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Abstract

Epitope-based vaccines have revolutionized vaccine research in the last decades. Due to

their complex nature, bioinformatics plays a pivotal role in their development. However,

existing algorithms address only specific parts of the design process or are unable to provide

formal guarantees on the quality of the solution. We present a unifying formalism of the gen-

eral epitope vaccine design problem that tackles all phases of the design process simulta-

neously and combines all prevalent design principles. We then demonstrate how to

formulate the developed formalism as an integer linear program, which guarantees optimal-

ity of the designs. This makes it possible to explore new regions of the vaccine design

space, analyze the trade-offs between the design phases, and balance the many require-

ments of vaccines.

Author summary

Diseases such as Cancer, AIDS, Hepatitis C, and Malaria, infect and kill millions of peo-

ple every year. In spite of all our efforts, a cure for those diseases remains elusive.

Among all possible approaches, personalized vaccines have shown promising results in

several clinical trials. These vaccines must be designed computationally in order to

cover the enormous variations existing in the diseases and in the patients themselves.

Current methods are lacking in one of several aspects, as they only focus on a specific

part of the design problem, on a specific type of vaccine, or are unable to guarantee opti-

mality of the solution. In this work, we present a new method to design vaccines that

does not suffer from any of these limitations: through a holistic view on the design prob-

lem, it can find the best solution for the given design constraints. The flexibility of our

method allows us to tune the balance of the different design criteria, perform accurate

and reliable comparisons among different solutions, and properly evaluate the trade-

offs involved.
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Introduction

In recent years, vaccines based on T-cell epitopes, so-called epitope-based vaccines (EV), have

become wildly used as therapeutic treatments in case of cancer immunotherapy [1–4] and pro-

phylactically against infectious diseases [5–10]. Compared to regular attenuated vaccines, EVs

offer several advantages [11]. Since EVs are based on small peptide sequences, they can be rap-

idly produced using well-established technologies and easily stored freeze-dried [11]. EVs also

do not bare the risk of reversion to virulence as they do not contain any infectious material,

and the selection of epitopes can be tailored to address the genetic variability of a pathogen

and that of a targeted population or individual increasing its potential efficacy [11].

For an EV to trigger an immune response, the polypeptides have to be delivered to the cyto-

sol of antigen-presenting cells. There, they are digested and cleaved in short pieces by the pro-

teasome or other proteolytic enzymes together with other discarded proteins. Epitopes

correctly recovered from the vaccine construct have a chance to bind to the major histocom-

patibility complex class I (MHC) and be presented on the surface of the cell via the cross-pre-

sentation pathway [12]. Naive CD8+ T-cells, recognizing such an epitope-MHC complex, are

activated and start circulating, hunting for identical complexes on the surface of infected cells.

To aid the EV design process, bioinformatics approaches have been developed to (1) dis-

cover potential candidate epitopes, (2) select a set of epitopes for vaccination, and (3) assemble

the selected epitopes into the final vaccine (Fig 1). Three different design principles can be fol-

lowed to achieve this last step. In epitope cocktails (Fig 1(3a)), the epitopes are not assembled

into a polypeptide but delivered separately, effectively eliminating the assembly step altogether.

Toussaint et al. proposed an approach for epitope cocktail vaccine design that selects a fixed

number of epitopes to maximize vaccine immunogenicity using integer linear programming

(ILP) [13]. Lundegaard et al. proposed a greedy algorithm for epitope selection to maximize

antigen and population coverage using a sub-modular function formulation [14].

A second design principle assembles the epitopes in a so-called string-of-beads vaccines

(Fig 1(3b)), in which the epitopes are connected directly or by short spacer sequences into

long polypeptide sequences. Vider-Shalit et al. for example developed a genetic algorithm that

selects epitopes to maximize the coverage of viral and human variation while simultaneously

optimizing the ordering of the string-of-beads to increase efficacy [15]. Toussaint et al.
extended their previous framework to find the optimal string-of-beads ordering based on a

traveling salesperson problem (TSP) embedding [16], which has been recently extended by

Schubert & Kohlbacher to incorporate optimal spacer sequences as well [17].

Recent studies suggest that through the usage of artificial proteins of overlapping epitopes,

so-called mosaic vaccines (Fig 1(3c)), both depth and breadth of the T-cell response can be

remarkably increased [5–10, 18]. Mosaic vaccines constitute an interesting alternative to

string-of-beads EVs, as they incorporate many more epitopes within the same vaccine length

Fig 1. Epitope-based vaccine pipeline. An epitope-based vaccine pipeline is comprised of three major steps: (1) epitope discovery, (2) selection, and (3)

assembly. Different types of vaccine design exist: (3a) epitope mixture, (3b) string-of-beads, and (3c) mosaics.

https://doi.org/10.1371/journal.pcbi.1008237.g001

PLOS COMPUTATIONAL BIOLOGY Vaccine design as tours on graphs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008237 October 23, 2020 2 / 24

Funding: ED is supported by the Munich School

for Data Science (MuDS, https://mu-ds.de/, Award

Number HIDSS-0006 from the Helmholtz

Association). BS acknowledges financial supported

by the Postdoctoral Fellowship Program of the

Helmholtz Zentrum Muenchen (https://www.

helmholtz-muenchen.de/fellows/index.html). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008237.g001
https://doi.org/10.1371/journal.pcbi.1008237
https://mu-ds.de/
https://www.helmholtz-muenchen.de/fellows/index.html
https://www.helmholtz-muenchen.de/fellows/index.html


[19]. This is especially useful for vaccine development against highly polymorphic viruses like

Influenza or the Human Immunodeficiency Virus (HIV). A single mosaic vaccine can be

designed to cover the observed variability of the virus by targeting multiple antigens, thereby

increasing the potential of obstructing virus escape pathways [7]. To aid the design of such

mosaic vaccines, Fischer et al. introduced a genetic algorithm that constructs a mosaic protein

maximizing the number of nine-mer peptides of an antigen pool [20].

Although multiple algorithms exist to aid EV design, they either lack a theoretical founda-

tion, or only model a sub-problem of the entire design problem. Algorithms in the former cat-

egory cannot provide any guarantees on the quality of the solution and can be arbitrarily far

away from the optimal one, which makes comparisons of different designs potentially unreli-

able. Algorithms in the latter category, in contrast, are unable to capture the trade-offs between

different design stages, thus limiting the space of EV design that can be explored.

In this work, we, therefore, develop a rigorous mathematical formulation that models the

entire design process—from epitope selection to assembly—unifies all EV design principles,

and can be solved to optimality at the expense of potentially higher computational cost. We

then use this framework to explore the trade-off between optimal epitope selection and opti-

mal epitope assembly for string-of-beads vaccines. We also design a cocktail of short polypep-

tides that have the same properties of a much longer vaccine. We study mosaic vaccines,

showing their advantages over string-of-beads in terms of immunogenicity, coverage, and con-

servation, and give recommendations on which settings to tune for designing effective mosaic

EVs. We finally analyze the robustness of our framework in terms of the different required

inputs, and show how to reduce the computational burden with little compromise on the qual-

ity of the solution.

Results

A graph theoretical formalism combines all EV design principles

The first step in a vaccine design pipeline is to obtain a set of potential epitopes to be included

in the vaccine. These epitopes are short subsequences derived from antigens of pathogens tar-

geted by the vaccine, identified by experiments or via computational prediction methods. In

this work, we focus on MHC class I and use computational models to identify epitopes of

length nine, but the framework remains independent from the method of epitope discovery

and peptide length.

All three EV design principles try to maximize the vaccine’s potential to invoke a strong

immune response. However, each design principle does so by focusing on different aspects:

epitope mixture vaccines seek a subset P of k epitopes that together have the highest chance of

invoking an effective immune response I(P). Similarly, the string-of-beads design problem

seeks to find a polypeptide comprised of k concatenated epitopes that simultaneously maxi-

mize the vaccine efficacy I(P) and the recovery likelihood of each epitope by the proteasome,

which is influenced by the ordering of the epitopes in the construct [21]. In contrast, the

mosaic design problem is concerned with constructing an artificial antigen P of fixed length h
comprised of potentially overlapping epitopes with maximal efficacy I(P). These design princi-

ples can be further generalized to allow the composition of a cocktail of n separate polypeptides

P1, . . ., Pn that jointly optimize the vaccine efficacy. These three design principles can be uni-

fied under a single mathematical framework based on a graph encoding of the optimization

problem (Fig 2).

We formulate the generalized EV design problem as a combinatorial optimization problem

on a weighted, directed graph G(V, E, w), where the vertices V represent the epitopes and the

weight w(�) of the edges E determine the design of the EV. We also add an artificial node s
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representing the N- and C-termini of the polypeptides, connecting it to every vertex v 2 V
such that w(esv) = a and w(evs) = b, with design-dependent weights a; b 2 R. To find the opti-

mal EV in Gð~V ; ~E;wÞ, with ~V ¼ V [ fsg and ~E ¼ E [ fðs; vÞ; ðv; sÞjv 2 Vg, we seek n subsets

P1; . . . ; Pn �
~V of size at most k + 1 that only intersect at s and together maximize the vaccine’s

immunogenicity I : 2V ! R. Furthermore, their simple tours H(P1), . . ., H(Pn) start and end

at s 2 ~V and weigh at most h 2 R (Eq 1). Here, we use the term simple tour to refer to a closed

walk with no repeated vertices except for s, which only appears in first and last position.

Maximize I
[n

i¼1

Pinfsg

 !

Subject to
X

e2HðPiÞ

wðeÞ � h i 2 ½1; n�

jPij � kþ 1 i 2 ½1; n�

Pi \ Pj ¼ fsg i 6¼ j 2 ½1; n�

Where Pi �
~V i 2 ½1; n�

IðPÞ is the immunogenicity of P � V

HðPiÞ is a simple tour visiting the vertices in Pi i 2 ½1; n�

ð1Þ

Similar constrained design problems appear in genome assembly [22], and have been exten-

sively studied in the field of operations research under the name of price collecting traveling

Fig 2. The graph encoding of the vaccine design problem. Vertices represent epitopes and edge weights are design-

dependent. By jointly modeling the epitope selection and vaccine assembly problem, we seek n subsets of vertices

(n = 3 in the figure), each representing a separate polypeptide (blue, yellow and red in the figure), with the highest

immunogenicity, whose simple tours start from and end in a placeholder node s, and are shorter than given limits in

terms of the number of vertices k and edge-weight sum h. (a) The edge weights are simply ignored for epitope

mixtures. (b) For string-of-beads, the edge weights represent the negative log-likelihood of being cleaved at the

junction site of the two connecting epitopes, so that low total edge weight is achieved by selecting epitopes that are

likely to be separated correctly upon proteasomal cleavage. (c) The weights in mosaic designs represent the added

length to the mosaic vaccine once the two connecting epitopes are joined with maximum overlap, so that low total

edge weight results in shorter polypeptides.

https://doi.org/10.1371/journal.pcbi.1008237.g002
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salesperson, bank robber, or team orienteering problem [23]. Importantly, they are known to

be NP-hard [24].

In the absence of comprehensive vaccine design benchmarks that would allow investigating

different contributing properties to vaccine efficacy, we define the vaccine immunogenicity I
(P) vaguely as the ability to induce a broad immunization in a target population represented

by a set of prevalent MHC molecules against a given polymorphic antigen pool. However, the

present framework and theoretical results are agnostic to the choice of immunogenicity

function.

Therefore, we used a simple linear functional form for I(P) as proposed by Toussaint et al.
[13], which assumes that each epitope contributes independently to the vaccine’s overall

immunogenicity with respect to the target population represented by a set of MHC alleles:

IðPÞ≔
X

v2P

X

a2A

paiva ð2Þ

where pa is the observed frequency of MHC allele a 2 A within the target population and iva is

the individual immunogenicity generated by epitope v bound to MHC molecule a. We approx-

imate the latter with the log-transformed IC50 binding strength between the epitope and the

MHC complex, as no sufficiently accurate T-cell reactivity prediction models currently exist.

The binding strength can predicted by machine learning algorithms such as NetMHCpan [25],

PickPocket [26], or MHCflurry [27].

Adaptations for epitope mixture design. We ignore the edge weight constraint by setting

h =1, and the edge weights w(eij) = 0 for eij 2 ~E (Fig 2a). The size k of P, however, has to be

defined. Solving the resulting optimization problem yields the epitope mixture with the highest

immunogenicity. Note that this is equivalent to the framework proposed by Toussaint et al.
[13].

Adaptations for string-of-beads design. We interpret the edge weights w(eij) as propor-

tional to the negative proteasomal cleavage log-likelihood between epitopes vi and vj, and set

the incoming and outgoing edges of node s to w(esv) = w(evs) = 0 for every v 2 V (Fig 2b), fol-

lowing [16]. The proteasomal cleavage likelihood of two joined epitopes can be predicted with

existing proteasomal cleavage site methods such as ProteaSMM [28], PCM [29], or NetChop

[30, 31]. The definition of cleavage likelihood can also be adapted to include pre-designed

spacers for all possible epitope pairs, for example following Schubert & Kohlbacher’s frame-

work [17].

In the following, we refer to the negative sum of edge weights for a string-of-beads EV as

“cleavage score”, implying that a lower sum is desirable as it corresponds to a larger likelihood

of cleavage.

Adaptations for mosaic design. We define the edge weight w(eij) as the length that would

be added to the mosaic antigen once vi and vj are joined at their longest suffix-prefix overlap

(Fig 2c):

wðeijÞ≔

jvjj if vi ¼ s

0 if vj ¼ s

jvjj � maxfl 2 Njvi½l :� ¼ vj½: l�g otherwise

8
>>><

>>>:

ð3Þ

where |vj| represents the length of the epitope sequence vj and vi[l:], vj[:l] represent the first

and last l amino acids of epitopes vj and vi respectively. Note that Eq 3 can be computed effi-

ciently in time O(m + k2) for a given set of k strings of total length m by using generalized suffix

trees [32].
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The edge-weight sum of any tour that starts and ends at s is then equal to the length in

amino acids of the resulting mosaic sequence, so that the number of epitopes in the vaccine

can be increased by finding pairs of epitopes with a high degree of overlap. The solution to the

so defined problem is a polypeptide comprised of overlapping epitopes with optimal immuno-

genicity whose length is at most h.

Formulation as an integer linear program guarantees optimality

With the aforementioned definitions, we can formulate the generalized EV design problem as

an integer linear program (ILP) encoding the team orienteering problem [23] (Table 1). This

guarantees to construct an optimal EV at the cost of potentially long run times and/or memory

requirements, since the number of variables and constraints grows quadratically with the

Table 1. Integer linear program formulation of the generalized epitope vaccine design problem. It results in a cocktail of |T| polypeptides each composed of at most k
epitopes. Together, the polypeptides cover at least Θs pathogens and Θa MHC alleles, and contain epitopes with an average pathogen conservation of at least Γ.

Maximize

(OBJ)
IðPÞ :¼

X

t2T

X

v2V

X

a2A

yvtpaiva Overall immunogenicity

Subject to

(C1)
X

v2 ~V :v6¼w

xwvt ¼
X

v2 ~V :v6¼w

xvwt ¼ ywt 8w 2 ~V ; t 2 T Consistency between x and y

(C2a) uvt − uwt + 1� (|V| − 1)(1 − xvwt) 8evw 2 E, t 2 T Subtour elimination

(C2b) 1� uvt� |V| − 1 8v 2 V, t 2 T Bounds for node potential

(C3)
X

t2T

yvt � 1 8v 2 V Tours can only share s

(C4)
X

t2T

X

v2V

xsvt ¼
X

t2T

X

v2V

xvst ¼ jTj All tours leave from and return to s

(C5)
X

ðv;wÞ2E

xvwtwðevwÞ � h 8t 2 T Max. tour edge weight is h

(C6)
X

v2V

yvt � k 8t 2 T Max. tour vertex count is k

(C7a)
X

t2T

X

v2V

yvttðSÞvs � ys
8s 2 S Is pathogen s covered?

(C7b)
X

s2S

ys � Ys
Cover at least Θs pathogens

(C8a)
X

t2T

X

v2V

yvttðAÞva � ya
8a 2 A Is allele a covered?

(C8b)
X

a2A

ya � Ya
Cover at least Θa alleles

(C9) X

t2T

X

v2V

yvt

�
X

s2S

tðSÞvs � G

�

� 0
Avg. epitope conservation at least Γ

(C10a) xvwt, yvt, θa, θp 2 {0, 1} 8v, w, t, o Variable domains

(C10b) uvt 2 N 8v 2 V, t 2 T
Where:

V, T, A, S Indices of epitopes, tours, alleles, and pathogen sequences

xvwt, yvt Binary decision variables for edges and epitopes

pa Observed frequency of allele a in the population

iva Log-transformed IC50 binding strength between epitope v and allele a
h Maximum edge weight for each tour

k Maximum vertex count for each tour excluding s

tðAÞva ; t
ðSÞ
vs Indicator variables, equal 1 iff epitope v covers allele a/pathogen s respectively.

Θa, Θp Minimum number of alleles/pathogens to cover or zero if not relevant.

Γ Minimum average conservation or zero if not relevant.

https://doi.org/10.1371/journal.pcbi.1008237.t001
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number of epitopes in consideration, usually in the order of 103 or 104. Note that, if desired,

other optimization methods can be employed to solve the generalized EV design problem we

formulated in Eq 1, however potentially losing optimality guarantees.

Every tour represents a distinct polypeptide in the vaccine. We introduce binary decision

variables xvwt and yvt indicating whether the tour t visits the edge between v and w and the ver-

tex v, respectively. We enforce the consistency between these decision variables with the con-

straint C1, which also ensures that for every vertex the number of chosen incoming edges

equals the number of chosen outgoing edges. The constraints C2a and C2b exclude the case of

a tour t containing a set of edges forming disjoint subtours. Together with C1, this forces each

tour to be connected and visit s. We are using the Miller-Tucker-Zemlin (MTZ) formulation

[33] for C2, but other options with different computational properties exist. MTZ associates a

node potential uvt 2 N to each vertex in V (i.e., not including s) and constrains edges in a tour

to connect nodes with increasing potential. This forces every tour to pass from s to “reset” the

potential, allowing it to decrease from the last vertex before s to the first after s. We also have to

ensure that every node is visited at most once across all tours (C3) and that each tour starts

from and ends in s (C4). C2 makes C4 redundant, but alternative subtour elimination con-

straints may still need it. We then constrain the edge weight limit (C5) and the length (C6) of

each tour. Constraints of the form C7 and C8 can be used to enforce a minimum overall cover-

age of Θs different pathogens and Θa MHC alleles among all tours, whereas C9 can be used to

enforce a minimum average conservation (number of antigens covered by each epitope) of Γ.

C7 and C9 require a set S with the available pathogen sequences and indicator variables tðSÞvs

specifying whether epitope v covers pathogen s. Similarly, C8 requires the set A of MHC alleles

and indicators tðAÞva .

Jointly approaching epitope selection and assembly captures the trade-off

between cleavage likelihood and immunogenicity

Vaccines are cleaved by the proteasome, and the resulting peptides are eventually presented on

the cell surface by the MHC class I complex. A string-of-beads vaccine is effective only if the

proteasome correctly cleaves the epitopes contained in the vaccine. Wrong cleavage sites

would result in new, unwanted peptides with unknown properties, thereby decreasing the effi-

cacy of the vaccine. This risk can be managed with our framework by appropriately setting h,

the maximum total negative cleavage log-likelihood between all epitopes of the vaccine. Inter-

preting and predetermining this quantity is, however, difficult. We might not even be inter-

ested in a solution with a fixed h, but rather want to explore the inter-dependencies between

the immunogenicity objective and the cleavage likelihood of the string-of-beads EV. This leads

to a reinterpretation of the design formulation as bi-objective optimization problem, in which

we simultaneously optimize the overall immunogenicity I(P) and the length of the tours H(Pi),
i = 1, . . ., n (i.e., the overall cleavage likelihood). We then explore the Pareto frontier of this

problem with the augmented �-constraint method [34] (Section A in S1 Appendix).

For this and all later experiments, predicted epitopes for the 27 most prevalent MHC class I

alleles (from Toussaint et al. [16]) were extracted from 1,917 sequences of the HIV-1 Clade B

and C Nef proteins, for a total of 52,712 epitopes. We then created five bootstraps of 300 ran-

domly chosen sequences (see Materials and methods for details).

For each bootstrap, we selected the 1,000 epitopes with the largest immunogenicity and

computed the edge weights that resulted from directly joining the epitopes and from joining

the epitopes with the optimal spacers using Schubert & Kohlbacher’s framework [17] (see

Materials and methods for details). Because the edge weights computed by these two methods

are not directly comparable, we separately normalized the cleavage scores by the maximum
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score that was achieved by each method, and compared percentiles instead. We then generated

eleven Pareto-efficient solutions, each of them ten epitopes long, to illustrate the trade-off

between optimizing cleavage and immunogenicity (Fig 3a).

Without spacers, there was an almost linear relationship between the decrease in cleavage

score and immunogenicity, so that even modest improvements in cleavage (immunogenicity)

required significant sacrifices in immunogenicity (cleavage). In particular, 80% of the maxi-

mum cleavage score could only be achieved with 65% of the maximum immunogenicity on

average, and 80% of the maximum immunogenicity with 59% of the maximum cleavage score

on average. These numbers improved with optimal spacers so that cleavage score at 80% still

achieved 71% of the maximal immunogenicity and immunogenicity at 80% reached 73% max-

imal cleavage score. Using spacers provided an increase in immunogenicity between 6% and

11% for the same percentile cleavage score, corresponding to an effect size between two and

three (Fig 3b). This again highlights the need for spacers, either fixed or suitably designed,

joining epitopes to further increase the cleavage likelihood.

Sequential approaches such as OptiTope [13] are only able to generate the highest-immu-

nogenicity solutions, as they do not consider the subsequent assembly phase at all. These

methods simply cannot be used to balance the quality of selection and assembly except by

direct enumeration of all possible sequences of k epitopes, which in this case would be
Qk

i¼0
ðN � kÞ � 3 � 1045 with k = 10 and N = 13,500, the approximate number of epitopes in

our bootstraps.

To illustrate how ordering affects the cleavage likelihood and how it is optimized by our

framework, we randomly shuffled the epitopes of the vaccines without spacers on the Pareto

frontier of each bootstrap and compared the cleavage scores of the resulting string-of-beads

construct with the score of the optimized vaccine (Fig 4).

Fig 3. Novel EV design possibilities obtainable by considering epitope selection and epitope assembly at the same

time. (a) We created five bootstraps of protein sequences and generated string-of-beads vaccines on the Pareto frontier

by maximizing immunogenicity and cleavage score at the same time. The epitopes were either joined directly (yellow)

or by optimal spacer sequences (blue). The cleavage score of the two groups was normalized separately to allow

comparisons between spacers and direct links. (b) We selected five percentiles of the cleavage score, from 40 to 80 of

the global maximum, and estimated the immunogenicity that can be obtained via linear interpolation between the

closest points on the Pareto frontier of each bootstrap. The table above shows the percent increase in immunogenicity

relative to the no-spacers group, the effect size d computed as the difference of the means normalized by the standard

deviation of the no-spacers group, and the Mann-Whitney U test statistic, that shows the number of pairwise

comparisons that were favorable for the designed spacers (� for p< 0.05).

https://doi.org/10.1371/journal.pcbi.1008237.g003
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The overall decrease was between 0 and 6.65 with median 2.32 (50% interval: [1.39, 3.51]),

corresponding to a percent decrease between 0 and 49.6% with median 13.1% (50% interval:

[8.33-17.83]). The median reduction in cleavage score was correlated with the optimized cleav-

age score (Spearman’s ρ = 0.74, p = 5 � 10−11), so that the largest decrease was observed when

shuffling epitopes of vaccines designed with greater emphasis on cleavage score. There was no

correlation between the ordering of the epitopes and the score difference (ρ = 0.01, p = 0.55),

where the ordering was quantified by the number of identical pairs of adjacent epitopes in the

optimized and shuffled vaccines. However, the difference was negatively correlated with the

number of epitopes that did not change position when shuffling (ρ = −0.24, p = 7 � 10−38). Fol-

lowing our definition of edge weight, we can consider a negative weight as indicating a cleav-

age site (see Materials and methods section). Among the vaccines on the Pareto frontier,

96.3% had nine cleavage sites, the maximum possible, on the epitope junctions, and the

remaining had eight. Among the shuffled vaccines, only 50.9% had nine junction cleavage

sites, 41.1% had eight and the remaining 8.0% had six or seven.

No shuffled vaccine had a better cleavage score than the original vaccine on the Pareto fron-

tier, although some had comparable scores. This follows from the definition of Pareto frontier:

each point can be obtained by maximizing the edge weight subject to a certain bound on the

immunogenicity. This implies that the vaccines on the Pareto frontier have the largest edge

weight among all possible orderings of the epitopes they contain. Using different epitopes can

increase the immunogenicity or the cleavage score, but not both.

Joint design of polypeptide cocktails increases immunogenicity without

sacrifices

A large number of epitopes might be necessary to create a vaccine achieving extremely high

conservation and/or coverage. Long polypeptides, however, are harder to manufacture [35, 36]

and, in practice, most synthetic vaccines tested so far are composed of sequences of 10 to 50

Fig 4. Decrease in cleavage score by randomly permuting string-of-beads vaccines. (a) For each vaccine in the

Pareto frontier of each bootstrap, we created 50 new string-of-beads by randomly permuting its epitopes and

compared the cleavage scores of the two vaccines. The black dots in the box plots show the median decrease. (b)

cleavage score and immunogenicity of the original vaccine with optimized ordering.

https://doi.org/10.1371/journal.pcbi.1008237.g004
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amino acids [3, 37–40]. Our framework can be used to design a vaccine that meets such

extreme requirements on coverage and/or conservation by creating several short polypeptides

that are optimized simultaneously and can be synthesized in parallel for a fraction of the cost

and time.

For example, an epitope mixture designed by OptiTope [13] needs at least 24 epitopes to

cover 99% of the complete set of pathogens. Concatenating these 24 epitopes in a single string-

of-beads construct results in a 216 amino acid-long polypeptide, which may be undesirably

lengthy. We, therefore, designed a vaccine composed of four separate mosaic polypeptides of

54 residues each, so that the total number of amino acids remained unchanged. We also

designed a single mosaic of 216 amino acids with no coverage enforced as a baseline. To keep

the computational requirements at acceptable levels, the mosaic cocktail was designed on epi-

topes coming from the complete set of 1,917 sequences, but restricted to the union of the 2,000

epitopes with the highest immunogenicity and the 2,000 with the highest pathogen coverage.

The resulting four polypeptides together had roughly twice the conservation and the immu-

nogenicity as the epitope mixture (Fig 5). Most notably, none of them reached the required

pathogen coverage in isolation; only when considered jointly they covered the required num-

ber of pathogens. The unconstrained single mosaic vaccine already covered 96% of the patho-

gens even though its epitopes had the lowest conservation among the three vaccines.

Unsurprisingly, it also had the largest immunogenicity, almost 20% more than the polypeptide

cocktail and 260% more than the epitope mixture, simply because it included so many more

epitopes (208, compared to 184 for the cocktail and 24 for the mixture).

Mosaic design greatly increases immunogenicity and pathogen coverage

compared to string-of-beads

We compared epitope mixtures to mosaics of the same length with respect to immunogenicity,

conservation, pathogen and population coverage as we increased the number of admissible

amino acids in the vaccine. The metrics for an epitope mixture are upper bounds for what can

be achieved by a string-of-beads EV, as the cleavage requirements would only reduce the set of

Fig 5. Cocktail of mosaic proteins compared to an equivalent string-of-beads vaccine. We designed a cocktail (blue)

of four polypeptides (cyan) that covers 99% of the pathogens, even though the single fragments only cover between 85

and 95%. The orange and red bars correspond to an epitope mixture designed by OptiTope and a mosaic with the same

number of amino acids respectively; the former was required to reach 99% pathogen coverage, and the latter was

unconstrained.

https://doi.org/10.1371/journal.pcbi.1008237.g005
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eligible epitopes that can be included in the vaccine. The mosaics were designed by enforcing

minimum overlaps of four and eight amino acids, and the experiment was repeated for each

bootstrap.

By leveraging overlaps, the mosaic designs were able to include more epitopes in the same

number of amino acids, resulting in improved immunogenicity, pathogen coverage and con-

servation compared to the epitope mixtures (Fig 6). The mosaic with overlap of eight amino

acids, however, could not be improved substantially after 172 epitopes (180 amino acids), and

plateaued by 360 amino acids. This happened because there were not enough pairs of suitably

overlapping epitopes to produce longer polypeptides. Relaxing the overlap requirements to at

least four amino acids allowed the framework to produce pseudo-mosaic vaccines that con-

tained less epitopes than the theoretical maximum, but had, nonetheless, much higher immu-

nogenicity than the epitope mixtures. It is also evident that mosaic vaccines could inherently

reach higher pathogen coverage with shorter polypeptides, even though no such constraint

was imposed on the design. Conservation, however, remained mediocre.

Short mosaic vaccines achieve very high coverage

We designed mosaic vaccines composed of a single polypeptide on each of the five bootstraps

following the genetic algorithm introduced by Fisher et al. [20, 41], using the recommended

parameter settings (notably, unlike our framework, the length of the polypeptides cannot be

specified). We then used our framework to design a mosaic vaccine of the same length (206

amino acids), with at least the same pathogen and population coverage and epitope conserva-

tion. This resulted in very similar mosaics with essentially the same properties, covering the

Fig 6. Comparison of mosaic and epitope mixture vaccines of different sizes. Mosaic vaccines were much better than

epitope mixtures or string-of-beads of the same length (blue), as long as the pathogens offer enough epitope variety. By

enforcing an overlap between epitopes of eight amino acids (red), the vaccine did not improve after a certain length. This

could be prevented by relaxing this requirement to only four amino acids (yellow). The vaccines are compared with

respect to four metrics: immunogenicity (a), population coverage (b), pathogen coverage (c), and conservation (d). The

experiment was repeated for each of the five bootstraps, and bars represent the resulting standard deviation. Note that

these vaccines were not designed with pathogen coverage nor epitope conservation in mind; mosaics naturally reached

higher values.

https://doi.org/10.1371/journal.pcbi.1008237.g006
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same 26 MHC alleles and 99.1% of pathogens, an average epitope conservation of 28%, and

immunogenicity of 10.8. However, Fisher et al. optimize for coverage, not for immunogenic-

ity. When we did the same, we were able to achieve the same properties with a reduction in

epitopes of about 50%, indicating the Fisher et al.’s solution was sub-optimal (the alternative

ILP formulation is in Table A of S2 Appendix).

Long mosaic vaccines inherently target conserved regions

The previous experiments showed that mosaic vaccines can reach very good pathogen cover-

age with ease. Intrigued by this characteristic, we studied and compared the exact positions

covered by the epitopes of mosaic and string-of-beads vaccines.

The vaccines were designed on the complete pathogen set. The string-of-beads contained

20 epitopes, the short mosaic vaccine 28 amino acids, and the long mosaic vaccine 90 amino

acids. We then aligned the pathogen sequences using MAFFT [42] and counted how many epi-

topes in the EVs covered each position. We also computed the potential immunogenicity of a

position as the sum of the immunogenicities of all the epitopes covering that position, and

used position-specific entropy to quantify the variation among sequences [43] (Section B in S1

Appendix). Finally, we ignored the positions where the consensus sequence was a gap.

Analyzing the epitopes included in the vaccines showed that they did not appear in random

positions of the pathogens, but were concentrated in a few distinct regions that differed

between vaccines (Fig 7b). It was evident that string-of-beads vaccines, cleavage requirements

aside, targeted the most immunogenic regions with no regards for their conservation, whereas

mosaic vaccines, especially longer ones, preferred to focus on conserved regions. These corre-

lations, as quantified by the Spearman coefficient (ρ), were generally weak or moderate, but

statistically significant (Fig 7c). The epitope mixture’s coverage was well correlated with immu-

nogenicity (ρ = 0.617, p = 4 � 10−22), but not with entropy (ρ = 0.066, p = 4 � 10−1). The

long mosaic vaccine sought immunogenic (r = 0.350, p = 4 � 10−7), but low entropy regions

(ρ = −0.353, p = 3 � 10−7). Interestingly, the short mosaic vaccine covered an entirely different

region and was correlated with both immunogenicity (ρ = 0.228, p = 1 � 10−3) and entropy

Fig 7. Mosaic vaccines naturally target conserved regions even when this is not required. (a) shows, for each residue position in aligned

sequences where the consensus is not a gap, the smoothed entropy (blue, and residue entropy in lighter color) and the potential

immunogenicity (green) (b) shows the number of pathogens covered in each position by a 20-epitopes mixture with maximal

immunogenicity (yellow), a short mosaic of 28 amino acids (red) and a long mosaic of 90 amino acids (blue). The count is normalized

separately for each vaccine to account for their different coverage. (c) shows the pairwise correlations of the variables shown in the left plot,

so that every dot in the scatter plots corresponds to a different residue position, and linear fits are shown in red. The lower triangular half

shows the Spearman correlation coefficients (above) and the respective p-value (below). Colors range from blue (large negative correlation)

to white (no correlation) to red (large positive correlation), and the font is bold if the correlation is significant with a confidence of at least

99.5% at the Bonferroni-corrected significance level of 5%. The diagonal contains histograms showing the distribution of each variable, with

logarithmic y axis.

https://doi.org/10.1371/journal.pcbi.1008237.g007
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(ρ = 0.410, 2 � 10−9). Entropy and immunogenicity are, curiously, not correlated (ρ = −0.015,

p = 8 � 10−1).

Mosaic vaccines should be designed with epitope conservation in mind

There is growing evidence that effective epitope vaccines for highly variable viruses such as

HIV, Hepatitis C Virus (HCV), as well as diseases such as Malaria, Cancer, and Influenza

should target conserved epitopes [44–48]. Figs 6 and 7 clearly show that mosaic vaccines have

a natural tendency to spontaneously achieve high pathogen coverage, by targeting conserved

regions of the pathogen. We wanted to see how much further we could exploit this behavior by

optimizing conservation and coverage.

We modified the ILP formulation to maximize average epitope conservation and pathogen

coverage together with immunogenicity (S2 Appendix). Since immunogenicity is a couple of

orders of magnitude smaller than the other two, it will only be optimized when further

improvements in conservation or coverage are practically insignificant. We then compared

mosaic vaccines of growing sizes optimized against these three criteria.

The average epitope conservation could be greatly improved until around 40%, and it came

with increased pathogen coverage compared to mosaic vaccines optimized for immunogenic-

ity (Fig 8). Most epitopes had very poor conservation, which means that optimizing its average

becomes harder as the vaccine size increases. In fact, longer vaccines had smaller conservation.

Moreover, immunogenicity grew more slowly when conservation was optimized: it was on par

with pathogen coverage-optimized vaccines for short mosaic designs, but was almost 30%

smaller for long mosaics.

This suggests that the best results are obtained with short mosaic vaccines designed to have

high average epitope conservation. Besides having considerably larger conservation, both their

immunogenicity and their pathogen coverage were still close to the theoretical maximum that

can be achieved by explicitly optimizing for them. As the mosaic designs became longer, this

gap widened, and so-designed vaccines lost their advantages. However, we have shown previ-

ously that long vaccines can be replaced by cocktails of short polypeptides with essentially the

same joint properties.

Fig 8. Comparison of mosaic vaccines optimized for different objectives. Here we designed mosaics of varying amino acid length (on the x axis)

while optimizing for conservation (blue), immunogenicity (red), and pathogen coverage (yellow). The plots compare the vaccines in terms of

conservation (a), immunogenicity (b), pathogen coverage (c), and population coverage (d). For longer vaccines, optimizing for pathogen coverage only

gives modest improvements on the mosaics optimized for immunogenicity in terms of coverage, and does not increase conservation by much. When

optimized for, conservation is considerably higher but becomes harder to improve as the vaccine becomes longer, due to the fact that few epitopes are

well conserved and highly immunogenic at the same time. Average of five runs, standard deviation on the error bars.

https://doi.org/10.1371/journal.pcbi.1008237.g008
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The framework is robust with respect to different epitope immunogenicity

functions

The immunogenicity of the vaccine in Eq 2 is defined as a weighted sum of the immunogenici-

ties of the individual epitopes, appoximated by the IC50 binding strength. Several methods

exist to predict this quantity, the most well-known being NetMHCpan [25], PickPocket [26],

and MHCflurry [27]. Furthermore, the authors of NetMHCpan recommend using the percen-

tile rank as a more accurate indicator of binding, where the rank is computed by comparing

the IC50 binding strength of an epitope with the binding strengths of random natural peptides.

To test the robustness of the framework for other choices of MHC binding affinity predic-

tion tools, we repeated the Pareto experiment (without spacers) using the four immunogenic-

ity predictors mentioned above and compared the vaccine immunogenicities as computed by

the different tools (Fig 9). Since we cast the optimization problem as maximization, we trans-

formed the rank so that 100 represents the largest immunogenicity.

Fig 9. Effect of different immunogenicity predictors on optimized vaccines. Each scatter plot shows the immunogenicity predicted by a certain

method (y axis), when the ten-epitopes string-of-beads vaccine was designed optimizing the immunogenicity predicted by a different method (x axis).

The diagonal shows the immunogenicity distribution of the optimized vaccines. The color of each point indicates the cleavage score of the vaccine

(brighter is larger). Inside each scatter plot, we report the intersection-over-union (IoU) of the epitopes, the number of shared epitopes between

vaccines of similar cleavage score indicating median and 25th and 75th percentile in parentheses, and the correlation coefficient (Pearson or Spearman

depending on the plot) with its p-value against the null hypothesis of no correlation.

https://doi.org/10.1371/journal.pcbi.1008237.g009
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Optimizing an IC50-based immunogenicity resulted in a very well correlated (0.92 or larger

and statistically highly significant, with p-values smaller than 2 � 10−20) and linear improve-

ment in all other immunogenicities. Optimizing the rank-based immunogenicity showed

instead a distinct two-phases increase, where at first the IC50 immunogenicity barely increased,

then quickly gained the lost ground as the rank immunogenicity showed only marginal

improvements. Even though the immunogenicities were well correlated, vaccines with similar

cleavage scores were composed of mostly different epitopes, sharing only one or two on aver-

age and with an intersection-over-union metric between 5% and 18%. This can be explained

by the large number of epitopes that had similar immunogenicity. The average number of epi-

topes that had an immunogenicity score within 0.5% of any given epitope was 43, 46, 62, and

113 for MHCflurry, NetMHCpan (IC50), PickPocket and NetMHCpan (rank) respectively.

This means that there were in the order of 4310 sets of ten epitopes that had an immunogenic-

ity score within 5% of a given set of ten epitopes, as quantified by MHCflurry.

We also repeated the experiment in Fig 8 for each immunogenicity predictor, and com-

pared vaccines that were optimized for different metrics across predictors (Fig 10). The aver-

age difference between metrics of different predictors was 0.1% with standard deviation of

5.5%, and 50% (90%) of the differences were between -1.7% and 2.1% (-7.9% and 7.2%). Only

three outliers had an absolute difference larger than 25%, corresponding to the much lower

pathogen coverage achieved at 45 amino acids when optimizing NetMHCpan’s IC50 immuno-

genicity (Fig 10c).

Vaccines designed on small subsets generalize to the full dataset

All previous experiments were obtained by considering 300 random proteins out of a few

thousand, except the cocktail in Fig 5, designed on the 4,000 most immunogenic peptides of all

Fig 10. Effect of different immunogenicity predictors on vaccines optimized for different objectives. We repeated the experiment shown in Fig 8

using different epitope immunogenicity predictors. For each bootstrap, we designed mosaic vaccines optimizing their conservation (blue),

immunogenicity (yellow), or pathogen coverage (red) and compared the vaccines in terms of conservation (a), immunogenicity (b), pathogen coverage

(c), and population coverage (d). (e) shows the pairwise difference of the four metrics across all vaccine sizes, separated by optimization objective,

between all pairs of immunogenicity functions. There is little variation among the results obtained with different immunogenicities.

https://doi.org/10.1371/journal.pcbi.1008237.g010
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sequences, and the association between positions covered by mosaics and entropy in Fig 7.

One naturally wonders whether the vaccines produced on such small subsets were still as good

on the general pathogen population.

The only quantities that can change, for a given vaccine, are epitope conservation and path-

ogen coverage, while designing a vaccine de novo can result in higher immunogenicity. We

designed a mosaic vaccine of 206 amino acids for each bootstrap, ensuring it covered at least

99.1% of the pathogens, 26 alleles out of 27, and having an average epitope conservation of

28% or more. We then evaluated coverage and conservation relative to the set of all pathogens,

and quantified the differences in the evaluation metrics. This revealed that there was no differ-

ence on conservation (paired t-test, t = 0.04, p = 0.487) between the small subsets and the full

set, but pathogen coverage slightly decreased (t = 2.77, p = 0.025, from 99.1%, std. 0.4% to

98.7%, std. 0.2%). A string-of-beads with 10 epitopes and no constraints achieved an immuno-

genicity score of 3.08 on the full set, just 10% higher than what could be achieved with the

same settings on the bootstraps in the Pareto frontier experiment. A 216-amino acids mosaic

in the same setting as the cocktail experiment, but designed on all the epitopes, improved

immunogenicity by 18% (from 14.55 to 17.23), but worsened coverage by 1% (from 96.3% to

95.0%) and conservation by 41% (from 6.1% to 3.6%), suggesting that subsetting epitopes

should be done with greater care.

It might seem surprising that vaccines developed on roughly 15% of the pathogens general-

ize to a larger population. However, epitopes with high coverage and conservation on a large

population are likely to be so also on random subsets of it. In fact, even though each of the five

random subsets contains only about 25% of the epitopes found in the full pathogen set, the

pairwise overlap was between 46 and 48%, and 27% of the epitopes were shared among all five

sets.

Discussion and conclusion

Epitope-based vaccine (EV) design has thriven in recent years, and multiple design principles

have emerged aided by the heavy use of bioinformatics approaches. However, most proposed

design algorithms are lacking in one of several dimensions: they model only individual stages

of the entire design problem (e.g., [13, 17]), use ad hoc heuristics (e.g., [14]), or optimization

algorithms that cannot guarantee convergence to the optimal solution (e.g., [15, 20]).

Here, we proposed a graph-theoretical formalism for EV design that models the complete

design process and includes every prevalent design principle as special case. We showed how

to formulate this optimization problem as an integer linear program to obtain a guaranteed

optimal solution. This, in turn, enables informed choices throughout the design process by

accurately and reliably determining the trade-offs involved: for example, we precisely quanti-

fied the decrease in immunogenicity that has to be paid to achieve gains in other metrics such

as coverage and conservation, and showed the advantage of mosaic over string-of-beads

designs under our modeling assumptions. In practice, we might be overestimating mosaics’

immunogenicity, as our framework does not model their cleavage by the proteasome, which

means that we have no control over which epitopes will actually be recovered. However, their

successes in recent clinical trials [5–10, 18] suggest that their advantage over string-of-beads is,

nonetheless, real.

The framework is general enough to be broadly applicable to several types of vaccines. By

tailoring the definition of immunogenicity, both T and/or B cell epitopes can be included in

the vaccine, eventually producing cytotoxic T cells and plasma cells respectively as required.

Personalized cancer vaccines can be produced by reinterpreting the components of the frame-

work, but no change would be necessary. The input epitopes would be extracted from the
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patient’s mutanome, which would then act as the pathogens. Pathogen coverage constraints

would then be interpreted as coverage of mutated proteins or somatic mutations. The input

MHC alleles would match the genotype of the patient. The conservation of epitopes with

respect to the mutations would not need to be considered, but conservation with respect to

MHC alleles would contribute to the robustness of the vaccine.

Jointly approaching the selection and assembly problems enables the exploration of new

possibilities in the EV design space. We demonstrated this by investigating the trade-off

between immunogenicity and cleavage likelihood in string-of-beads designs, and by creating

the optimal cocktail of mosaic polypeptides for a given coverage whose design would be

impossible with iterative, stage-wise optimization methods. Our results also show that it is easy

to reach very good population coverage by virtue of our definition of immunogenicity based

on MHC binding. Finally, convergence and optimality guarantees of linear programming solv-

ers allow us to find solutions that are, sometimes, substantially better than those found by opti-

mization algorithms that lack these guarantees.

The price to pay for the increased modeling power is increased computational resources

needed to solve the graph optimization problem. Being based on the team orienteering prob-

lem, EV design with our framework is a NP-hard problem, and the size of the graph grows

quadratically with the number of epitopes in consideration. However, we conducted several

experiments on subsets of the pathogens or the epitopes and showed that results obtained in

this way are only slightly worse than what can be obtained by considering the complete set of

pathogens/epitopes. We argued that this is possible because highly conserved epitopes are

likely to abound in smaller subsets of the pathogen sequences too. This means that such graphs

can easily be pruned, resulting in much smaller problems that can be solved in reasonable time

without compromising the quality of the final solution.

Alternatively, the solver can be interrupted early when the current solution is within a few

percent of the optimal one. ILP solvers iteratively improve a candidate solution and an upper

bound on the objective of the optimal solution at the same time [49]. This gap reflects the max-

imum distance between the candidate solution and the optimal one: when they match, the cur-

rent solution is optimal. Empirically, in our setting, most of the time is spent on improving

solutions that are only at most 2%-5% away from the optimal one. Therefore, the solver can be

safely interrupted early on a good quality solution.

ILP solvers are complex machinery governed by several parameters that affect how they

search for a solution, and, therefore, how much time they need. Different types of problems

benefit from different parameter settings. Therefore, further gains can be achieved when deal-

ing with a large number of instances by tuning these parameters to reduce the time needed to

find a solution [50–52].

Another limitation is that our formulation as an ILP limits the expressiveness of objectives

and constraints to linear forms. The graph formalism in Eq 1, however, remains valid even for

complex, non-linear constraints and objectives. In this case, more flexible optimization meth-

ods have to be used and optimality guarantees might be lost.

The framework we introduced mainly focuses on improving the selection and assembly of

epitopes included in a vaccine. However, several other important issues have to be considered

when design successful vaccines. The delivery method of such a vaccine is of prime impor-

tance, and several different technologies, such as nanoparticles [53], viral vectors [54], and

dendritic cell-based techniques [55] are under active research. Viral escape and immunosup-

pression mechanisms should also be taken into account, as well as the need to generate a het-

erogeneous response that activates cytotoxic T cells, helper T cells, and B cells. The

considerable differences among human hosts and pathogens, the many unknown factors that

govern diseases, and the limited understanding of how the components of the immune system
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contribute to immunity make it impossible, at present, to create a comprehensive and gener-

ally applicable solution for end-to-end vaccine design [56].

The large number of unknowns and the unique features of each disease also affected our

simplistic choice of immunogenicity function. Ideally, the immunogenicity should indicate

activation of T and/or B cells as measured by the production of cytokines and antibodies, but

these events cannot be predicted accurately with current computational approaches, hence our

choice of binding affinity as a proxy. We showed that the results are not overly sensitive to the

choice of binding affinity predictor, and indeed our framework is completely agnostic to the

specific meaning of immunogenicity and edge weight, remaining applicable even when more

sophisticated predictors become available. In particular, other immunogenicity objective func-

tions introduced in the context of rational vaccine design [13–15, 18] could also be used.

We assumed that epitopes contribute independently to the immunogenicity of the vaccine,

but this is not always verified in practice because of a phenomenon called immunodominance

[57, 58]. The presence of certain epitopes is known to reduce or eliminate the response to

other epitopes. Surprisingly, it is also possible for an epitope to dominate a stronger binding

one so that the immune response is directed towards the weaker binding, but dominating, epi-

tope. Because of the many factors involved, immunodomination is poorly understood and no

published predictor is available, hence our linearity assumption. When this task becomes feasi-

ble, Eq 2 can be modified to include a linear immunodomination predictor or pre-computed

n-ary interactions, although the latter approach would be computationally practical only for a

small number of epitopes.

To conclude, the proposed framework unifies all commonly used EV design principles,

while being agnostic to the specific predictors for immunogenicity and cleavage, as well as the

method employed to solve the optimization problem. It enables the design of correctly cleaved

string-of-beads vaccines with the largest possible immunogenicity under this constraint. It also

enables the exploration of the Pareto frontier between these two competing properties to find

the optimal design that best reflects the envisioned trade-off. At the same time, our framework

can be used to decompose long vaccines in shorter polypeptides that, together, maintain the

properties of the longer sequence. This makes the resulting vaccine easier, cheaper, and

quicker to synthesize. We showed that conservation should be emphasized over coverage for

mosaic vaccines and demonstrated that the conclusions drawn here are robust with respect to

different immunogenicity predictors and the subset of pathogenic sequences used to extract

the epitopes.

Materials and methods

Data and preprocessing

Dataset. We searched whole-genome HIV-1 subtypes B and C sequences in the Los Ala-

mos HIV database [59, 60] collected after 2003, which resulted in 2,241 sequences at the time

of writing. These filters were used to ensure higher quality sequences collected with recent

technologies. We chose to focus on subtypes B and C as they are the most prevalent across the

Americas and Europe (subtype B), and Asia (both subtypes). Since we only included two sub-

types, we cannot estimate how effective a vaccine designed in this setting would be on patients

infected with a different subtype of HIV-1. An investigation on the input sequences needed to

create a truly global HIV vaccine, if at all possible, is left to the practitioner.

We then extracted the Nef gene to limit the computational requirements, finding 1,917

unique sequences, which were used to create five bootstraps, each composed of 300 randomly

selected sequences (with replacement). This was done for computational ease, as well as to
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study the variability and the generalizability of the results. S1 Data contains the 2,241 Nef

genes, while S2 Data contains the sequences used in each bootstrap.

MHC alleles. We used 27 MHC alleles and their frequencies found in Toussaint et al.
[16], reproduced in S1 Table, which together provide a maximum theoretical coverage of

91.3% of the world population.

Epitopes. We considered all possible substrings of nine characters as potential epitopes.

The binding affinities between peptides and MHC alleles were predicted with NetMHCpan

[25], PickPocket [26], or MHCflurry [27], depending on the experiment. S3 Data contains the

immunogenicity of each epitope as defined in Eq 2 and predicted by NetMHCpan, since we

used that in all but one experiments, as well as the MHC alleles to which it binds and the index

of the sequences that contain it.

Cleavage likelihood. We computed the cleavage likelihoods between all pairs of epitopes

in two ways. We considered the epitopes to be joined directly and used a linear model based

on position-specific scoring matrices to predict the cleavage likelihood. We also joined epi-

topes with optimized spacer sequences, designed to further increase the likelihood of favorable

cleavage.

When epitopes are joined directly, we used PCM matrices [29] to compute the weight. The

cleavage likelihood at the k-th position of a sequence s with respect to an unspecified prior

cleavage likelihood p(Ck) is computed as follows:

�Cðs; kÞ ¼
X1

i¼� 4

cðskþi; iÞ ¼ log
PðCkjsk� 4; . . . ; skþ1Þ

pðCkÞ
ð4Þ

where Ck is the cleavage event at position k, ψ(a, i) is the PCM matrix, indicating the contribu-

tion of amino acid a at offset i with respect to the cleavage site. A positive score indicates that

cleavage is more likely than the prior cleavage probability p(Ck), and is usually assumed to

indicate a cleavage site. We now compute the negative cleavage likelihood of a sequence com-

posed of two joined epitopes ei and ej, with ei of length ℓ by adding to the negative cleavage

score at the correct position ℓ (i.e., between ei and ej) the cleavage scores at K wrong positions

around ℓ, weighted by a factor 0� β� 1:

wðeijÞ ¼ � �Cðeiej; ‘Þ þ b
XK

k¼1

ð�Cðeiej; ‘ � kÞ þ �Cðeiej; ‘þ kÞÞ ð5Þ

where ϕC(s, i) is the cleavage score at position i of the sequence s. We used K = 2 and β = 0.1.

We also applied Schubert & Kohlbacher’s framework [17] to design optimal spacers joining

all pairs of epitopes and used the optimal objective found by this framework as edge weight in

our graph. In this setting, a string-of-beads designed with our framework includes optimal

spacers joining epitopes. The spacers were designed by optimizing the cleavage likelihood at

the junction between epitopes and spacers, while at the same time minimizing the immunoge-

nicity of possible artificial epitopes that would be formed by incorrect cleavage. We consider

values between length zero and four as possible spacer lengths and choose the length with the

largest objective value. Note that this implies that some epitopes may be best joined directly

without any spacer at all.

We have also been working on an improved framework [61] to design string-of-beads vac-

cines with optimal spacers that approaches the two problems together and, unlike the present

framework, allows residue-level control of cleavage probabilities. It further uses Monte Carlo

cleavage simulations to provide a more realistic evaluation of the vaccines’ effectiveness.

Implementation. The framework was implemented in Python [62], using Pyomo [63, 64]

to formulate the linear program and Gurobi [65] to solve it. FRED2 [66] was used to provide
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access to bioinformatics tools such as OptiTope [13], [25], PickPocket [26], MHCflurry [27]

and PCM [29]. The results were analyzed and visualized in the IPython environment [67],

with the aid of NumPy [68], Scipy [69], Pandas [70], statsmodels [71], Matplotlib [72] and Sea-

born [73].

Evaluation metrics

Given a set of epitopes P comprising the vaccine, we compute the following metrics, in addi-

tion to the immunogenicity I(P):

Population coverage. Given a set of MHC alleles A, we define the population coverage of

P as the probability that a person has at least one MHC allele binding one or more epitopes of

P [16]:

pP ¼ 1 �
Ym

i¼1

1 �
X

a2Ai

yapa

 !2

ð6Þ

where Ai is the set of alleles of locus i, pa is the probability that a person has this allele, and ya is

a binary variable indicating whether P contains an epitope binding to a. Binding was deter-

mined by an IC50 affinity of at most 500 nM. Note that the graph can contain some epitopes

that do not bind to any MHC allele.

According to Eq 6, the coverage of the 27 alleles we chose is 93.1%. In the results, therefore,

we report the population coverage relative to this maximum, so that 100% relative coverage

corresponds to 93.1% actual coverage.

Pathogen coverage. The number of distinct pathogen sequences that contain at least one

epitope of P.

Conservation. The average of the conservation of each epitope in P. The conservation of

an epitope is the number of proteins that contain it. High conservation indicates a low muta-

tion rate, hence important for the correct functioning of the pathogen.

Supporting information

S1 Appendix. Additional methods. Section A contains a brief description of the �-constrain

method [34] to obtain Pareto-efficient solutions in a bi-objective optimization problem, while

section B contains the procedure to quantify conserved, low variability pathogen regions in

terms of entropy on aligned sequences.

(PDF)

S2 Appendix. Alternative ILP objectives. This appendix contains the two alternative formula-

tions of the ILP where average epitope conservation and pathogen coverage are maximized

together with immunogenicity.

(PDF)

S1 Data. Complete set of sequences. This dataset contains all the 2,241 sequences used in

FASTA format.

(FASTA)

S2 Data. Bootstrapped sequences. This CSV dataset contains the sequences used in each

bootstrap.

(CSV)

S3 Data. Epitope information. This CSV dataset contains all the 52,712 epitopes extracted

from the sequences, their computed immunogenicity, the MHC alleles that they bind to, and

PLOS COMPUTATIONAL BIOLOGY Vaccine design as tours on graphs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008237 October 23, 2020 20 / 24

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008237.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008237.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008237.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008237.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008237.s005
https://doi.org/10.1371/journal.pcbi.1008237


the index of the sequences where they appear.

(CSV)

S1 Table. MHC alleles. This appendix contains a table listing the 27 MHC alleles used in this

study and their percent frequency in the world population.

(PDF)
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vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017; 547(7662):222–

226. https://doi.org/10.1038/nature23003 PMID: 28678784

40. Zwaveling S, Ferreira Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R, et al. Established Human

Papillomavirus Type 16-Expressing Tumors Are Effectively Eradicated Following Vaccination with Long

Peptides. The Journal of Immunology. 2002; 169(1):350–358. https://doi.org/10.4049/jimmunol.169.1.

350 PMID: 12077264

41. Thurmond J, Yoon H, Kuiken C, Yusim K, Perkins S, Theiler J, et al. Web-based design and evaluation

of T-cell vaccine candidates. Bioinformatics. 2008; 24(14):1639–1640. https://doi.org/10.1093/

bioinformatics/btn251 PMID: 18515277

42. Katoh K, Rozewicki J, Yamada KD. MAFFT Online Service: Multiple Sequence Alignment, Interactive

Sequence Choice and Visualization. Briefings in Bioinformatics. 2017.

43. Valdar WSJ. Scoring Residue Conservation. Proteins: Structure, Function, and Genetics. 2002; 48

(2):227–241.

44. Audran R, Cachat M, Lurati F, Soe S, Leroy O, Corradin G, et al. Phase I Malaria Vaccine Trial with a

Long Synthetic Peptide Derived from the Merozoite Surface Protein 3 Antigen. Infection and Immunity.

2005; 73(12):8017–8026. https://doi.org/10.1128/IAI.73.12.8017-8026.2005 PMID: 16299295

45. Dutta S, Dlugosz LS, Drew DR, Ge X, Ge X, Ababacar D, et al. Overcoming Antigenic Diversity by

Enhancing the Immunogenicity of Conserved Epitopes on the Malaria Vaccine Candidate Apical Mem-

brane Antigen-1. PLoS pathogens. 2013; 9(12):e1003840. https://doi.org/10.1371/journal.ppat.

1003840 PMID: 24385910

46. Wang W, Li R, Deng Y, Lu N, Chen H, Meng X, et al. Protective Efficacy of the Conserved NP, PB1, and

M1 Proteins as Immunogens in DNA- and Vaccinia Virus-Based Universal Influenza A Virus Vaccines

in Mice. Clinical and vaccine immunology: CVI. 2015; 22(6):618–630. https://doi.org/10.1128/CVI.

00091-15 PMID: 25834017

47. Epstein SL, Tumpey TM, Misplon JA, Lo CY, Cooper LA, Subbarao K, et al. DNA Vaccine Expressing

Conserved Influenza Virus Proteins Protective Against H5N1 Challenge Infection in Mice. Emerging

Infectious Diseases. 2002; 8(8):796–801. https://doi.org/10.3201/eid0808.010476 PMID: 12141964

48. von Delft A, Donnison TA, Lourenço J, Hutchings C, Mullarkey CE, Brown A, et al. The Generation of a

Simian Adenoviral Vectored HCV Vaccine Encoding Genetically Conserved Gene Segments to Target

Multiple HCV Genotypes. Vaccine. 2018; 36(2):313–321. https://doi.org/10.1016/j.vaccine.2017.10.

079 PMID: 29203182

PLOS COMPUTATIONAL BIOLOGY Vaccine design as tours on graphs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008237 October 23, 2020 23 / 24

https://doi.org/10.1110/ps.051352405
https://doi.org/10.1093/protein/15.4.287
https://doi.org/10.1093/protein/15.4.287
https://doi.org/10.1007/s00251-005-0781-7
https://doi.org/10.1145/321043.321046
https://doi.org/10.1016/j.amc.2009.03.037
https://doi.org/10.1016/j.amc.2009.03.037
https://doi.org/10.1039/B700141J
https://doi.org/10.1371/journal.pone.0142563
https://doi.org/10.1038/nature23003
http://www.ncbi.nlm.nih.gov/pubmed/28678784
https://doi.org/10.4049/jimmunol.169.1.350
https://doi.org/10.4049/jimmunol.169.1.350
http://www.ncbi.nlm.nih.gov/pubmed/12077264
https://doi.org/10.1093/bioinformatics/btn251
https://doi.org/10.1093/bioinformatics/btn251
http://www.ncbi.nlm.nih.gov/pubmed/18515277
https://doi.org/10.1128/IAI.73.12.8017-8026.2005
http://www.ncbi.nlm.nih.gov/pubmed/16299295
https://doi.org/10.1371/journal.ppat.1003840
https://doi.org/10.1371/journal.ppat.1003840
http://www.ncbi.nlm.nih.gov/pubmed/24385910
https://doi.org/10.1128/CVI.00091-15
https://doi.org/10.1128/CVI.00091-15
http://www.ncbi.nlm.nih.gov/pubmed/25834017
https://doi.org/10.3201/eid0808.010476
http://www.ncbi.nlm.nih.gov/pubmed/12141964
https://doi.org/10.1016/j.vaccine.2017.10.079
https://doi.org/10.1016/j.vaccine.2017.10.079
http://www.ncbi.nlm.nih.gov/pubmed/29203182
https://doi.org/10.1371/journal.pcbi.1008237


49. Land AH, Doig AG. An Automatic Method of Solving Discrete Programming Problems. Econometrica.

1960; 28(3):497.

50. Audet C, Orban D. Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization. SIAM

Journal on Optimization. 2006; 17(3):642–664. https://doi.org/10.1137/040620886

51. Baz M, Hunsaker B, Prokopyev O. How Much Do We “Pay” for Using Default Parameters? Comput

Optim Appl. 2011; 48(1):91–108. https://doi.org/10.1007/s10589-009-9238-5

52. Hutter F, Hoos HH, Leyton-Brown K. Automated Configuration of Mixed Integer Programming Solvers.

In: Lodi A, Milano M, Toth P, editors. Integration of AI and OR Techniques in Constraint Programming for

Combinatorial Optimization Problems. Lecture Notes in Computer Science. Springer; 2010. p. 186–202.

53. Couvreur P. Nanoparticles in drug delivery: Past, present and future. Advanced Drug Delivery Reviews.

2013; 65(1):21–23. https://doi.org/10.1016/j.addr.2012.04.010

54. Kotterman MA, Chalberg TW, Schaffer DV. Viral Vectors for Gene Therapy: Translational and Clinical

Outlook. Annual Review of Biomedical Engineering. 2015; 17(1):63–89. https://doi.org/10.1146/

annurev-bioeng-071813-104938

55. Bol KF, Schreibelt G, Gerritsen WR, de Vries IJM, Figdor CG. Dendritic Cell-Based Immunotherapy:

State of the Art and Beyond. Clinical Cancer Research. 2016; 22(8):1897–1906. https://doi.org/10.

1158/1078-0432.CCR-15-1399

56. Kennedy RB, Ovsyannikova IG, Palese P, Poland GA. Current Challenges in Vaccinology. Frontiers in

Immunology. 2020; 11.

57. Yewdell JW, Bennink JR. IMMUNODOMINANCE IN MAJOR HISTOCOMPATIBILITY COMPLEX

CLASS I–RESTRICTED T LYMPHOCYTE RESPONSES. Annual Review of Immunology. 1999; 17

(1):51–88. https://doi.org/10.1146/annurev.immunol.17.1.51

58. Akram A, Inman RD. Immunodominance: A pivotal principle in host response to viral infections. Clinical

Immunology. 2012; 143(2):99–115.

59. Foley BT, Korber BTM, Leitner TK, Apetrei C, Hahn B, Mizrachi I, et al. HIV Sequence Compendium

2018. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); 2018. LA-UR-18-25673.

60. Los Alamos National Laboratory. The HIV Sequence Database;. https://www.hiv.lanl.gov (Accessed:

2019-10-03).

61. Dorigatti E, Schubert B. Joint epitope selection and spacer design for string-of-beads vaccines. bioRxiv.

2020.

62. van Rossum G. Python Reference Manual. Virginia, USA: PythonLabs; 2001.

63. Hart WE, Watson JP, Woodruff DL. Pyomo: modeling and solving mathematical programs in Python.

Mathematical Programming Computation. 2011; 3(3):219–260. https://doi.org/10.1007/s12532-011-

0026-8

64. Hart WE, Laird CD, Watson JP, Woodruff DL, Hackebeil GA, Nicholson BL, et al. Pyomo–optimization

modeling in python. vol. 67. 2nd ed. Springer Science & Business Media; 2017.

65. Gurobi Optimization L. Gurobi Optimizer Reference Manual; 2020. Available from: http://www.gurobi.

com.

66. Schubert B, Walzer M, Brachvogel HP, Szolek A, Mohr C, Kohlbacher O. FRED 2: an immunoinfor-

matics framework for Python. Bioinformatics. 2016; 32(13):2044–2046. https://doi.org/10.1093/

bioinformatics/btw113
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