immunosuppressive cells,
which is prevented by inhibiting the IRE1α-XBP1s pathway (205,
206). However, whether downstream signaling through LOX-
1 is responsible for the acquisition of suppressive activity by
neutrophils remains undetermined.

Crosstalk Between MDSCs and Stromal
Cells in the Tumor Microenvironment
Many of the tumor-promoting roles of MDSCs, such as immune
suppression, pro-angiogenesis, and pro-metastasis, are regulated
by the surrounding cells in the tumor microenvironment. How
tumor cells regulate the immunosuppressive function of MDSCs
has been discussed in previous sections. The induction and
suppressive capacity of MDSCs are also fine-tuned during
the dynamic and mutualistic communication with the non-
malignant stromal cells in the tumor milieu. Many of these cells
are not merely targets but also regulators of MDSCs.

MDSCs primarily inhibit T-cell response, and on the other
way round, T cells influence the suppressive nature of MDSCs.
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The antigen-specific CD4+ T cells, and not CD8+ T cells,
enhance the immunosuppressive capacity of MDSCs by turning
them into non-specific suppressors in vitro and in vivo.
Mechanistically, this effect requires cross-linking of MHC class
II on MDSCs during cell-to-cell contact with activated CD4+

T cells, and the subsequent retrograde signaling in MDSCs
upregulates COX2 and PGE2 expression (141). In a recent study,
IFN-γ produced by T cells was found to be critical in regulating
the enhanced suppressive activity of MDSCs induced by TLR2
ligand, which promoted differentiation of MDSCs into iNOS+

macrophages (207).
In addition to immunosuppression, T cells regulate the

induction of MDSCs. It has been reported that FasL+-activated
T cells may regulate the homeostasis of MDSCs through Fas-
FasL interaction, which induces apoptosis of MDSCs (208). In
human colorectal cancer, γδT cells promote the recruitment,
proliferation, and survival of PMN-MDSCs through secretion
of large amounts of IL-17 and other cytokines, including IL-
8, GM-CSF, and TNF-α (209). It has been shown in different
murine tumor models that TNF-α secreted by CD4+ T cells, and
partially by CD8+ T cells, induces myelopoiesis, which increases
the frequency of MDSCs (210).

PD-L1 expression on MDSCs is upregulated upon co-
culture with T cells (79), and MDSCs are able to induce
PD-1 expression on T cells through TGF-β (75, 211). In
melanoma-bearing mice receiving IL-2- and TNF-α-coding
adenovirus in combination with adoptive T-cell therapy, PD-L1
was upregulated in intratumoral MDSCs, and the frequency of
PD-1+ CD8+ T cells correlated with the PD-L1 expression level
on MDSCs in tumor site (70).

Not only doMDSCs promote Treg induction and recruitment:
their suppressive function is also modified by Tregs. An earlier
study reported that CD80 expression is required for MDSC-
mediated antigen-specific T-cell suppression, which is dependent
on CD4+CD25+ Tregs and CTLA-4 and that depletion of
CD4+CD25+ Tregs diminishes the suppression mediated by
MDSCs (212). In a more recent study, Treg depletion decreased
PD-L1 expression and IL-10 production by MDSCs (73). In a
murine model of melanoma, the expansion, recruitment, and
activation of MDSCs occurred in a Treg-dependent manner and
required the expression of IDO (213). Therefore, it is likely that
MDSCs and Tregs do not act separately but rather cooperate
reciprocally in immune suppression.

Crosstalk betweenMDSCs and B cells has been found recently.
In one study, MDSCs that accumulated around the germinal
center co-localized with B cells in the spleen of tumor-bearing
mice, and cell-to-cell interaction through TNFR2 on MDSCs
and membranous TNF on B cells promoted the proliferation
and differentiation of B cells into IgA-producing plasma cells
(214). Both IL-10 and TGF-β are crucial for this MDSC-mediated
IgA response. In another study, Bregs from tumor-bearing mice
increased the immunosuppressive and pro-metastatic function of
MDSCs, partially through the TGF-β type I/II receptor signaling
axis (215).

IL-10 is implicated in the interaction between MDSCs
and other immune cells. Through cell-to-cell contact, MDSCs
produce IL-10 to downregulate IL-12 by macrophages, and

macrophages in turn stimulate IL-10 upregulation by MDSCs
(216). The increased IL-10 level and reduced IL-12 level
consequently skew the immunity toward a tumor-promoting
type 2 response. In another recent study, MDSC-derived IL-
10 decreased IL-6 and TNF-α while increasing NO produced
by macrophages (217). Meanwhile, IL-10 produced by MDSCs
may reduce MHC class II molecule expression on macrophages,
leading to diminished antigen-presentation capacity (218). This
bi-directional crosstalk between MDSCs and macrophages is
accentuated by the inflammatory microenvironment. MDSCs
isolated from tumor with a heightened IL-1β level produce
more IL-10 and downregulate IL-12 by macrophages to a
greater degree as compared with MDSCs from less inflammatory
tumors (38). This IL-10 elevation by MDSCs requires IL-6
from macrophages and signaling through TLR4 on MDSCs and
macrophages (38, 218). This action of inflammation is further
corroborated by the findings that pro-inflammatory mediators
PGE2 and HMGB1 upregulate IL-10 in MDSCs in the presence
of macrophages (21, 218).

It is reported that mast cells not only induce the recruitment
but also promote the suppressive function of MDSCs, probably
through CD40L-CD40 interaction (219, 220).

Cancer-associated fibroblasts (CAFs) are a heterogeneous
group of activated fibroblasts that play pleiotropic roles in tumor
development and are able to modulate anti-tumor immunity on
various levels. Through secretion of CCL2 and CXCL12, CAFs
facilitate the recruitment ofMDSCs (221). Meanwhile, pancreatic
CAFs produce multiple MDSC-promoting soluble mediators, IL-
6 in particular, and favor the differentiation of MDSCs (222).
CAFs from hepatic cancer attract monocytes to the tumor
microenvironment by CXCL12 and induce their differentiation
into MDSCs through IL-6-mediated STAT3 activation (223).
The MDSC-promoting effect of CAFs in breast cancer involves
epigenetic regulation by histone deacetylase 6 (224). Consistently,
inhibiting CAFs leads to reduced in vivo induction and
intratumoral level of MDSCs (225, 226). On the other hand,
MDSCs promote activation and migration of CAFs, suggesting a
positive feedback loop that amplifies interaction between them.
To further complicate the issue, in recent studies, CAFs show
similar phenotypic and immunosuppressive characteristics to
the circulating fibrocytes that may arise from MDSCs and may
represent a novel MDSC subset (227).

CONCLUSIONS AND PERSPECTIVES

Among the multiple tumor-promoting characteristics of MDSCs,
the capacity to suppress T-cell response remains a key hallmark.
Given the complexity of the tumor immune microenvironment,
it is not surprising that MDSCs are more than a T-cell suppressor
and that their function is regulated on multiple levels. With the
advances in phenotyping and functional assessment in recent
years, a clearer view of the immunosuppressive nature of MDSCs
has been achieved. Firstly, several novel suppressive mechanisms
have been identified, which makes MDSCs a versatile suppressor.
Secondly, the antigenicity of MDSC-mediated T-cell inhibition
depends largely on the properties of the effector molecules
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utilized, since a different level and duration of intercellular
contact is required; furthermore, differential suppressive potency
and preferential mechanisms between subsets of MDSCs
compartmentalize T-cell suppression in tumor-bearing host:
immunosuppression is relatively weak and is antigen-specific
in the periphery, while it is strong and is both antigen-specific
and non-specific in the tumor milieu. Thirdly, the recognized
targets of MDSCs have been extended from T cells to other
immune cells, such as NK cells, DCs, and B cells, which broadens
their suppressive spectrum and makes them suppressive in both
innate and adaptive immunity. Lastly, in addition to clarification
of their expansion and activation in the presence of tumor,
the development and function of MDSCs are fine-tuned by
several microenvironmental factors. With these characteristics
unraveled, a pivotal role of MDSCs in the intricate network of
immune suppression within the tumor microenvironment has
been unveiled.

As a competent accomplice in carcinogenesis and disease
progression, the correlation between MDSCs and tumor burden
and disease stage is well-documented. For instance, a recent
meta-analysis has shown for the first time that a high level
of MDSCs is associated with shorter survival outcomes in
patients with solid tumors and hematologic malignancies (228).
This notion has two therapeutic implications. On the one
hand, MDSCs have been regarded as an attractive target
in cancer therapy. Various pre-clinical and clinical studies
have shown promising benefits by targeting MDSCs, which
can be achieved by depleting their quantity, blocking their
trafficking, or inhibiting their immunosuppressive activity (5).
On the other hand, due to their potent immunosuppressive
capacity, MDSCs act as a major obstacle to natural anti-tumor
immunity, hinder the efficacy of immunotherapy, and constitute
an important mechanism for resistance. Accordingly, a high
level of MDSCs predicts poor response to immune checkpoint
inhibitor ipilimumab inmetastaticmelanoma patients (66).More
importantly, it is rational to target MDSCs in combination
with immunotherapy, which may yield a synergistic effect and
delay, or even reverse, the occurrence of resistance (66). For
instance, as compared tomonotherapy, the efficacy of an immune
checkpoint inhibitor or cancer vaccine is enhanced by combining
with MDSC-targeted therapy in pre-clinical studies and clinical
trials (66), and T cell-based immunotherapy efficacy is enhanced
by inhibiting the trafficking of MDSCs (229). These benefits
are associated with improved T cell-mediated immune response

against tumor or increased antigen presentation capacity of DCs,
probably due to the relieved inhibition imposed by MDSCs.

However, approaches to combat with MDSCs are still
in their infancy, and there are several conundrums to be
addressed. Considering their versatility and the complexity of
microenvironmental regulation, the suppressive machineries of
MDSCs are not likely to act simultaneously, but most probably
function in a context-dependent manner. As a consequence,
when we target the suppressive function MDSCs, it would be
difficult to identify the most relevant target(s). Meanwhile, taking
into account the indispensability of myelopoiesis in physiological
processes and the phenotypic similarity between MDSCs and
normal myeloid cells, it would be challenging to target MDSCs
accurately without affecting the normal myeloid compartment.

Since they were firstly reported in the late 1970s and consensus
on their nomenclature was reached in 2007, MDSCs as a group
of suppressive myeloid cells have received increasing attention,
and research on MDSCs is booming. Their roles in malignant
and non-malignant settings are becoming clarified. With the
effort in the past decade, an algorithm that includes phenotypic
and functional, and, if possible, molecular criteria necessary to
identify MDSCs was proposed in 2016 (4). This step-by-step
approach aims to minimize ambiguity and helps to dissect the
function of MDSCs in future studies. For instance, it may help us
to better distinguish MDSCs from normal myeloid cells in the
same host. Determining how to target MDSCs more precisely
and efficiently relies, hopefully, on a better understanding of the
development and suppressive nature of MDSCs. Lastly, more
clinical trials are needed to validate the synergistic effect of
MDSC-targeted therapy and cancer immunotherapy.
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