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Upper respiratory tract infections with Equid Herpesvirus 1 (EHV-1) typically result in a

peripheral blood mononuclear cell-associated viremia, which can lead to vasculopathy

in the central nervous system. Primary EHV-1 infection also likely establishes latency in

trigeminal ganglia (TG) via retrograde axonal transport and in respiratory tract-associated

lymphatic tissue. However, latency establishment and reactivation are poorly understood.

To characterize the pathogenesis of EHV-1 latency establishment and maintenance, two

separate groups of yearling horses were experimentally infected intranasally with EHV-1,

strain Ab4, and euthanized 30 days post infection (dpi), (n = 9) and 70 dpi (n = 6).

During necropsy, TG, sympathetic trunk (ST), retropharyngeal and mesenteric lymph

nodes (RLn, MesLn) and kidney samples were collected. Viral DNA was detected by

quantitative PCR (qPCR) in TG, ST, RLn, and MesLn samples in horses 30 and 70 dpi.

The number of positive TG, RLn and MesLn samples was reduced when comparing

horses 30 and 70 dpi and the viral copy number in TG and RLn significantly declined

from 30 to 70 dpi. EHV-1 late gene glycoprotein B reverse transcriptase PCR and IHC

results for viral protein were consistently negative, thus lytic replication was excluded

in the present study. Mild inflammation could be detected in all neural tissue samples

and inflammatory infiltrates mainly consisted of CD3+ T-lymphocytes (T-cells), frequently

localized in close proximity to neuronal cell bodies. To identify latently infected cell

types, in situ hybridization (ISH, RNAScope®) detecting viral DNA was used on selected

qPCR- positive neural tissue sections. In ganglia 30 dpi, EHV-1 ISH signal was located in

the neurons of TG and ST, but also in non-neuronal support or interstitial cells surrounding

the neuron. In contrast, distinct EHV-1 signal could only be observed in neurons of TG 70

dpi. Overall, detection of latent EHV-1 in abdominal tissue samples and non-neuronal cell
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FIGURE 3 | Trigeminal Ganglion 30 dpi, IHC for CD3 and CD20, DAB with Mayer’s hemalum counterstaining: (A) CD3+ T-cell infiltration in vicinity of blood vessel

(BV); (B) CD3+ T-cells penetrate neuron-satellite sheet (arrowhead); (C) localized infiltrates of CD20+ B-cells associated with non-labeling T-cells; bars = 50µm.

seem to transfer virus to neurons by cell-to-cell fusions in vivo
mouse models (60). To further differentiate lymphocytes from
satellite cells in the present study, we used CD3+, CD20+
and S-100 IHC staining. We could show that besides local
CD3+ and CD20+ lymphocytic inflammatory infiltrates, CD3+
T-cells also associate with satellite cells and tend to squeeze
into the satellite sheath around neurons. This phenomenon was
not detected for CD20+ B-cells. These results suggest that the
EHV-1 ISH signal from non-neuronal cells surrounding neurons
in the current study, might mainly attributed to T-cells and
satellite cells.

T-cell tropism is well described for EHV-1 and suggested to
be a key strategy for immune evasion and dissemination in the
host (4, 7, 19, 21, 61, 62). During primary viral infection, EHV-1
seems to initially infect monocytes (4, 5, 63), while T-cells are the
preferred cell type during viremia (6, 7, 61) to transport the virus
to secondary target organs like the CNS or uterus. Among the
circulating EHV-1 strains, the neurovirulent strain Ab4 has been
shown to infect immune cells efficiently and rapidly following

replication in the respiratory epithelium and subsequently result
in a longer viremia with higher viral loads compared to non-
neuropathogenic strain counterparts (5, 36, 64). It has been
suggested that viral replication is not productive or restricted
in carrier cells (65) or viral capsids are accumulated in the
nucleus of the carrier cell, but viral egress is hampered until the
endothelium of a secondary target organ is reached (7). This
has also been described for VZV (11) and it has been shown
that migration markers on T-cells are still intact following VZV
infection which enables the virus to be transported to target sites
(66). Interestingly, while there was still distinct EHV-1 ISH signal
in the nucleus of the trigeminal ganglia at 70 dpi, no signal could
be detected in non-neuronal cells at this time point. Moreover,
there was a significant decrease in viral load when comparing
TG 30 and 70 dpi. For HSV-1 infections, it has been shown that
the number of T-cells in ganglia declines continuously between
days 21 and 92 p.i. (16). Apoptosis of infected lymphocytes and
degeneration of some neurons could be reason for the decrease
of viral load in ganglia in the present study. However, it might
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FIGURE 4 | In situ hybridization for EHV-1 gB. (A) Positive control with positive labeling (arrowheads); (B) Positive control tissue with no signal using an EHV-1

scrambled probe; (C) TG from a EHV-1 qPCR negative horse lacks positive ISH signal; (D) EHV-1 qPCR positive TG 30 dpi with strong signal in non-neuronal cells

(arrowheads); (E) EHV-1 qPCR positive TG 30 dpi with strong in non-neuronal cells (white arrowheads) and nucleus of the neuron (black arrowhead); (F) EHV-1

positive TG 70 dpi with positive signal in the nucleus of the neuron (arrowhead). Bars = 50µm.

also be evidence for the existence of a persistently infected EHV-1
memory T-cell pool, where T-cells are retrieved from ganglia, (re-
)circulate in the blood and home to lymphoid tissue, where the
virus remains stationary latent and/or starts new re-circulation.
However, in our previous study no or only very low amounts of
EHV-1 DNA was present in peripheral blood mononuclear cells

(PBMC) at day 70 pi (unpublished data). This may imply that the
majority of latently infected mononuclear cells are in tissue sites
and it is challenging to detect very low amounts of silent virus
in the circulating PBMCs using our methods as the collection
time point represents a moment in time in the circulating latent
infected cell pool. Further studies involving methods with higher
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sensitivity, e.g., Next Generation Sequencing, are needed to
finally define the role and type of mononuclear cells in EHV-1
latency establishment.

Furthermore, latency in lymphatic tissue has been described
as an advantage for the virus, as infected T-cells can enter rapidly
the blood circulation to be transported to primary infection sites
for replication, once reactivation occurs (19). In the present
study, we report EHV-1 DNA in RLn and MesLn at 30 and 70
dpi. Respiratory associated lymphoid tissue has been previously
described as latency location for EHV-1 (19–21, 67) and EHV-
1 DNA could also be detected in MesLn and in the spleen (19,
23, 67). When comparing results 30 and 70 dpi, it was somewhat
surprising, that the number of positive retropharyngeal lymph
node samples decreased by 80% over time. While apoptosis
of some EHV-1 infected T-cells is likely contributing to this
decrease, positive T-cells could also migrate from lymph nodes
toward neurons and/or other lymphatic tissue and therefore
deplete positive signal in lymph nodes over time. A neurotropic
re-circulation could also explain the findings in sympathetic
trunk ganglia 70 dpi, where positive EHV-1 non-neuronal cells
could still be detected.

In addition, while EHV-1 strain Ab4 is known to
strongly dysregulate the host immune response by increasing
inflammation and resulting in a high quantity of circulating
infected cells, other EHV-1 strains may act differently in
their immune evasive strategies (7, 68). Therefore, latency
establishment and reactivation also may be strain dependent and
more research is necessary to reveal the latently infected host
pool in the populations worldwide.

Taken together, the present study confirms previous findings,
identifying EHV-1 as both neurotropic and lymphotropic. EHV-
1 most likely uses retrograde axonal transport as a direct
pathway from the upper respiratory epithelium toward the
TG, where latency is established in the nucleus of the neuron
after a short replication cycle. Furthermore, we hypothesize,
that T-cell tropism assists EHV-1 in its neurotropism and
additionally provides latency establishment in lymphatic tissues
other than respiratory associated lymphoid tissue. The navigation
to neuronal structures throughout the body may enable the virus
to establish latency in numerous ganglia, but further studies

in random horse populations are required to elucidate if other

neuronal structures than the TG can be repeatedly confirmed as
alternative latency locations.
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