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Boosting functional response models for location,
scale and shape with an application to bacterial
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Abstract: We extend generalized additive models for location, scale and shape (GAMLSS) to
regression with functional response. This allows us to simultaneously model point-wise mean curves,
variances and other distributional parameters of the response in dependence of various scalar and
functional covariate effects. In addition, the scope of distributions is extended beyond exponential
families. The model is fitted via gradient boosting, which offers inherent model selection and is shown
to be suitable for both complex model structures and highly auto-correlated response curves. This
enables us to analyse bacterial growth in Escherichia coli in a complex interaction scenario, fruitfully
extending usual growth models.
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1 Introduction

In functional data analysis (Ramsay and Silverman, 2005), functional response
regression aims at estimating covariate effects on response curves (Morris,
2015; Greven and Scheipl, 2017). The response curves might, for instance, be
given by annual temperature curves, growth curves or spectroscopy data. We
propose a flexible approach to regression with functional response allowing for
simultaneously modelling multiple distributional characteristics of response curves
following potentially non-Gaussian distribution families. It therefore generalizes
usual functional mean regression models.

The problem of non-Gaussian functional response appears in many applications
and is, accordingly, addressed in several publications. Following early works on
non-Gaussian functional data by Hall et al. (2008) and van der Linde (2009),
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authors such as Goldsmith et al. (2015), Wang and Shi (2014) and Scheipl et al.
(2016) proposed generalized linear mixed model (GLMM)-type regression models,
which are suitable for, for example, positive, discrete or integer-valued response
functions. The linear predictor for the mean function is typically composed of
a covariate effect term and a latent random Gaussian error process accounting
for auto-correlation, and combined with a link function. Li et al. (2014) jointly
model continuous and binary-valued functional responses in a similar fashion, but
without considering covariates. Other ideas to account for the auto-correlation of
functional response curves include robust covariance estimation for valid inference
after estimation under a working independence assumption (Gertheiss et al., 2015)
and an overall regularization by early stopping a gradient boosting fitting procedure
guided by curve-wise re-sampling methods as applied by Brockhaus et al. (2015,
2017) besides using curve-specific smooth errors. Moreover, this latter approach
also offers quantile regression for functional data. The above approaches present
important steps in generalizing functional regression models. In particular, our
approach is a direct generalization of the framework of Brockhaus et al. (2015).
However, the previous methods are restricted to one predictor such that none
of them allows for simultaneously modelling also the response variance or other
distributional parameters in a similar fashion as the mean. Staicu et al. (2012)
propose a method for estimating mean, variance and other shape parameter
functions nonparametrically and also for non-Gaussian point-wise distributions,
while modelling auto-correlation via copulas. However, they do not allow for
including covariate effects. Only the framework of Scheipl et al. (2016) now allows
to perform simultaneous mean and variance regression in the Gaussian case (Greven
and Scheipl, 2017) and is also the only one currently offering a comparable range of
smooth/linear effects of scalar and functional covariates, which are implemented
in the R package refund (Goldsmith et al., 2018). Thus, we will compare to
their model in a simulation. However, they are so far restricted to the Gaussian
special case and do not offer the flexibility to specify multiple predictors for other
distributions and no more than two predictors, as we need, in particular, in the data
scenario presented in this article. We overcome these limitations by introducing
generalized additive models for location, scale and shape (GAMLSS) for functional
responses. For the case of scalar response regression, GAMLSS were introduced
by Rigby and Stasinopoulos (2005) extending usual generalized additive models
(GAMs; Hastie and Tibshirani, 1990) to multiple distributional parameters. Each
parameter of the assumed response distribution is modelled with a separate predictor
depending on covariates, allowing, for example, for covariate effects on mean
and variance. Hence, doubtful assumptions of homoscedasticity can be overcome.
In addition to this extension, the range of applicable distributions of GAMs is
also extended to non-exponential family distributions in the GAMLSS framework.
Brockhaus et al. (2018a) discussed GAMLSS scalar-on-function regression based on
the flexible gradient boosting regression framework introduced by Bühlmann and
Hothorn (2007) combining a scalar GAMLSS framework developed by Mayr et al.
(2012) and Thomas et al. (2018) and the flexible functional regression framework
of Brockhaus et al. (2017). We further extend this to functional GAMLSS for
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function-on-scalar and function-on-function regression, such that our framework
now offers the full flexibility of scalar GAMLSS also for functional responses
and covariates.

We apply this framework to analyse bacterial interaction: as bacterial resistances
increase, producing effective antibiotics gets harder and harder. Understanding
bacterial interactions might help finding alternatives. In particular, we analyse growth
curves of two competing Escherichia coli bacteria strains (von Bronk et al., 2017)—a
toxin producing ‘C-strain’ and a toxin sensitive ‘S-strain’—to obtain insights into
the underlying growth affecting bacterial interaction. Our aim is to model the
S-strain growth behaviour in dependence on the toxin emitting C-strain and under
different experimental conditions, and allow this dependence to affect both mean and
variability of growth as well as the extinction probability. This requires a functional
response regression model for several parameters of the non-Gaussian response
distribution with linear and smooth effects of functional and scalar covariates.

There are various approaches applied to modelling bacterial growth curves in
the literature. Gompertz and Baranyi-Roberts models are two common parametric
approaches to modelling growth curves (see, e.g., López et al., 2004; Perni et al.,
2005). Weber et al. (2014) implement a model particularly for analysing bacterial
interaction. The models are usually fitted using least squares methods, which
corresponds to assuming a Gaussian distribution of bacterial propagation. This is
problematic as response values are naturally positive and very small in the beginning,
starting from single cell level. Thus, also assuming a constant variance over the whole
time span seems not appropriate. Moreover, they do not offer the opportunity to
include covariate effects for modelling, for example, the impact of external factors.
Thus, these models are not applicable here. In addition, they are often highly
non-linear, which may introduce problems in parameter estimation. Gasser et al.
(1984) discuss this point and some further advantages of nonparametric growth
curve regression over parametric models. They propose a kernel method for this
purpose, which does, however, not include covariates and lacks the flexibility needed
for our purposes. Still, non- or semi-parametric functional regression models present
a natural choice from a statistical perspective, also because they can approximate
the above parametric growth models very well when these are appropriate (Online
Appendix E.2).

Besides providing the flexibility to meet all the challenges arising from the present
analysis of bacterial interaction, we can show in extensive simulation studies that
the presented approach is indeed well suited for complex scenarios with highly
auto-correlated response curves despite working independence assumption: early
stopping the gradient boosting algorithm based on curve-wise re-sampling techniques
plays a key role in avoiding over-fitting and leads to highly improved estimation
quality when comparing to the approach of Greven and Scheipl (2017).

The approach is implemented in the R (R Core Team, 2018) add-on package
FDboost (Brockhaus and Ruegamer, 2018). Brockhaus et al. (2018b) provide
a tutorial article to the package. Even though the discussion and illustration of
GAMLSS focuses on the scalar-on-function and not the functional response case, we
recommend it as a general software introduction.
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The remainder of the article is structured as follows: In Section 2, we formulate
the general model and describe the fitting algorithm. In Section 3, we apply the
proposed model to analysing E. coli bacteria growth. Section 4 provides the results
of two simulation studies for Gaussian response curves as well as for the growth
model. Section 5 concludes with a discussion. Further details concerning the model,
application and simulation studies are provided as Online Supplement, as well as the
code for the simulations and fitting of the model with the R-package FDboost.

2 Model formulation

Consider a data scenario with N observations of a functional response Y and
respective covariates X. Y is a stochastic process, such that its realized trajectories
yi : T → R, t 7→ yi(t) for i = 1, ...,N represent the response curves over an index
set T . For notational simplicity, we assume that response curves are observed on a
common grid T0 ⊂ T , where T = [0, tmax] is a real interval starting at zero and T0
a finite discrete set of evaluation points. However, the curves could be measured on
different grids as well. As this is the case in many applications, the variable t is referred
to as time variable. Scalar response is contained as special case where T is a one point
set. Let xi = (xi,1, ...,xi,p)> denote the i-th observed covariate vector, that is, realization
of X, which can contain scalar and functional covariates. A functional covariate
may have a different domain S from the response and is denoted as xi,j : S → R,
s 7→ xi,j(s). We suppress potential dependence of S on j in our notation.

We assume that for all t ∈ T the point-wise response distribution FY(t)|X is known
up to the distribution parameters ϑ(t) =

(
ϑ(1)(t), ..., ϑ(Q)(t)

)>
. For instance, for a

Gaussian process, the parameters might represent the conditional mean and variance
over time, that is, ϑ(1)(t) = E(Y(t)|X = x) and ϑ(2)(t) = Var(Y(t)|X = x), suppressing
the dependence on x in the notation. For each parameter an additive regression
model is assumed. The model is specified by

g(q)(ϑ(q)) = h(q)(x) =
J(q)∑
j=1

h(q)
j (x) , q = 1, ...,Q,

where g(q) is a monotonic link function for the qth distribution parameter. This
model structure corresponds to the GAMLSS introduced by Rigby and Stasinopoulos
(2005). However, covariates and response may now be functions. Correspondingly,
ϑ(q) := ϑ(q)(.) and the predictor h(q)(x) := h(q)(x, .) are now functions over the domain
T of the response, for q = 1, ...,Q. For Q = 1 parameter corresponding to the mean,
the model reduces to the functional additive regression model of Scheipl et al. (2015,
2016) and Brockhaus et al. (2015).

Both covariate and time dependency are modelled within the additive predictor
via the effect functions h(q)

j (x, t). The predictor is typically composed of a functional
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Table 1 Overview of possible effect types (adapted from Brockhaus et al., 2015)

Covariate(s) Type of Effect h(q)
j

(none) Smooth intercept β0(t)

Scalar covariate z Linear effect z β(t)
Smooth effect f (z, t)

Two scalars z1, z2 Linear interaction z1 z2 β(t)
Functional varying coefficient z1 f (z2, t)
Smooth interaction f (z1, z2, t)

Grouping variable g Group-specific intercept βg(t)

Group. variable g, scalar z Group-specific linear effect z βg(t)
Group-specific smooth effect fg(z, t)

Group. variables g1,g2 Group-interaction βg1,g2 (t)
Functional covariate x(s) Functional linear effect

∫
x(s)β(s, t) ds

Functional cov. x(s), scalar z Linear interaction z
∫

x(s)β(s, t) ds
Smooth interaction

∫
x(s)β(z, s, t) ds

Functional cov. x(s) over T Concurrent effect x(t)β(t)
Historical effect

∫ t
0 x(s)β(s, t) ds

Effect with t-specific
integration limits

∫ u(t)
l(t) x(s)β(s, t) ds

intercept h(q)
1 (x, t) = β0(t) and linear or smooth covariate effects h(q)

j (x, t), of which
each depends on one or more covariates. The construction of the effects follows
a modular principle, which allows for flexible specification of effect types and is
outlined in the next subsection. Table 1 gives an overview of different effect types
available and Section 2.2 will discuss inherent selection of effects within the fitting
approach.

Apart from the Gaussian, a variety of other distributions can be specified for the
response. In principle, FY(t)|X can be any distribution for which both the likelihood
and its derivatives are computable. The derivatives with respect to the parameters
are required for the model estimation via gradient boosting. For functional response,
usually only continuous distributions are under consideration. However, this does
not necessarily have to be the case (see, e.g., Scheipl et al., 2016). As we built on
the approach of Mayr et al. (2012) for scalar GAMLSS, all of the distributions
implemented in their R package gamboosLSS (Hofner et al., 2017) are directly
available for the present boosting approach. Moreover, they also provide an
interface to use the comprehensive list of distributions available in the R package
gamlss.dist (Stasinopoulos and Rigby, 2019) and custom distributions can be
specified.
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2.1 Construction of effect functions h
(q)
j

As both covariate and time dependency of the functional response are specified by the
effect functions h(q)

j , they play a key role in the framework. We briefly illustrate their
modular structure and refer to Brockhaus et al. (2018b) and Greven and Scheipl
(2017) for further examples and details, as their construction is not new to the
functional GAMLSS. The novelty is, however, that we may now use them in multiple
predictors for multiple parameter functions.

For each effect type, h(q)
j is represented by a linear combination of specified

basis functions, such that the predictor is linear in its coefficients. Multivariate
basis functions are constructed as tensor products of univariate bases providing
flexible modular means of specification (cf. Scheipl et al., 2015), giving the basis
representation

h(q)
j (x, t) =

(
b(q)

Xj (x, t)⊗ b(q)
Yj (t)

)>
θ

(q)
j , t ∈ T . (2.1)

A vector b(q)
Yj of K(q)

Yj basis functions for the time variable is combined with a vector

b(q)
Xj of K(q)

Xj basis functions for the covariate effects. The basis b(q)
Xj (x, t) might be

time dependent, for example, for a functional historical effect. However, for many
effect types, it only depends on covariates, such that we can write b(q)

Xj (x). Applying
the Kronecker product ⊗, a new basis is obtained. Its elements correspond to the
pairwise products of elements in b(q)

Yj and b(q)
Xj . For details, see Online Supplement A.1.

The coefficient vector θ(q)
j ∈ RK(q)

Yj K(q)
Xj specifies the concrete form of the effect. Fitting

the model corresponds to estimating θ(q)
j for all effect functions.

A typical choice for b(q)
Yj (t) is a spline basis. Then, in case of time-independent

covariate basis functions b(q)
Xj , h(q)

j (x0, t) describes a spline curve for a fixed value
x = x0 of the covariate. Usually, quadratic penalty terms are employed in order to
control smoothness of the effect functions (see Section 2.2). A typical effect function
h(q)

j (x, t) depends on a single covariate. For example, for a linear effect zβ(t) of a scalar

covariate z, this yields b(q)
Xj (x, t) = b(q)

Xj (z) = z. In order to obtain a smooth covariate

effect f (z, t), a spline basis can be chosen for b(q)
Xj (z) just like for the time curve, yielding

a tensor product spline basis in (2.1). For a functional covariate x : T 7→ R a historical
effect of the form

∫ t
0 x(s)β(s, t) ds can be constructed using a basis of time-dependent

linear functionals b(q)
j,k (x, t) =

∫ t
0 x(s)ϕk(s) ds, where ϕk(s), k = 1, ...,K(q)

Xj , is a spline
basis and the integral is numerically approximated over the observation grid of x in
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T . Using also a spline basis for b(q)
Yj (t), this corresponds to specifying a tensor product

spline basis for β(s, t).

2.2 Model fit

Component-wise gradient boosting is a gradient descend method for model fitting,
where the model is iteratively updated. In each iteration, the algorithm aims at
minimizing a loss function following the direction of its steepest descent. Instead of
updating the full additive predictor at once, the individual effect functions h(q)

j are
separately fit to the negative gradient in a component-wise approach. These individual
effect models are called base-learners, as they present simple base models that jointly
form the model predictor. In each iteration, only the effect function with the best fit
is updated with a step length ν in the direction of its fit. The component-wise and
stepwise procedure yields automated model selection and allows for fitting models
with more parameters than observations.

Let f
(
y(t)

∣∣ϑ(t)
)

= fh
(
y (t)

∣∣h (x, t)
)

with h = (h(1), . . . ,h(Q))> denote the
conditional probability density function (PDF) of the response at t ∈ T for a
given parameter setting. We define the point-wise loss function to be the negative
log-likelihood

% (y (t) ,h (x, t)) = − log fh
(
y (t)

∣∣h (x, t)
)
.

The functional GAMLSS loss function is then obtained as

`(y,h(x)) =
∫
T
% (y( t ),h( x, t )) dt ,

the integral over the point-wise loss functions over T . Therefore, we assume that fh
and h are chosen such that the integral exists, which is no restriction in practice.
The aim of gradient boosting is to find the predictor

hoptimal = argmin
h

E [ `(Y,h(X)) ] = argmin
h

∫
T
E [ % (Y( t ),h( X, t )) ] dt (2.2)

minimizing the expected loss.
Based on data (yi,xi)i=1,...,N, this is estimated by optimizing the empirical mean

loss. Hence, the estimated predictor vector ĥ = (ĥ(1), ..., ĥ(Q))> is given by

ĥ ≈ argmin
h

1
N

N∑
i=1

ˆ̀ (yi,h(xi)) , (2.3)

where ˆ̀ (yi,h(xi)) =
∑

t∈T0
% (yi( t ),h( xi, t )) is an approximation of the loss. However,

to avoid over-fitting, the optimization is generally not run until convergence. Instead,
a re-sampling strategy is employed to find an optimal stopping iteration.
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The minimization in (2.2) can be seen to minimize the Kullback–Leibler divergence
(KLD) of the model density fh to the true underlying density. Hastie and Tibshirani
(1990) formulate a similar regression aim for GAMs. However, in the functional
case, we consider the point-wise KLD integrated over the domain T .

The base-learners fitted in each boosting iteration correspond to the effects
h(q)

j (x, t) with j = 1, ..., J(q) and q = 1, ...,Q. For any given loss function, they represent
single regression models, which are fitted to the gradient of the loss function via
penalized least squares. The coefficients θ(q)

j of the respective h(q)
j , as defined in

equation (2.1), are subject to a quadratic penalty of the form (θ(q)
j )>P(q)

j θ
(q)
j , where

P(q)
j is a penalty matrix. As described for bivariate smooth terms, for example,

in Wood (2006) or Brockhaus et al. (2015), the penalty matrix is constructed
as P(q)

j = λ(q)
Xj

(
P(q)

Xj ⊗ IK(q)
Yj

)
+ λ(q)

Yj

(
IK(q)

Xj
⊗ P(q)

Yj

)
with smoothing parameters λ(q)

Yj , λ
(q)
Xj ≥ 0

and penalty matrices P(q)
Yj ∈ RK(q)

Yj ×K(q)
Yj and P(q)

Xj ∈ RK(q)
Xj ×K(q)

Xj for the time basis b(q)
Yj (t) and

covariate basis b(q)
Xj (x, t), respectively. For instance, a common choice for B-spline

bases is a first, or second-order difference penalty matrix yielding P-Splines (compare
Eilers and Marx, 2010). Base-learners for group effects might be regularized with a
ridge penalty. If no penalization should be applied for either the response or the
covariates, this can also be obtained by setting λ

(q)
Yj = 0 or λ(q)

Xj = 0, respectively.
Thomas et al. (2018) compare different gradient boosting methods for GAMLSS,
which can all be analogously generalized to functional response. While the ‘cyclic’
method and a ‘non-cyclic’ method are available in the R package gamboostLSS,
only the algorithm of the ‘non-cyclic’ method is described here in detail. Comparing
it to the ‘cyclic’ method, it performed better in simulations (Online Appendix Table
3), is faster (Online Appendix Figure 11) and provides the advantage of unified model
selection across parameters ϑ(q), q = 1, . . . ,Q.

Algorithm: gradient boosting for functional GAMLSS

1.To set up the model specify

(a) a functional loss function ` with point-wise loss % corresponding to the assumed response distribution with
Q distribution parameters

(b) the base-learners by choosing the desired bases for the effects h(q)
j (x, t) = (b(q)

Xj (x, t)⊗ b(q)
Yj (t))>θ(q)

j , penalty

matrices P(q)
j for all j = 1, ..., J(q) and q = 1, ...,Q and their respective smoothing parameters.

(c) gradient boosting hyper-parameters: the step-lengths ν(q)
∈ ]0,1] for q = 1, ...,Q and the maximum number

of iterations mstop.

Initialize the coefficients θ(q)[0]
j for the initial predictor h[0](xi, t), for example, to 0, and set m = 0.

2.For m = 0, ...,mstop − 1 iterate:

i)Find best update for each distribution parameter.
For q = 1, ...,Q do:
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(a) Evaluate negative partial gradients for i = 1, ...,N at the current predictor h[m]

u(q)
i (t) := −

∂%

∂h(q)

(
yi(t),h

) ∣∣∣∣∣
h=h[m](xi,t)

(b) Fit base-learners to the gradients, that is, for j = 1, ..., J(q) find θ̃
(q)
j with

θ̃
(q)
j := argmin

θ
(q)
j

{ N∑
i=1

∑
t∈T0

(
u(q)

i (t) −

(
b(q)

Xj (xi, t)⊗ b(q)
Yj (t)

)>
θ

(q)
j

)2

+ (θ(q)
j )>P(q)

j θ
(q)
j

}
•Determine the best-fitting base-learner with index ̃ following the least squares criterion

̃ := argmin
j

N∑
i=1

∑
t∈T0

(
u(q)

i (t) − (b(q)
Xj (xi, t)⊗ b(q)

Yj (t))> θ̃
(q)
j

)2

•Determine updated predictor candidate, that is, determine q
?h where only the coefficients of the

best-fitting base-learner are updated, such that the coefficients are given by

q
?θ

(p)
k =

 θ
(p)[m]
k + ν(p) θ̃

(p)
k for p = q,k = ̃,

θ
(p)[m]
k else

end for.
ii)Select best update across the distributional parameters and update the linear predictor accordingly

h[m+1] = argmin
q
?h

N∑
i=1

ˆ̀ (yi, q
?h(xi)

)
end for.

The smoothing parameters for the penalty matrices P(q)
jY can be chosen indirectly

specifying the base-learner degrees of freedom, as described by Hofner et al. (2011).
They are typically specified such that equal degrees of freedom for all base-learners are
attained to ensure a fair base-learner selection. Note that these degrees of freedom
only specify the flexibility of each base-learner for one iteration, while the final
effective degrees of freedom can be higher due to repeated selection of the same
base-learner. ν = 0.1 is a popular choice for the step-length (Bühlmann and Hothorn,
2007). It should be chosen small enough to prevent overshooting. Yet, too small
values greatly increase computation time. The optimal stopping iteration mstop, with
respect to equation (2.2), is the main tuning parameter. It can be estimated using,
for example, curve-wise cross-validation or bootstrapping. As determining h[mstop]

involves computation of all earlier predictors, this can be done very efficiently (and
in parallel over cross-validation folds). Early stopping induces regularization of effect
functions and provides automated model selection: effect functions h(q)

j which were
never selected drop out of the model. As each base-learner is fitted separately, models
with more covariates than observations can be fit and computational effort scales
linearly in the number of covariate effects. By appropriately decomposing terms
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into, for example, a linear and a non-linear base-learner, we cannot only select
covariates, but also distinguish linear effects from smooth effects depending on the
same covariate (compare Kneib et al., 2009) and covariate interactions from additive
marginal effects (see Online Appendix A.2).

3 Analysis of bacterial interaction in E. coli

The coexistence of various bacterial species is a key factor in environmental
systems. Equilibria in this biodiversity stand or fall with the species’ interaction.
Certain bacteria strains produce toxins and use them to assert themselves in
bacterial competition. von Bronk et al. (2017) establish an experimental set-up with
two cohabiting Escherichia coli bacteria strains: a ‘C-strain’ producing the toxin
ColicinE2 and a colicin sensitive ‘S-strain’ pipetted together on an agar surface.
Single bacteria of the C-strain population sacrifice themselves in order to liberate
colicin. The emitted colicin diffuses through the agar and kills numerous S-strain
bacteria on contact. On the other hand, the S-strain might outgrow the C-strain
and starts in a favoured position of an initial ratio S:C of about 100:1. The arising
population dynamics are influenced by external stress induced with the antibiotic
agent Mitomycin C (MitC). MitC slightly damages the DNA of the bacteria. While
it has little effect on the S-strain, it triggers colicin production in the C-strain as
an SOS-response. A higher dose of MitC increases the fraction of colicin producing
C-bacteria and, thus, colicin emission (von Bronk et al., 2017).

At a total of N = 334 observation sites, bacteria under consideration are exposed
to one of four different MitC concentrations. Bacterial growth curves Si(t) of the
S-strain and Ci(s) of the C-strain, i = 1, ...,N, are observed over 48 hours. Their values
correspond to the propagation areas of the bacterial strains, which are obtained
from the automated image segmentation procedure implemented by von Bronk et al.
(2017). S- and C-strain areas can be distinguished as the bacteria are marked with red
and green fluorescence, respectively. The resulting area growth curves are measured
on a fixed time grid with G = 105 measurements per curve. The experiments are
conducted in batches of about 40 bacterial spots and with two batches for each
MitC concentration. In order to keep track of bacterial growth, the zoom level of
the microscope was adjusted after 121/4h, 181/2h and 331/2h. As the performance of
the automatic bacterial area segmentation may depend on the zoom level, it has to
be incorporated into the analysis.

3.1 Model for S-strain growth

In order to obtain insights into bacterial interaction dynamics, we model the
i-th propagation area curve of the S-strain Si(t) in dependence on the C-strain
growth and other covariates. While usually Si(t) > 0, it might equal zero, if the
S-strain is completely extinct or masked by the fluorescence of the C-strain.
Therefore, we assume a conditional zero adjusted gamma (ZAGA) distribution
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for Si(t), which is a mixed continuous and discrete distribution with its PDF
given by fZAGA

(
si
∣∣µi, σi/µi,pi

)
= pi δsi + fGA(si

∣∣µi, σi/µi)(1− δsi) with δsi = 1 if si = 0
and 0 otherwise and fGA the density of a gamma distribution parametrized by
its mean µi(t) and the coefficient of variation σi(t)/µi(t) with σi(t) the standard
deviation (Stasinopoulos and Rigby, 2019). This corresponds to some extent to
the zero adjustment in a zero-inflated Poisson model. However, unlike the Poisson
distribution, the gamma distribution is continuous and does not have a point mass
at zero by itself. For Si(t) > 0, it offers the flexibility to model both a location and a
scale parameter conditional on the survival of the S-strain at time t, while in addition,
we model the probability of extinction of the S-strain, pi(t) = P (Si(t) = 0) over time.

Each component of the resulting parameter vector ϑi(t) =
(
ϑ

(µ)
i (t), ϑ(σ/µ)

i (t), ϑ(p)
i (t)

)>
=(

µi(t),
σi(t)
µi(t)

,pi(t)
)>

is modelled as

g(q)
(
ϑ

(q)
i (t)

)
= β(q)

0 (t) + β(q)
MitCi

(t) + β(q)
Batchi

(t) + h(q)
1 (Ci , t) + h(q)

2 (C′i, t)

for q ∈ {µ, σ/µ,p}, with link-functions g(µ) = g(σ/µ) = log and g(p) = logit, and with
historical effects h(q)

j (Ci, t) =
∫ t

0 Ci(s)β
(q)
j (s, t) ds (compare Brockhaus et al., 2017).

For each distribution parameter, the model includes a functional intercept β(q)
0 (t).

As there are only four MitC concentrations employed, they are considered as
categorical grouping variable and represented by group-specific intercepts β(q)

MitCi
(t)

per MitC level centred around the functional intercept. As a functional random
intercept, we include an additional group-specific intercept β(q)

Batchi
(t) to compensate

for batch effects, which are centred around β(q)
MitCi

(t) in order to preserve identifiability
of the functional intercept. The impact of the C-strain on S-strain growth is modelled
using historical effects with coefficient functions β(q)

j (s, t). Historical effects are
included both for the current C-strain propagation Ci(s) and for its derivative C′i(s)
reflecting the current C-strain growth. The covariate curves are centred around
their empirical point-wise mean curve, such that 1

N

∑N
i=1 Ci(s) = 0 for each s, and

scaled with the corresponding standard deviation, such that sd(C(s)) = 1. For C′i(s)
correspondingly. Doing so, the coefficient functions can be uniformly interpreted over
the whole time span. By integrating, the historical effect includes information about
the curves from time point t = 0 to the current time point t. For p, we include an
additional step-function base-learner to capture the different zoom levels applied
during the experiment at fixed known time points, which can lead to different
visibility of small S populations. Corresponding effects are not expected to be
necessary for µ and σ/µ and are thus not included, as they might even lead to spurious
boundary effects in this experimental set-up. Apart from the step function, all effect
functions are modelled with cubic P-splines and second-order difference penalties,
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such that for the functional intercepts we penalize deviations from exponential
growth when employing a log-link for the mean and the scale parameter. For the MitC
and batch effects, a ridge-type penalty over factor levels is utilized to achieve the same
number of effective degrees of freedom for all base-learners. A common step-length
of ν = 0.1 is used for µ, σ/µ and p. We fit the model with both implemented GAMLSS
boosting methods and decide for the ‘non-cyclic’ method, described in Section 2.2,
which performed better in ten fold curve-wise bootstrapping and is computationally
more efficient. With a maximum of 3 000 boosting iterations, the model fit took less
than 16 min on a 64-bit Windows laptop followed by 156 min of bootstrapping
without parallelization. The latter can be easily accelerated by running it on several
cores in parallel.

3.2 Results

3.2.1 MitC effect and effect of experimental batches
An overview of the effects of the toxin MitC can be found in Figure 1. We observe
that mean S-strain growth is slightly increasing for low MitC levels compared to no
MitC, but is particularly higher for MitCi = 0.1 µg/ml. This indicates that, if Si(t) ≥ 0,
the S-strain even grows better under this condition.

For the standard deviation, we observe a gradual but distinct rise with the MitC
level. Due to the log-link we may not only interpret effects on the shape parameter σ/µ
but also on σ: effect functions h(σ)

j for σ are obtained as h(σ)
j = h(µ)

j + h(σ/µ)
j . In this plot,

we choose to depict σ instead of σ/µ, as it is more straightforward to interpret on the
response level. We observe that positive skewness increases with MitC concentration.

It is important to note, that control experiments indicate no considerable effect
of MitC on S-strain growth (von Bronk et al., 2017). Thus, present covariate effects
of MitC reflect effects of C-cells which cannot be explained by the observed C-strain
growth curves. Showing distinct shifts at the zoom points, pi(t) = P (Si(t) = 0) seems
to depend highly on the zoom level of the microscope. This suggests, that besides full
extinction of the S-strain, Si(t) = 0 is also linked to limitations in area recognition.
Additionally, the probability for Si(t) = 0 is higher for positive MitC concentrations.
Overall, the conditional mean for positive Si(t) but also the variability and probability
for zero increase with the MitC concentration.

The smooth functional effects for each of the eight experimental batches are
relatively small in size. For the conditional mean µ, they cause an average deviation
of about 3% of the intercept growth curve (geometric mean over observed time points
and batches); for the scale parameter σ/µ, the average deviation is about 9%; and for
p about 6%. While point-wise 95% bootstrap confidence interval, type uncertainty
bounds (Online Appendix Section E.4) show less accuracy for the batch effects (in
particular, those on p(t)), they indicate a high estimation precision for the MitC
effects and functional intercepts. This corresponds to our findings in the simulation
study in Section 4.
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Figure 1 Estimated point-wise mean (top) and standard deviation (centre) of the S-strain growth curves
Si (t) conditional on Si (t) > 0 and the extinction probabilities (bottom) of S-strain growth curves for each
MitC concentration. Long-dashed curves correspond to the functional intercept, dashed vertical lines to the
zoom level change-points. Thick solid lines indicate the estimates, transparent ribbons reflect the
point-wise inner 25%, 50% and 90% probability mass intervals of the estimated gamma distributions
conditional on Si (t) > 0 (top)

3.2.2 C-strain effect
The base-learner for the C-strain area propagation Ci(s) effect on µi(t) is never
selected throughout the boosting procedure and the effect on σi(t)/µi(t) is small (Online
Appendix Figure 16). Thus, we only discuss the effect of the area increment C′i(s)
here (Figure 2). Looking at the C′-µ-effect (effect of C′(s) on mean S area), we can
distinguish two main impact phases.

In the earlier growth phase with s ≤ 10 h, we observe a positive C′-µ-effect
concerning almost the whole time curve of the S-strain. That means that
C-strain growth above [below] the average indicates increased [decreased] S-strain
propagation. Both colicin production and colicin secretion are costly to the
population and slow down C-propagation. A low value of C′i(s) indicates early colicin
secretion. We conclude that this first phase delineates a time window, where colicin
emission is able to severely harm the S-strain population.
In the second phase for s > 10 h, we observe a negative C′-µ-effect, which is maximal
at short time lags and slowly fading. This likely reflects spatial competition of the S-
and the C-strain (compare Online Appendix Figure 14). At this time, bacteria have
grown together to coherent formations and strains obstruct expansion of each other.
Even though the C′-µ-effect offers this clear interpretation, it is rather small compared
to, for example, the MitC effect on µ(t). Moreover, while in simulation studies we
observe a rather high estimation precision for most of the historical effects (Online
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Figure 2 Left: Coefficient function β(µ)(s, t) for the historical effects of C ′i (s) on the mean of S-strain growth
curves. Right: the corresponding plot for the effect of C ′i (s) on the scale parameter σi (t)/µi (t). The y-axis
represents the time line for the response curve, the x-axis represents the one for the C-strain growth curve.
The change-points in zoom level are marked with dashed lines. For a fixed s = s0, β(µ)(s0, t) and β(σ/µ)(s0, t)
describe the effect of the normalized covariate at time s0 on the S-strain growth curve over the whole
remaining time interval.

Appendix Figure 12), 95% bootstrap confidence interval-type uncertainty bounds
indicate distinctly less precision than for the MitC-effects (Online Appendix E.4).
However, the historical C′-σ/µ-effect also corroborates the distinction into two phases
of interaction: While in the first phase there is a negative effect of C-strain growth,
the effect turns positive in the second phase. Thus, relative variability is increased
for slow C-strain growth early in the experiment (colicin production) and for fast
C-strain growth later in the experiment (areal competition).

For the probability pi(t) = P(Si(t) = 0) both the effects of Ci(s) and C′i(s) were
selected. Corresponding plots can be found in the Online Appendix Figure 16.
However, as already indicated by the marked cuts between the different zoom levels
(Figure 1), vanishing of the S-strain is particularly sensitive to the precision of the
area recognition. Hence, we are careful with interpreting the effects further in terms
of the bacterial dynamics.

4 Simulation studies

4.1 Simulation set-up

Model-based gradient boosting approaches to non-functional or one-parameter
special cases of the present model are well tested with respect to their fitting
performance and variable selection quality (e.g., see Brockhaus et al., 2018a;
Brockhaus et al., 2015; Thomas et al., 2018; Mayr et al., 2012) showing a typically
slow over-fitting behaviour. However, modelling functional response variables with
GAMLSS presents an important additional challenge: high auto-correlation in
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response functions may lead to severe over-fitting when estimating typically complex
base-learners. While this is already the case for non-GAMLSS functional response
models, it gets particularly acute for GAMLSS models with multiple predictors—if
it is not properly controlled for by early stopping based on curve-wise re-sampling
methods. We focus on this issue in an extensive simulation study investigating the
fitting performance for different levels of in-curve dependency while also comparing
different sample sizes, choices of hyper parameters, the non-cyclic and cyclic fitting
method, and different (curve-wise) re-sampling methods. Moreover, we consider three
different models in the simulation study: one model is directly based on the bacterial
interaction scenario in Chapter 3 taking the model estimated on the original data as
true underlying model; and two models with a Gaussian response distribution and
categorical effects or more complex smooth (interaction) effects of metric covariates,
respectively. There, we randomly generate different sets of true underlying effects
in order to obtain as general results as possible. In the Gaussian case, where this
is possible, we also compare to the penalized likelihood approach of (Greven and
Scheipl, 2017) which is implemented in the R package refund (Goldsmith et al.,
2018). For details concerning the simulation set-up, the data generation and a more
thorough discussion of the results, please refer to the corresponding sections in the
Online Supplement.

4.2 Simulation results

Considering the mean KLD of the estimated to the true underlying model, we observe
that for conditionally independent measurements within response curves, the optimal
stopping iteration mstop is typically far higher than for dependent or highly dependent
measurements (Figure 3 (left)), that is, in the independent case a model can be fit
distinctly longer without resulting in over-fitting. At the same time, we find that
mstop selected by curve-wise bootstrapping (performing slightly better than other
curve-wise re-sampling methods) reflects these differences very well, which shows
that it is desirably sensitive to in-curve dependency and prevents over-fitting. The
resulting regularization improves the estimation accuracy strongly in particular for
complex base-learners. The effect becomes especially visible when comparing it to the
penalized likelihood (refund) approach (Figure 3 (right)), which currently lacks a
corresponding regularization mechanism for GAMLSS models: When only modelling
the response mean, there are typically curve-specific functional random intercepts
included in order to account for in-curve dependency; however, they would interfere
with modelling the marginal standard deviation in a separate predictor and are,
thus, not included into the GAMLSS-type model. Measuring the fitting error in Root
Mean Squared Error (RMSE), the refund approach shows a better performance in
the independent case. However, it exceeds the RMSE of our FDboost approach by
far in realistic scenarios with high in-curve dependency.

In the application motivated simulation scenario, we observe that most of the
RMSEs for the estimated covariate effects are lower than 10% of the effect range
even in the highly dependent setting (Online Appendix Figure 12). Exceptions are
the functional intercept in the predictor for the extinction probability p(t) being
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Figure 3 Plots referring to a Gaussian model scenario including smooth covariate effects fϑ(xj , t) for
ϑ ∈ {µ, σ}, the mean and standard deviation over time t ∈ [0,1], and for two metric covariates j ∈ {1,2}, and
a smooth interaction fµ(x1,x2, t) effect for µ (200 model fits per combination of sample size N and in-curve
dependency level). Left: Violin-plots reflecting the empirical density of the stopping iterations mstop

selected via 10-fold bootstrap (left) and for the KLD-optimal mstop (right) for N = 334 sampled curves.
Right: Bar-plots indicating the mean RMSE of the different effects for our approach based on gradient
boosting (FDboost, dark) and the approach based on penalized likelihood (refund, light). The highly
dependent setting is the most realistic in many functional data scenarios and is—as far as the analogy can
be drawn—the closest to the correlation structure in our application.

composed of a smooth functional intercept and a step function, and the σ/µ-effect of
C(t), which has a comparably large relative RMSE, due to its small effect size, while
having a quite small absolute RMSE. Although we do not focus on variable selection
in this article, the C-µ-effect and the smooth (non-step) functional intercept for p(t),
which were not selected in the original model fit in Chapter 3, serve as nuisance effects
in the application motivated simulation. While the sensitivity is quite high for most
of the non-zero effects (mostly 100%, minimum 70%), the nuisance C-µ-effect is still
selected in rather many simulation runs (44% independent, 49% dependent, 33%
highly dependent scenario), see Online Supplement Figure 13. To improve on this,
stability selection as applied, for example, by Brockhaus et al. (2017) and Thomas
et al. (2018) might be used. However, the mean RMSE of the effect is still extremely
low indicating that even if the effect is selected it is very small in size. Overall, we
observe the effects to be estimated quite well despite in-curve dependency and the
high complexity of the model in both the Gaussian and the application motivated
simulation studies.
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5 Discussion and outlook

The functional GAMLSS regression framework we present in this article allows
for very flexible modelling of functional responses. We may simultaneously model
multiple parameters of functional response distributions in dependence of time and
covariates, specifying a separate additive predictor for each parameter function. In
addition, point-wise distributions for the response curves beyond exponential family
distributions can be specified. Doing so a vast variety of new data scenarios can
be modelled. These new possibilities have shown to be crucial, when applying the
framework to analyse growth curves in the present bacterial interaction scenario.

The results we obtain confirm and extend previous work: Focusing on the outcome
after 48 hour and on the number of C-clusters at the edge of the S-colony after 12
hour, von Bronk et al. (2017) already identify a phase of ’stochastic toxin dynamics’
followed by a phase of ’deterministic dynamics’ similar to the two phases of bacterial
interaction we find in the historical functional effects of the C-strain growth. The
functional regression model not only provides new evidence for this distinction from
a completely new perspective, but now also allows to quantitatively discuss the effect
of the C-strain on the S-strain over the whole time range: We now observe C-growth
to have a positive effect on S-growth in the early phase and a negative effect in the
later phase. The separation of these two phases appears even more distinct in the
effect on the relative standard deviation, which we would not be able to recognize
without GAMLSS.

Regarding the fraction of S- and C-strain area after 48 hour von Bronk et al. (2017)
categorized three different states of the bacterial interaction: for no MitC, there is
either dominance of the S-strain or coexistence; for a moderate MitC concentration,
there occurs a splitting into two extremes—either dominance of the S-strain or
extinction; and for the highest MitC concentration, the toxin strategy of the C-strain
fails and the S-strain either dominates or both strains go extinct. Now, referring to the
complete growth curves, our results also reflect this categorization: If MitC is added,
and conditional on a positive area, the mean S-strain growth increases, whereas also
the probability for zero area and the variance increase. However, these differences
would not be captured by non-GAMLSS regression models for the mean only, as the
mean growth curves not conditioning on the response being positive are very similar
for no and moderate MitC concentration (see Online Appendix Figure 17). Apart
from that, the framework provides the flexibility to account for special challenges
in the experimental set-up, such as dependencies between observations in the same
experimental batch and differences between zoom levels of the microscope.

In simulation studies, we confirm that by fitting our models via component-wise
gradient boosting we are capable of estimating even complex covariate effects on
multiple distributional parameter functions. As it prevents over-fitting, early stopping
of the boosting algorithm based on curve-wise re-sampling plays a key role: It enables
us to face settings with highly auto-correlated response curves without explicitly
modelling the correlation structure.
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Supplementary material

Supplementary material including an Online Appendix with further details and
illustrations, as well as R code and data used for the analysis of bacterial interaction
and simulations is available from http://www.statmod.org/smij/archive.
html
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