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A B S T R A C T

We present a theoretical study on the calculations of various cross sections related to the scattering of electrons
and positrons from indium atoms. Our calculations cover the energy range 1 eV ⩽ ⩽Ei 0.5 GeV. We have em-
ployed two approaches, applicable for two domains of energy, based on the Dirac partial-wave analysis. In one
approach, we have used both the atomic and nuclear potentials to calculate the cross sections for the low and
intermediate energies. The other approach, valid for the high-energy scattering, utilizes only the nuclear po-
tential for the phase-shift analysis, and considers the magnetic scattering from the nucleus too. We report the
calculations of differential, integral, momentum-transfer and viscosity cross sections along with the spin
asymmetries for the elastic scattering of electrons and positrons. Moreover, we have analyzed the critical minima
in the elastic differential cross sections, and also computed the absorption and total cross sections. Our results
agree reasonably with the available experimental data and other calculations.

1. Introduction

Results from the scattering theory in conjunction with the experi-
mental investigations provide much knowledge about interactions be-
tween elementary particles composing the universe and the structure of
bulk matter. Moreover, elastic scattering data are needed in many areas
of science, industries and technologies. In particular, a fairly accurate
estimate of the elastic scattering by electron (e−) and positron (e+)
impact on various species in a wide energy range is in great demand for
applications in the fields of chemical, biological, plasma and laser
physics, and even astrophysics [1,2]. The elastic differential (DCS),
integral (ICS), momentum-transfer (MTCS), viscosity (VCS), inelastic
(INCS) and total (elastic+ inelastic) (TCS) cross sections are important
characteristics of the ±e -atom collisions. The comparative study of e−

and e+ scattering helps in understanding and refining the collision
dynamics.

The elastic DCS furnishes detailed informations on ±e -atom collision
dynamics and on the optical potential. The Sherman function S, an
additional degree of freedom, provides more detailed information on
the collision process. Moreover, the measurements of the additional
spin asymmetry parameters T and U [3] from beam electrons spin-po-
larized in the scattering plane allow for more complete insights into the

atomic and nuclear structure [4]. The occurrence of the spin asymmetry
parameter S is also predicted to serve as a signature for parity-violating
electron-nucleus scattering [4]. If spin polarization of the target is not
considered, the elastic DCS together with S T, and U provide a com-
plete description of the elementary scattering process. The investigation
of minima and the determination of critical minima (CM) points in the
DCS is useful as, in the vicinity of the CMs, a complete spin polarization
of the scattered projectile occurs [3,5]. Moreover, the studies of the
CMs in DCS provide a crucial test of both the experimental results and
collision dynamics.

So far, numerous attempts [3–22] have been made to formulate
quantum mechanical approaches for solving lepton impact scattering
problems of neutral atoms, ions and molecules. These are broadly
classified into perturbation methods based on single-particle approx-
imations like the Born theory, and non-perturbative techniques based
on the multi-electron close-coupling approach [13,19,22]. Two per-
turbative methods that have been developed are the first-order dis-
torted wave Born approximation (DWBA) [4,20] and the optical po-
tential model (OPM) [3,5,7,8,14,15]. Both methods are capable of
providing reliable scattering cross section data and require minimal
computational resources. However, there are some advantages of one
method over the other. While in the OPM only a spherical potential is
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considered, the DWBA allows for the inclusion of higher multipole
components of the interaction [23]. On the other hand, for a given
effective potential, the OPM method is valid to infinite order while the
DWBA method is only accurate to first order perturbation theory. As for
the incident energy, the OPM is successful in low to intermediate en-
ergy ( ⩽Ei 1MeV) scattering where screening effects play a dominant
role, while the DWBA is generally used for much higher energies where
nuclear effects come into play.

The aim of the present investigation is to bridge the gap between the
atomic physics and the nuclear physics regime, and to provide a com-
prehensive study which includes the nuclear magnetic effects on scat-
tering. Encouraged by the reasonable success of our previous works
[24–27], the present article studies all the features of ±e -In scattering
over the energy domain 1 eV ⩽ ⩽Ei 0.5 GeV. This is achieved by using
two theoretical approaches both of which are based on the phase-shift
analysis which employs the partial-wave decomposition of the leptonic
scattering states within the Dirac relativistic framework. The OPM

approach is applied in the atomic regime and the nuclear structure
approach (NSA), for the nuclear regime. In the NSA, for ≳Ei 50MeV,
the phase shift analysis is supplemented with the Born approximation
for magnetic scattering [4]. It is worth mentioning that most of our
previous works [24–26], covering the all-out features up to GeV order,
have not considered magnetic scattering as they have dealt with the
targets (20Ne, 174Yb and 40Ar) with zero spin. Although the investiga-
tions of Ref. [27] have included magnetic effects for the target 23Na,
they have not provided the analysis of the CM. In this paper, we have
meticulously analyzed the CM points and the Sherman function in the
vicinity of those CMs. Also is considered the magnetic scattering for the
abundantly available 115In isotope, because of its nuclear spin 9/2.

Indium, a metal with a low melting point, finds applications in as-
trophysics [28], plasma physics [29], semiconductor and optoelec-
tronics [30], etc. However, experimental and theoretical studies on
electrons and positrons scattered elastically from In have been frag-
mentary so far. Elastic DCS, TCS and spin asymmetry measurements for

Fig. 1. Energy dependence of the (a) ICS, (b) MTCS, (c) VCS, (d) INCS and (e) TCS for electron-indium scattering. Theoretical: — line, present calculations using
OPM; – – – line, Ref. [31];⋯⋯ line, Ref. [35]; − −· · line, Ref. [38]. Experimental: (•), Ref. [31].
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e−-In scattering were reported by four experimental groups [31–34]. As
far as theoretical studies are concerned, we are aware of calculations for
elastic DCS and TCS by Öztürk et al. [35], Rabasović et al. [31] (both
using the OMP method) and Dapor and Miotello [36] (by using a
central electrostatic field); spin-asymmetry S by Bostock et al. [22] and
Bartschat [37] (both using the close-coupling approach). All these
theoretical investigations are concerned with low to intermediate en-
ergy scattering (atomic physics regime), where nuclear effects are ab-
sent. For ultrarelativistic beam energies (the nuclear physics regime),
theoretical calculations of TCS and transport cross sections were only
reported by Mayol and Salvat [38]. However, these authors did not
consider magnetic scattering. Not a single article, available in litera-
ture, studied the CM points and the Sherman function for lepton-In
scattering system.

The materials of the paper are arranged as follows. In Section 2, the
outline of the theory is presented. Section 3 provides the discussion and
comparison of the results. Section 4 contains the conclusions. Atomic

units are used throughout unless otherwise specified.

2. Theoretical models

2.1. Relativistic Dirac equation

The motion of a projectile of rest mass mo traveling with velocity v
in a central fieldV r( ) can be described by the relativistic Dirac equation
as

+ + =αc βm c V r ψ Eψp r r[ · ( )] ( ) ( ),o
2 (1)

where E is the total energy expressed as = = +E m γc E m co i o
2 2 with mo

being the rest mass of the projectile, = − −γ v c(1 / )2 2 1/2 and c, being the
velocity of light in vacuum. Here, αE ,i and β represent, respectively,
the kinetic energy of the incident particle and the usual ×4 4 Dirac
matrices. The relativistic wave function ψ r( ) is a four-component spinor
with quantum numbers κ m, . The function describes the scattering state

Fig. 2. Anglular distribution of the DCS for elastic scattering of 10, 20, 30, 40, 50 and 60 eV electrons from indium in units of ∘a 2/Sr:— line, present calculations using
OPM; – – – line, Ref. [31];⋯⋯ line, Ref. [35]; (•), experimental data of Ref. [31].

S. Afroz, et al. Results in Physics 18 (2020) 103179

3



of the projectile and is given by

̂
̂⎜ ⎟

→ = ⎛
⎝

⎞
⎠−

ψ r
r

P r r
iQ r r

( ) 1 ( )Ω ( )
( )Ω ( )

.Eκm
Eκ κ m

Eκ κ m

,

, (2)

Here, P r( )Eκ and Q r( )Eκ are the large and small components of the
radial part of the scattering wave function. ̂rΩ ( )κ m, are the spherical
harmonic spinors. κ is the relativistic quantum number defined in terms
of the total angular momentum quantum number j and orbital angular
momentum quantum number l as = − +κ l j j( )(2 1).

The functions P r( )Eκ and Q r( )Eκ satisfy the following set of coupled
differential equations:

= − + − + ∘dP
dr

κ
r

P r E V m c
c

Q r( ) 2 ( )Eκ
Eκ

i
Eκ

2

(3)

and

= − − +dQ
dr

E V
c

P r κ
r

Q r( ) ( ).Eκ i
Eκ Eκ (4)

The scattering information is determined from the asymptotic form
of the large component P r( )Eκ of the scattering wave function, which
can be expressed in terms of the complex phase shift δκ as

≃ ⎛
⎝

− + ⎞
⎠

P r kr l π δ( ) sin
2

,Eκ κ (5)

where k is the relativistic wave number of the projectile that is related
to the momentum p and the kinetic energy Ei by

= = + ∘k p c k E E m cℏ , ( ℏ ) ( 2 ).i i
2 2 (6)

The Eqs. (3) and (4) satisfying the asymptotic condition (5) are
solved numerically using the subroutine package RADIAL [39].

2.2. The OPM method

In the OPM, the elastic scattering of a projectile from the target is
formulated in terms of a local complex optical potential approximated
from a non-local optical potential. This procedure is adapted for an easy

Fig. 3. Same as Fig. 2, but at impact energies of 80, 100, 150, 200, 250 and 300 eV.
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implementation of the scattering problems. For low and intermediate
energies ( ⩽Ei 5MeV), the present study uses a complex optical potential
to describe the effective interaction of electrons with the atomic target
115In, which is given by

= + + −V r V r V r V r iW r( ) ( ) ( ) ( ) ( ),st ex cp abs (7)

where the real contributions V r V r( ), ( )st ex and V r( )cp are, respectively,
the static, the exchange and the correlation-polarization potentials. Wabs

represents the modulus of the imaginary absorption potential.
The projectile-atom electrostatic potential Vst is given by [40]

=V r Z φ r( ) ( ),st 0 (8)

where Z0 is the charge of the projectile (Z0 =−1 for electrons and
Z0 =1 for positrons). The quantity φ r( ) is the sum of the nuclear in-
teraction φ r( )n and the electronic interaction φ r( )e . These two interac-
tions can be expressed as

∫ ∫= ⎛
⎝

′ ′ ′ + ′ ′ ′⎞
⎠

∞
φ r

r
ρ r πr dr ρ r πr dr( ) 1 ( )4 ( )4n

r
n r n0

2

(9)

and

∫ ∫= −⎛
⎝

′ ′ ′ + ′ ′ ′⎞
⎠

∞
φ r

r
ρ r πr dr ρ r πr dr( ) 1 ( )4 ( )4 ,e

r
e r e0

2

(10)

where ρn and ρe are, respectively, the nuclear and electronic charge
densities. In this study the electron density ρ r( )e , represented by an
analytical function F r( ), has been calculated from the numerical Har-
tree–Fock (HF) wave functions of Koga [41]. For a neutral atom, it
satisfies the following normalization condition,

∫ =
∞

ρ r πr dr Z( )4 ,e0
2

(11)

with Z being the nuclear charge number of the target. For the charge
density of the nucleus a Fermi nuclear charge distribution [34,40] is
used (see Section 2.3).

The exchange potential V r( )ex in Eq. (7) for e−-In scattering is of
semi-classical type, taken from Furness and McCarthy [42]. It is derived
directly from the formal expression of the non-local exchange interac-
tion with the help of a WKB-like approximation for the wave functions.
It is expressed as

= − − − +V r E V r E V r πρ r( ) 1
2

[ ( )] 1
2

{[ ( )] 4 ( )} .ex i st i st e
2 1/2

(12)

For the calculation of cross sections for positron scattering, the same
type of optical potential as in (7) is used, excluding the exchange part
V r( )ex as there is no exchange between incident positron and bound
electrons.

Fig. 4. Same as Fig. 2, but at impact energies of 400, 500, 600, 700, 800 and 900 eV.
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The correlation-polarization potential in Eq. (7) stems from the
polarization of the target electron cloud by the incident projectiles. The
present study employs the global polarization potential Vcp, which is a
combination of the parameter-free long-range polarization potentialVcps
and a local-density approximation (LDA) to the correlation potential,
Vco. This correlation-polarization potential can be expressed as

≡ ⎧
⎨⎩

⩽
>

V r
V r V r r r

V r r r
( )

max{ ( ), ( )} if
( ) if .cp

co cps c

cps c (13)

The two contributions to the polarization potential, V r( )co and
V r( )cps , intersect for the first time at rc. At large distances ( >r rc), the
polarization potential has the well-known asymptotic form,

= −
+

V r α
r d

( )
2( )

,cps 2 2 2 (14)

where α is the static dipole polarizability of the target atom. The con-
stant d is obtained from the equation

= − ≈V α d V(0) /2 (0).cps co
4 (15)

Thus

= −d α V( /2 (0)) .co
1/4 (16)

Fig. 5. Same as Fig. 2, but at impact energies of 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 and 10000 eV.

Table 1
The positions of the DCS CM for the elastic e−-In scattering using our OPM. Also
are presented those obtained by Rabasović et al. [31]. SEPSo and SEPASo are the
approaches without and with absorption respectively.

Present calculation Rabasović et al. [31]

OPM SEPSo SEPASo

Ec θc A θ| ( )|2 B θ| ( )|2 Ec θc Ec θc

(eV) (deg.) (a Sr/0
2 ) (a Sr/0

2 ) (eV) (deg.) (eV) (deg.)

6.802 105.4 3.24E−03 8.28E−03 – – – –
14.782 50.6 1.19E−05 3.36E−03 – – – –
17.68 106.6 3.29E−05 2.04E−03 – – – –
19.32 120.2 9.58E−06 1.18E−03 18.5 114.98 – –
31.32 32.6 7.34E−05 1.29E−03 – – – –
42.75 83.8 3.83E−05 1.62E−03 42.7 84.18 46.3 81.84
64.842 142.6 1.13E−07 1.19E−04 60.4 142.5 56.6 143.16
67.45 142.2 1.35E−04 1.36E−04 – – – –
79.46 140.6 8.56E−08 1.89E−04 75.5 140.33 81.5 138.37
133.93 107.8 2.29E−06 3.99E−04 131.9 106.95 126.2 108.13
215.41 151.4 1.51E−07 6.14E−05 205.7 151.82 201.4 152.88
325.5 92.2 2.64E−06 3.18E−04 300.9 93.13 330 91.01
695.47 130.6 4.14E−07 1.69E−04 – – – –
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In LDA, the local atomic electron density ρ r( ) is treated as a free
electron gas (FEG) and the correlation energy of the projectile at r is
calculated on the basis of its interaction with this FEG. This correlation
energy is calculated as the functional derivative of the FEG correlation
energy with respect to ρ r( )e . The density parameter is defined as

≡ ⎡
⎣⎢

⎤
⎦⎥

r
πρ r

3
4 ( )

.s
e

1
3

(17)

In the ELSEPA code [40], for electron scattering, the para-
meterization is employed as

= − + −V r r r r r( ) [0.0311ln( ) 0.0584 0.00133 ln( ) 0.0084 ]co s s s s (18)

for <r 1s , and

=
+ +

+ +
V r β

β r β r

β r β r
( )

1 (7/6) (4/3)

(1 )
co o

s s

s s

1

1
2

2

1

1
2

2
2

(19)

for ⩾r 1s , where = − =β β0.1423, 1.05290 1 and =β 0.33342 .
For positron impact scattering, we use the correlation polarization

potential of Jain [43] as given by

= − + − ++ −V r r r r( ) 1
2

[ 1.82 [0.051ln( ) 0.115]ln( ) 1.167]co s s s
( ) 1/2

(20)

for <r 0.302s ,

= − −+ −V r r( ) 1
2

[ 0.92305 0.09098 ]co s
( ) 2

(21)

for ⩽ <r0.302 0.56s , and

= ⎡
⎣⎢
−

+
+ − +

+
+

+
− ⎤

⎦⎥
+V r r

r
r

r r
( ) 1

2
8.7674

( 2.5)
13.151 0.9552

( 2.5)
2.8655

( 2.5)
0.6298co

s

s

s

s s

( )
3 2

Fig. 6. The Sherman function S for elastic scattering of 1, 2, 3, 4, 5 and 6 eV electrons from indium: — curves, present calculations (OPM); – ·– ·– curves, Ref. [22]; – –
– curves, Ref. [37]; (•), experimental data of Ref. [32].
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for ⩽ <r0.56 8.0s .
As the asymptotic region ⩾r 8s is the range beyond the crossing

point, the polarization potential is accurately given by Eq. (14).
The imaginary component W r( )abs in Eq. (7) accounts for the loss of

incident flux to various inelastic channels during the collision. This
absorption potential depends on the cross section for binary collisions
between the projectile and target electron. Such collisions excite the
target electron to a higher energy state and contribute to the depletion
of the elastic channel. For electron scattering, the relativistic corrected
W r( )abs , as proposed by Salvat et al. [40], is given by

= +
+

×W r E m c
m c E m c

A v ρ r σ E ρ( ) 2( )
( 2 )

1
2

[ ( ) ( , , Δ)],abs
L o

o L o
abs L e bc L

2 2

2 2 (22)

where vL is the velocity with which the projectile interacts as if it were
moving within a homogeneous gas of density ρe. This projectile velocity
is given by =v E m(2 / )L L o

1/2 corresponding to the local kinetic energy
= − −E r E V r V r( ) ( ) ( )L i st ex . σ E ρ( , , Δ)bc L is the cross section for the

binary collision of the electron with the degenerate FEG [42] involving
energy transfers greater than a certain energy gap Δ. In the present
electron-indium scattering, the value of the empirical parameter Aabs,
resulting from a best fit to experiment, has been chosen as 2.8 for the

calculations of the various cross sections. For positron scattering, the
same expression (22) for W r( )abs has been used with Aabs =1.5.

The energy gap Δ is the threshold energy for the inelastic channel
and accounts for the minimum energy lost by the projectile. For the
present computation, the energy gap Δ is adopted as

= ⎧
⎨⎩

∊
−I

Δ
for electrons,

max{ 6.8 eV, 0} for positrons.
1

(23)

Here ∊ = 0.2741 eV [44] and =I 5.7864 eV [45] are, respectively, the
first excitation energy and the ionization potential of the target atom.
The quantity 6.8 eV is the ground-state binding energy of the posi-
tronium atom. Since <I 6.8 eV, positronium formation is possible at
arbitrary energy.

The scattering of electrons and positrons by the complex optical
potential V r( ) is completely described by the non-flip part A and the
spin-flip part B of the elastic scattering amplitude fe [5],

∑= + − + −
=

∞
− −A

ik
l l P θ1

2
[( 1)(e 1) (e 1)] (cos )

l

iδ iδ
l

0

2 2l l1

(24)

and

Fig. 7. Same as Fig. 6, but at impact energies of 9, 10, 11, 14, 20 and 30 eV.
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∑= − −
=

∞
− −B

k
P θ1

2
(e e ) (cos ),

l

iδ iδ
l

1

2 2 1l l 1

(25)

where P θ(cos )l and P θ(cos )l
1 denote, respectively, the Legendre poly-

nomials and associated Legendre functions. And θ is the scattering
angle.

Once the phase shifts and the scattering amplitudes are determined,
the elastic DCS for initially unpolarized electrons or positrons is ob-
tained from the expression

⎛
⎝

⎞
⎠

= +dσ
d

A B
Ω

| | | |
0

2 2

(26)

The integral, momentum-transfer, viscosity and total cross sections
are, respectively, defined [5] as

∫ ∫= = +σ dσ
d

d π A B θ dθ
Ω

Ω 2 (| | | | )sin( ) ,el
π

0
2 2

(27)

∫= − +σ π θ A B θ dθ2 (1 cos )(| | | | )sin( ) ,m
π

0
2 2

(28)

∫= − +σ π θ A B θ dθ3 [1 (cos ) ](| | | | )sin( ) ,v
π

0
2 2 2

(29)

and

=σ π
k

A4 Im (0).tot (30)

Here, Im A(0) is the imaginary part of the non-flip scattering am-
plitude at =θ 0. Because of this imaginary component, σtot contains
both the elastic and inelastic (absorption) parts. In the present study,
the inelastic cross section σin is expressed as

= −σ σ σ .in tot el (31)

The relativistic treatment of ±e collisions enables us to calculate the
polarization, which describes the difference between the measured
number of scattered electrons with spin up and spin down. The ex-
pression for the Sherman function in terms of the two contributions to
the scattering amplitude is given by

=
+

∗
S AB

A B
2Re( )
| | | |

,2 2 (32)

which suggests that the behaviour of the scattering amplitudes A and B
in Eqs. (24) and (25), respectively, determines the total polarization
points with S = ±1 near the critical minima of the DCS.

The complete dependence of the scattering process on the spin
variables can be obtained from the additional polarization correlations
T and U [3], where

Fig. 8. Same as Fig. 6, but at impact energies of 40, 60, 80, 100, 200 and 400 eV.
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= −
+

T A B
A B

| | | |
| | | |

.
2 2

2 2 (33)

and

=
+

∗
U AB

A B
2Im( )
| | | |

.2 2 (34)

The three spin functions S T, and U obey the following conserva-
tion relation [53]

+ + =S T U 1.2 2 2 (35)

Hence the values of T and U depend on S and are useful indicators of
the total polarization, S θ( ) =±1.

2.3. The NSA method

For ⩾E 1i MeV the present study employs the NSA method for ob-
taining the elastic scattering characteristics of electrons and positrons
from 115In. In the case of energies beyond 1MeV, the projectile passes
close to the nucleus, so that only the nuclear interaction part of the
static potential has to be retained in the Dirac equation, which means

Fig. 9. Energy dependence of DCS, Sherman function S and spin-asymmetries T and U for electron-indium scattering at scattering angle = °θ 30 . The curves— and – –
– indicate the present calculations, respectively, of the NSA and OPM approaches. The thin red line in (a) is the contribution from magnetic scattering. The symboles
(•) are the experimental data of Refs. [31,32], respectively, for the DCS and S.

Fig. 10. Same as Fig. 9, but at scattering angle = °θ 70 with additional experimental data (solid triangle) of Ref. [34].
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replacing (7) by =V r Z φ r( ) ( )n0 . This potential is generated from the
Fermi-type nuclear ground-state charge distribution ρ r( )n ,

=
+ −ρ r

ρ
e

( )
1

,n r c a
0
( )/ (36)

with =ρ 0.0740 fm−3, such that ρn is normalized to Z. For 115In, the
parameters are given by =c 5.24 fm and =a 0.5234 fm [34]. The po-
tential is calculated with the help of (9).

For potential scattering, the phase shift analysis is the same as ap-
plied at low and intermediate energies, using Eqs. (24)–(26). For high

energies beyond 1MeV the sum over the phase shifts in (24) and (25) is
handled by means of a threefold convergence acceleration. In this
method, the singularity of A and B at =θ 0 is attenuated by means of
multiplying A and B with − =θ m(1 cos ) , 3m , and reexpanding in
terms of Pl [46,47].

At energies near 50MeV and above, magnetic effects come into play
if the nucleus has spin, respectively, a magnetic moment. They arise
from the current–current interaction between the lepton and the nu-
cleus. This means that for the scattering of highly relativistic electrons
or positrons from such nuclei, there are additional contributions to the

Fig. 11. Same as Fig. 9, but at scattering angle = °θ 90 with additional experimental data (solid triangle) of Ref. [34].

Fig. 12. Same as Fig. 9, but at scattering angle = °θ 120 .
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transition amplitude besides the amplitude fe for potential scattering.

For 115In with =
+

J π 9
2 , magnetic transitions Mλ of multipolarity

= …λ λ J( 1, 3, ,2 ) can occur, where M1 is the most important one for
low momentum transfer, while the higher multipoles become the more
relevant, the higher the collision energy [48]. In the DWBA formalism,
the scattering amplitude has to be calculated separately for each mul-
tipole with the help of the respective nuclear transition density. These
amplitudes must then be added to fe in order to obtain the total tran-
sition amplitude. Due to the lack of accurate multipole transition den-
sities, we are using the Born approximation to magnetic scattering in-
stead. In this theory the DCS for unpolarized leptons is given by [23]

⎛
⎝

⎞
⎠

= + + ⎛
⎝

⎞
⎠

dσ
d

A B dσ
dΩ

| | | |
Ω

,
0

2 2

mag (37)

with

⎛
⎝

⎞
⎠

= − ≈ ⎛
⎝

+ ⎞
⎠

dσ
d

E
c q

θ F q σ θ F q
Ω

(3 cos ) | ( )| 1
2

tan
2

| ( )| ,T T
mag

2

4 4
2

Mott
2 2

(38)

where ≈q 2 k sin(θ/2) is the momentum transfer, ≈E kc for high en-

ergies, and =σ θ
kc θMott
cos / 2

(2 sin / 2)

2
2 2 is the Mott cross section. Like for poten-

tial scattering, recoil is omitted in (38). The magnetic form factor F q( )T
has been obtained from a fit [48] to the experimental scattering cross
sections recorded at angles close to °180 (see, e.g. [49]), where mag-
netic scattering is largely dominant. Thus F q( )T results from the joint
effect of all multipole transitions. It was shown in an investigation on
spin-1

2
nuclei [4] that the Born approximation (37) is reliable as long as

( )dσ
dΩ mag is smaller than +A B| | | |2 2.

As concerns the spin asymmetries, there is, within the above ap-
proximation, no consistent way of including the magnetic contribution.
With the use of a global form factor, as in (38), interference effects are
disregarded. Such interference effects occur not only among the mag-
netic multipole transitions, but also between fe and the magnetic scat-
tering amplitudes. For this reason the magnetic scattering is not con-
sidered in our results for the spin asymmetries.

3. Results and discussions

3.1. Electron-indium scattering

As mentioned above, we have employed two theoretical ap-
proaches, OPM and NSA. For incident projectile energies below 106 eV,
the OPM prescription is used, employing the HF density function.
Results for the DCS, ICS, MTCS, VCS, INCS and TCS are provided up to
104 eV. Spin asymmetries and critical minima in the DCSs are also
studied using the OPM theory. The NSA method is applied to compute
the energy dependence of the DCSs and the spin asymmetries for in-
cident energies >E 10i

5 eV.
We compare in Fig. 1(a) our OPM calculations of ICS for electron-

indium elastic scattering with the experimental data of Rabasović et al.
[31] and theoretical predictions of Rabasović et al. [31], Öztürk et al.
[35] and Mayol and Salvat [38]. We see a close agreement between
them and with experiment, except for a slight overestimation of the two
experimental data points at around ≃E 100i eV. However, in the vici-
nity of 50 eV, two shallow structures are found in the calculations of
Rabasović et al. [31] that are not clearly seen in our calculations.

The MTCS and VCS calculated for the elastic scattering of electrons
from indium are presented, respectively, in Fig. 1(b) and (c). As seen
from these figures, our calculations reproduce the pattern of the energy
dependence of the experimental cross sections [31], the number of
minima, and their energy positions except again a little overestimation
in absolute values. The predictions of Mayol and Salvat [38], however,
differ significantly from both the experimental and the present results
in the energy domain 100–1000 eV. The difference in the two calcula-
tions might originate from the use of different potential components
and procedures of calculations.

In Fig. 1(d) we present our INCS results in comparison with the
experimental data and the theoretical values of Rabasović et al. [31]. It
is evident from this figure that our calculations substantially over-
estimate the experimental data and theoretical predictions at lower
energies of ⩽E 40i eV. The difference between the present results and
those of [31] might be, at least partly, attributed to the use of different
potentials and methods in the aforesaid two calculations.

Fig. 1(e) presents our TCS results in comparison with the predictions

Fig. 13. Same as Fig. 9, but at scattering angle = °θ 150 .
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of Rabasović et al. [31]. So far as we are aware, no experimental data
are available for this scattering characteristics. The comparison of the
theories shows that the results from [31] continue to underestimate the
present results up to =E 100i eV. Again this difference might stem from
the same causes as touched upon for INCS in Fig. 1(d). It is worth
mentioning that in the reported Rabasović et al. [31] calculations, more
than 60% of the contribution to their TCS originates from ICS, which is,
according to Fig.1a, significantly lower than the present results in this
energy region.

Our OPM calculations of the DCS for electron-indium elastic scat-
tering at impact energies in the range ⩽ ⩽E10 10i

4 eV are shown in
Figs. 2–5. The oscillations of the DCS with angle (or energy) are the so-
called Ramsauer-Townsend structures (see, e.g., the review by Lucas
et al. [50]). They originate from interference effects caused by the
leptons scattering from the individual electrons of the atom. The
structures disappear when the collision becomes so energetic that the
lepton-atom interactions occur inside the K-shell (above 1 keV). As seen
in these figures, the number of minima in our DCS distributions varies
with energy from 2 at =E 10i eV to 3 at ⩽ ⩽E20 50i eV and again to 2
at ⩽ ⩽E60 i 80 eV. The DCSs again reveal 3 minima at ⩽ ⩽E100 i 400 eV
and 2 minima at ⩽ ⩽E500 i 1000 eV. With a further increase in the

collision energy to ⩽ ⩽E2000 i 3000 eV, the number of minima reduces
to 1. For ⩾E 4000i eV, the DCS decreases monotonously with energy,
without yielding any minimum or maximum.

The present DCS results are compared with the experimental data of
Rabasović et al. [31] at Ei =10, 20, 40, 60, 80 and 100 eV, and also
with the calculations of Rabasović et al. [31] at ⩽ ⩽E10 i 300 eV and
Öztürk et al. [35] at Ei =50, 100, 200, 500, 1000 and 2000 eV. For
>Ei 2000 eV, there are neither any measurements nor any other calcu-

lation of the DCS available in the literature for comparison. It is an-
ticipated that this investigation might motivate future experimental as
well as theoretical studies.

The comparison shows that the present DCS curves agree fairly well
with the experimental data apart from differences in magnitude in the
vicinity of the deep minima. However, those of Rabasović et al. [31]
agree better with the experimental data. It is worth mentioning that
Rabasović et al. [31] used energy dependent parameters W E( )i for the
absorption potentials VAi, i = 1–3 and β E( ) in their Eqs. (3) and (4). It
is clear from Table 1 of Ref. [31] that for each energy they used dif-
ferent adjustable parameters. Besides, the experimental data are nor-
malized at 20 deg. to their SEPAS∘ (VA3) calculations. On the other
hand, the present work uses one value for the generalized absorption

Fig. 14. Energy dependence of angular positions and DCS values of deep minima for electron-indium scattering. Also are shown the angular dependence of DCS and S
for some incident energies in the vicinity of the critical minima [Ec =14.782 eV; = °θ 50.6c ] and [Ec =695.47 eV; = °θ 130.6c ].
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parameter Aabs over the whole range of energies. So it is not unexpected
that the results of Rabasović et al. should produce better agreement
with their own measurements than the present results.

The poor agreement of our results with the experiment at the lower
impact energies (⩽20 eV) may come from the onset of the inelastic
threshold which interplays between the real and imaginary components
of the optical potential due to dispersion. Moreover, the uncertainty of
the atomic dipole polarizability could produce some discrepancy be-
tween the calculated and the measured values. Nonetheless, at 10 eV,
our DCS provides a reasonable agreement with the data for the lower
and the higher scattering angles, whereas the calculations of [31] dis-
agree significantly and fail to show even the oscillatory behavior.

A comparison among the theoretical predictions shows that the
present calculations and those of Rabasović et al. [31] and Öztürk et al.
[35] exhibit resonance structures at about the same scattering angles
but with little variations in the magnitude. Up to the energy 20 eV, as
evident from Figs. 2(a) and (b), the present DCS values are lower than
those of Rabasović et al. [31] by roughly a factor of 2–2.5 at most of the
angles. Beyond this energy, the present DCS values are higher than
those of [31] by a factor of 1.5–3.0, with few exceptions. At the smaller
energies (below 30 eV), the present work produces an extra minimum
in the backward hemisphere. Öztürk et al. [35] predicted lower DCS
values in and around 0–12 degree by a factor of 5–10 and, on the other
hand, largely higher values than the present calculation over the re-
maining angular domain. In the overall assessment, their DCS values
[35] (Figs. 2–5) are, more often than not, higher by a factor of 2 than
the present calculation and a factor of 4 than those of Rabasović et al.
[31]. These variations signify the sensitivity of the theoretical models
involving different interaction potentials. We recall that for the inter-
action of an electron with the indium atom, all three models mentioned
above use the optical potential (OP), but with different components. For
example, while the OP in the present study and in Ref. [31] contains
both the real and absorption parts, the OP in Ref. [35] contains the real
part only. In our calculations and in those of [35], the real part of OP
comprises the static, the exchange and the polarization potentials while
in Ref. [31] the real part includes additionally the spin-orbit potential.
The overestimation of the DCS values in Ref. [35] may be due to the
absence of an absorption potential in their OP. Because of the presence
of inelastic processes the absorption potential has a significant effect on
the DCS curves, especially at the minima and maxima for the larger
scattering angles.

In Figs. 6–8 we compare our OPM results of the Sherman function S
for electrons elastically scattered from indium atoms for incident en-
ergies ⩽ ⩽E1 400i eV. The present results are compared with the only
measured data of Bartsch et al. [32] at Ei =1–14 eV. They are also
compared with the close-coupling calculations of Bostock et al. [22] at
Ei =1–14 eV and Bartschat et al. [37] at Ei =1–3 eV. We found in the
literature neither any measurements nor theoretical calculations of S at
higher energies ( ⩾Ei 20 eV) for electron-indium elastic scattering to
compare with.

The comparison at low energies shows that, unlike for the DCSs, our
spin asymmetry results do not agree with experiment or other calcu-
lations. This can be explained in the following way. Before the onset of
the inelastic threshold at 5.8 eV, there may be an interplay between the

Fig. 15. A three-dimensional (3D) plot of the present DCS for electron-indium
scattering.

Table 2
Maximum spin polarization with their positions, and deviations in energy EΔ
and angle θΔ from the respective CM positions for e−- In elastic scattering.

Ec θc S θ( ) Ed θd ± EΔ ± θd
(eV) (deg.) (eV) (deg.) (eV) (deg.)

6.802 105.4 +0.541544 4.82 108.2 1.982 2.8
−0.999782 7.41 105.0 0.608 0.4

14.782 50.6 +0.998330 14.71 49.0 0.072 1.6
−0.998238 14.94 52.2 0.158 1.6

17.68 106.6 +0.939938 18.36 113.4 0.68 6.8
−0.999771 17.35 100.6 0.33 6.0

19.32 120.2 +0.937807 18.46 114.2 0.86 6.0
−0.999018 19.85 123.0 0.53 2.8

31.32 32.6 +0.997191 30.52 33.0 0.8 0.4
−0.878687 32.11 32.2 0.79 0.4

42.75 83.8 +0.990479 43.18 83.0 0.43 0.8
−0.988026 42.22 84.6 0.53 0.8

64.842 142.6 +0.922400 63.8 142.6 1.042 0.0
−0.922057 66.09 142.6 1.248 0.0

67.45 142.2 +0.393140 64.87 142.2 2.58 0.0
−0.912895 68.9 142.2 1.45 0.0

79.46 140.6 +0.999420 80.59 140.2 1.13 0.4
−0.998850 78.17 141.0 1.29 0.4

133.93 107.8 +0.999487 130.83 108.2 3.1 0.4
−0.977497 137.47 107.4 3.54 0.4

215.41 151.4 +0.769096 214.01 151.8 1.4 0.4
−0.763636 217.01 151.0 1.6 0.4

325.5 92.2 +0.999854 323.37 91.8 2.13 0.4
−0.972910 327.77 92.6 2.27 0.4

695.47 130.6 +0.901809 695.54 130.2 0.07 0.4
−0.998777 683.78 131.4 11.69 0.8

Fig. 16. A 3D plot of the Sherman function for electron-indium scattering from
the present results.
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real and the imaginary parts of the OP due to the dispersion effect,
leading to a deviation from the smooth variation of the OP parameters
with energy. This feature is not considered in the present study. Also
there will be a substantial contribution of the resonance elastic scat-
tering corresponding to the isolated levels of a composite system that
can not be modeled accurately in the OPM approach. Nonetheless, the
present calculations exhibit oscillations at about the same scattering
angles, while the differences are largest at the extrema of S. Also a
reasonable quantitative agreement with the experiment is seen at lower
scattering angles up to = °θ 90 for <E 10i eV.

Figs. 9–13 present the energy dependence of the DCS of the elastic
electron-indium scattering over the energy range 1 eV ⩽ ⩽Ei 0.5 GeV at
three forward scattering angles ( = ° °θ 30 , 70 and °90 ) and two back-
ward angles ( = °θ 120 and °150 ). The curve designated by NSA(M) re-
presents the cross section due to the magnetic scattering only. It is seen
that the magnetic effect is, particularly at the forward angles, very small
compared to the electrostatic effect of the nucleus., except at ultrahigh
energies.

From Figs. 9–13 it follows that the OPM and the NSA predictions of
the DCS merge smoothly at around 1MeV. Strong Ramsauer-Townsend
structures are observed at all scattering angles for kinetic energies

<E 1i keV. Beyond 1 keV up to about 50MeV, the DCS declines
monotonously with Ei. This is expected because it is the pure Coulomb
field of the nucleus which acts in this energy regime. At ultra-re-
lativistic energies ( ≃Ei 100MeV), the structures reappear due to the
diffraction effects resulting from the projectile scattering by the in-
dividual protons of the indium target nucleus. One can also see that the
low-energy structures gradually fade out as Ei advances towards the M-
subshell binding energies (which are located at −0.4 0.8 keV). In the
case of high energies, the structures reappear and follow basically a
j qR( N1 ) pattern [51], where RN is the nuclear radius, ≈q k2 i sin(θ/2) is
the momentum transferred to the nucleus, and j1 is a spherical Bessel
function.

The OPM predictions of the DCS are compared with the experi-
mental data of Rabasović et al. [31], as discussed earlier, at some fixed
angles. This is done to examine the energy dependence of the DCS at a
particular angle. The NSA results are compared with the data measured
by Hahn et al. [34] at = °θ 70 and °90 . The comparison shows that a
good agreement with experiment is achieved by the NSA results. No
other experimental or theoretical values of the DCS, for electron scat-
tering at the higher energies, are available to compare with the NSA
results.

Fig. 17. Energy dependence of the ICS, MTCS, VCS, INCS and TCS for positron-indium scattering: — line, present OPM calculations; – – – line, Ref. [36]; ··· line, Ref.
[35].

S. Afroz, et al. Results in Physics 18 (2020) 103179

15



In Figs. 9–13 we also present the energy dependence of the Sherman
function S and the spin asymmetries T and U, respectively, in the
subfigures (b), (c) and (d) of each of these figures. Like in the case of the
DCS curves, the OPM and NSA results for all spin-polarization para-
meters merge smoothly at the matching point of about 1MeV. The OPM
results of S are compared again with the measured data of Bartsch et al.
[32], which have been discussed earlier. However, no data for S, nei-
ther experimental nor theoretical, are available to compare with the
NSA predictions in the high-energy domain. Moreover, we are not
aware of any measurements or any calculations for T and U to compare
with our results.

It is evident in Figs. 9–13 that the Ramsauer-Townsend structures
which appear in S below 1 keV relate to those of the DCS curves.
However, the structures in S are much stronger than those observed in
the DCS. These pronounced structures in S are due to the greater sen-
sitivity of the spin polarization to interference effects, and thus to the
choice of the potentials and methods for the calculations. It is also
observed that, in the forward hemisphere, the magnitude of S increases
with scattering angle for all energies. The picture is opposite in the case
of backward scattering angles. This observation indicates that the nu-
clear electrostatic field becomes stronger at a smaller projectile-nucleus
distance.

The angular positions of the DCS minima are plotted as a function of
the incident energy in Fig. 14(a). It is evident from this figure that the
low-angle minima (curves 1 and 2) are not found in the DCSs below
6.9 eV, but maintain their appearance up to 400 eV. The angular posi-
tions of these minima vary from °64.6 at 6.9 eV to °48.6 at 400 eV
reaching a minimum at °31.8 . The intermediate-angle minima (curves 3
and 4) in the DCS are seen to appear for collision energies

⩽ ⩽E19 i 1050 eV. The high-angle minima (curve 5), on the other hand,
are present at all energies below 7000 eV with the angular positions
varying between °96 and °151.8 . Compared to the experimental data
from Ref. [31], our results show a close agreement with a slight un-
derestimation for the intermediate scattering angles.

Fig. 14(b) displays the energy dependence of the deep DCS minima.
The positions of these deep minima have been traced with the help of
the DCS minima in the angular distribution shown in Fig. 14(a). As seen
in Fig. 14(b), the present study predicts a total of 14 deep minima in the
DCS distributions. In the low-angle minimum region, corresponding to
curves 1 and 2, there are three such deep minima located at the critical
energies Ec =14.782, 31.32 and 128 eV. Three deep minima at
Ec =42.75, 133.93 and 325.5 eV are visible in the intermediate-angle
minimum regions, depicted in curves 3 and 4. In the high-angle
minimum region (curve 5), there are 8 deep minima at Ec = 6.802,

Fig. 18. Angle DCS for elastic scattering of 10, 50, 100, 300, 500 and 1000 eV positrons from indium in units of ∘a 2/Sr: solid curves, present OPM calculations; short-
dashed curves, Ref. [35]; broken curves, Ref. [36].

S. Afroz, et al. Results in Physics 18 (2020) 103179

16



17.68, 19.32, 64.842, 67.45, 79.46, 215.41 and 695.47 eV.
In the vicinity of a CM, the non-flip scattering amplitude A should

approach zero [5]. Therefore, an important criterion for a minimum
point in the energy-dependent DCS to be a critical one is that the
magnitude of the spin-flip amplitude must be larger than that of the
non-flip amplitude, i.e. ≫B A| | | |. In view of this criterion, among the 14
deep minima observed in Fig. 14(b), only one minimum, located at
E=128 eV, at the critical angle = °θ 54.6c with = × −A| | 4.6 10 10 and

= × −B| | 1.4 10 10, does not qualify to be a CM. The qualified 13 CMs
along with their respective Ec and θc are listed in Table 1. The three-
dimensional (3D) plot of the DCS, in Fig. 15, clearly shows the positions
of these CM in terms of impact energy as well as scattering angle. The
highest critical energy occurs for (Ec =695.47 eV; = °θ 130.6c ) whereas
the highest critical angle shows up at (Ec =215.41 eV; = °θ 151.4c ).

For electron-indium scattering, Rabasović et al. [31] obtained 7 CMs
by using their SEPSo (without absorption) approach and 6 CMs by
SEPASo (with absorption) approach. The positions of those CMs are also
displayed in Table 1. It is evident from this table that the angular po-
sitions of the CMs predicted in the present study produce an overall
good agreement with those obtained by Rabasović et al. [31]. There is
no available experimental measurements on CM for this scattering
system to compare our results with.

Two more important features of the CM are: (i) at a CM the DCS
attains a local minimum, (ii) the position of a CM is the only one for
which the Sherman function attains in its vicinity both its maximum
and minimum. In order to illustrate the effectiveness of our present
model the angular dependence of DCS and S for some incident energies
in the vicinity of the two critical minima [Ec =14.782 eV; = °θ 50.6c ]
and [Ec =695.47 eV; = °θ 130.6c ] are, respectively, presented in
Figs. 14(c) and (d) and 14(e) and (f). From Fig. 14(c) it follows that the
DCS attains its minimum exactly at 14.782 eV. The DCS gets higher if
the energy is slightly increased to 15.3 eV or decreased to 14.5 eV. A
similar scenario is echoed in Fig. 14(e), where DCS is the lowest at
695.47 eV, as compared to the values at 700.0 eV and 690 eV in its
proximity. In case of the Sherman function, Fig. 14(d) shows that, in the
vicinity of [Ec =14.782 eV; = °θ 50.6c ], the present S values vary from
+0.99 at °47 to −1.0 at °50 . Also in the case of [Ec =695.47 eV;
= °θ 130.6c ] in Fig. 14(f), we observe a similar behavior. All these re-

sults demonstrate the efficacy of the present electron-atom optical po-
tential in determining the CM positions accurately.

The significance of finding a CM position is that in its neighborhood
the scattered electrons acquires total polarization ( = ±S 1). In the vi-
cinity of each CM, obtained in the present study, we have calculated the
energy Ed and angle θd at which the polarization reaches extremal

Fig. 19. Same as Fig. 16, but at impact energies of 1500, 2000, 2500, 3000, 3500 and 4000 eV. – – – curves are the calculations of Dapor and Miotello [36].
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values of both signs. We have found a total of 26 such points, which are
listed in Table 2. Also shown are the positions of these maximum po-
larization points by a 3D plot in Fig. 16. It is evident from Table 2 that a
large polarization ( ⩾S 90%) is achieved at 22 deepest points (out of 26)
which can be considered as total polarization points. At the remaining 4
points, the polarization varies between ⩽ ⩽S0.4 | | 0.8. According to
Walker [52], however, the points with >S| | 0.5 could also be considered
as having total polarization.

At the extrema of the spin polarization one has the following
properties: (i) the sum of the energy widths of the positive and negative
excursions, EΔ p and EΔ n, is related to the width in energy of the DCS
valley at the corresponding CM position. (ii) Similarly, the sum of the
angular widths θΔ p and θΔ n is equal to the angular width of the DCS at
this CM position. In addition, we have calculated the energy widths EΔ
denoting the energy difference between Ec and Ed, and the angular
widths θΔ denoting the angle difference between θc and θd for each
point at which the extremum value of polarization is attained. They are
also presented in Table 2. If we consider the high-angle CM at

=E 64.842c eV, = °θ 142.6c , the corresponding =S 0.922400 at =E 63.8d

eV with = − =EΔ 64.842 63.8 1.042p eV and
= − = °θΔ 142.6 142.6 0.0p , while = −S 0.922057 at =E 66.09d eV with
= − =EΔ 66.09 64.842 1.248n eV and = − = °θΔ 142.6 142.6 0.0n .

Therefore, the widths of the DCS valley are 1.042+ 1.248 =2.290 eV

along the energy axis and ° + ° = °0.0 0.0 0.0 along the angular axis. The
latter suggests that the angular DCS distribution at a CM and the cor-
responding S distribution near the extrema of S are both very sharp.

3.2. Positron-indium scattering

The present OPM results of ICS, MTCS, VCS, INCS and TCS for po-
sitron-indium scattering are displayed in Fig. 17. It is noticeable that
the energy variations of ICS, MTCS and VCS for positron scattering are
considerably different in shape from their electron counterparts in
Fig.1. In particular, the energy dependence of the MTCS and VCS for
electron scattering between Ei =10 and 100 eV shows a maxima and
minima pattern, which is absent in the case of positron scattering. This
feature might be due to the differences in electron-atom and positron-
atom interacting potentials. We would like to recall that the static po-
tential is repulsive and the exchange potential is absent for positron
projectiles.

We have not found any experimental data for the above scattering
observables. However, the present results can be compared with the
theoretical predictions of Öztürk et al. [35], available for ICS, and those
of Dapor and Miotello [36], available for ICS, MTCS and VCS. As seen in
Fig. 17(a) for the ICS results, our OPM calculations produce nice
agreement with the other two calculations [35,36] at >E 10i

3 eV.

Fig. 20. The Sherman function S for elastic scattering of 1, 5, 10, 20, 30, 40, 60, 80 and 100 eV positrons from indium predicted by the present OPM approach.
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However, a noticeable disagreement, both qualitatively and quantita-
tively, is seen between the OPM results and those of Ref. [35] for
projectile energies ⩽E 700i eV. The present results of MTCS and VCS,
depicted in Fig. 17(b) and (c), show the same energy variation as those
of Ref. [36], but with a little difference in magnitude. This may come
from the different interacting potentials used in the models. The energy
variations of INCS and TCS are almost the same as those from electron
scattering. To the best of our knowledge, there are neither experimental
data nor theoretical results for these quantities available in the litera-
ture to compare with.

The angular dependence of the DCS for the elastic scattering of
positrons from indium at impact energies 10 eV⩽ ⩽Ei 4000 eV is

presented in Figs. 18 and 19. As seen in these figures, the DCS curves for
positrons scattering show a fewer number of maxima and minima than
those for electron impact. Only one significant minimum is seen at
Ei =10 eV in Fig. 18(a). For incident energies 50 eV⩽ ⩽Ei 100 eV, see
Figs. 18 (b) and (c), only shallow minima are observed at the lower
scattering angles. The DCS decreases monotonously at Ei =300 eV and
beyond.

So far as we are aware, there are no experimental data of the DCS
for positron-indium scattering to compare our results with. Theoretical
calculations of Öztürk et al. [35] at 10 eV⩽ ⩽Ei 1000 eV, and Dapor and
Miotello [36] at 1000 eV⩽ ⩽Ei 4000 eV are included in the figures. The
comparison shows that the present results agree very well with those of

Fig. 21. Energy dependence of DCS, S T, and U for positron-indium scattering at scattering angle = °θ 30 . The thick solid and dashed lines are the present
calculations, respectively, due to the NSA and OPM approaches. The thin red line in (a) is the contribution from magnetic scattering. The symbols are the ex-
perimental data from Ref. [36] and Ref. [35].

Fig. 22. Same as Fig. 19, but at scattering angle = °θ 70 .
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Dapor and Miotello [36] at all impact energies. An overall agreement of
the angular dependence is also seen between the calculations of ours
and those of Öztürk et al. [35] except at 10 eV and at the foremost
angles. In our predictions, at Ei =10 eV, we observe a prominent
minimum that is not present in the results of Ref. [35].

For positron-indium scattering, the angular dependence of the
Sherman function at impact energies 1 eV⩽ ⩽Ei 100 eV, calculated using
our OPM approach, is displayed in Fig. 20. As apparent in this figure,
our calculations display fluctuations with minima and maxima, which
are stronger in amplitude at higher energies. Even so, unlike in the case
of electron scattering from indium, positron scattering from indium
shows a negligible amount of polarization in the scattered beam. As the
spin polarization depends on the spin-orbit interaction as well as on the
spatial interaction potential these tiny values of spin polarization

indicate that the interaction between the positrons and the indium
atoms is much weaker than in the case of electron impact. The lack of
experimental and any other theoretical results precludes any compar-
ison.

Figs. 21–25 show the energy dependence of the DCS and of the
corresponding Sherman function as well as the spin asymmetries T and
U for positron scattering calculated using both OPM and NSA methods
at five scattering angles ° ° ° °30 , 70 , 90 , 120 and °150 . Similar to the
case of electron scattering, both OPM and NSA predictions of the above
scattering quantities merge nicely at about 1MeV. It is also seen in the
DCS curves that minor structures appear at lower scattering angles, and
that they fade with the increase of energy. Like for electron impact,
there are fluctuations of the DCS at ultra-relativistic energies above
100MeV for all angles. These high-energy oscillations are also present

Fig. 23. Same as Fig. 19, but at scattering angle = °θ 90 .

Fig. 24. Same as Fig. 19, but at scattering angle = °θ 120 .

S. Afroz, et al. Results in Physics 18 (2020) 103179

20



for the Sherman function. There is, in addition, one pronounced max-
imum in S near 1MeV, which increases with scattering angle.

Fig. 26 provides the properties of the deep DCS minima, similar to
Fig. 14, but for positron scattering. As seen in Fig. 26(a), the positron
minima occur up to around 30 eV with the angular position varying
from = °θ 30 to °110 . With the help of this angular dependence of the
DCS minima we have found two deep minima, which are depicted in

Fig. 26(b). The critical energy and angular positions of these deep
minima are presented in Table 3. However, none of these two minima
qualifies as CM point because the magnitude of the non-flip scattering
amplitude A| | is greater than that of the spin-flip scattering amplitude
B| |. Albeit the magnitude of A| | always attains its lowest value at these
deep minima.

In Figs. 26 (c) and (d) we present, respectively, the angular

Fig. 25. Same as Fig. 19, but at scattering angle = °θ 150 .

Fig. 26. Energy dependence of angular positions and DCS values of deep minima for positron-indium scattering. Also are shown the angular dependence of DCS and S
for some incident energies in the vicinity of the deep minima [Ec =7.212 eV; = °θ 44.6c ].
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distribution of the DCS and the Sherman function for positron scattering
at some incident energies in the vicinity of the deep minimum at
[Ec =7.212 eV; = °θ 44.6c ]. It is evident from Fig. 26(c) that exactly at
the critical energy (Ei =7.212 eV), the DCS has the lowest value
compared to its two adjacent values at 7.047 eV and 7.4 eV. Similarly,
as shown in Fig. 26(d), the maximum values of polarization vary from
+0.00224 at °44.6 to −0.0004 at °45 . However, these values of po-
larization are far lower than the total polarization ( = ±S 1).

3.3. High-energy considerations

In order to demonstrate the importance of magnetic scattering, we
recall that in the plane-wave Born approximation (PWBA), the differ-
ential cross section can be represented in terms of the elastic F( )L and
magnetic F( )T form factors [48],

⎛
⎝

⎞
⎠

= ⎡
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Ω

( ) 1
2
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2

( ) .L T
0

Mott
2 2 2 2

(39)

Fig. 27 shows the square of F q( )L (which is normalized to unity in
=q 0), obtained in the Born approximation from the Fourier-trans-

formed charge density,

∫=
∞

F q π
Z

r dr ρ r
qr

qr
( ) 4 ( )

sin( )
,L n0

2

(40)

and calculated to all orders in Z by dividing the DCS (26), obtained by
means of the phase-shift analysis, by Z σ2

Mott, in comparison with F q( )T
2 .

It follows immediately from (39) that the larger the scattering angle,
the more important becomes the magnetic contribution. FT is ap-
proximately constant for ≳ °θ 170 .

The oscillatory behavior of the form factors with q (i.e. with energy,
respectively angle) results from interference effects caused by the lep-
tons scattering from the individual protons in the nucleus. These os-
cillations start to occur for lepton-nucleus distances, measured in terms
of −q 1, of the order of the nuclear radius. They are the high-energy
homologues of the Ramsauer-Townsend structures at low energy.

Fig. 28 displays the cross section for electron and positron impact at
the two angles °90 and °150 as a function of collision energy. It is seen
that at the smaller angle, magnetic scattering is unimportant, except in
the cross section minima for >E 200i MeV. However, at °150 , it induces
considerable modifications, with a strong filling of the minima from
potential scattering for both lepton species. It should also be noted that
electrons and positrons oscillate out of phase, the positron DCS starting
to oscillate at a higher energy because of the repulsive interaction be-
tween the positron and the nucleus.

The Sherman function, calculated from (32), is depicted in Fig.29a,
again for the two angles °90 and °150 . Not only are the excursions larger
at °150 , the period is also reduced as compared to the results for the
smaller angle. This can be explained by the j qR( )N1 -behaviour of the
diffraction structures. As a function of Ei, the mth zero of j1 is ap-
proximately given by = +E mπ λ c R( ) /(2 sin )i N

θ
2 , with ≈λ 1.5 for

⩽ ≲m3 7, which decreases with θ. In concord with the behaviour of
the cross section, the oscillations of S for positrons and electrons are not
in phase, and the minima in S correspond to the minima of the DCS.

Let us now turn to the spin asymmetries U and T. In a coordinate
system where the z-axis is chosen in the beam direction, while the
outgoing lepton defines the x z( , )-scattering plane, U is the spin asym-
metry for longitudinally (in ± z-direction) polarized beam leptons and
T the one for transversely (in ± x-direction) polarized leptons. Thereby
the polarization of the scattered lepton has to be fixed in transverse
direction [53]. Both asymmetry parameters are, in contrast to S, non-
vanishing in the Born approximation [53],
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with =γ E c/ 2. In the limits →γ 1 and → ∞γ they attain a simple form,

= = →U T E0, 1, for 0B B
i

= = → ∞U θ T θ Esin , cos , for .B B
i (42)

Fig. 29b shows the energy dependence of U for a scattering angle of

Table 3
The positions of DCS deep minima for the elastic e+-In scattering using our
OPM.

Ed θd A θ| ( )|2 B θ| ( )|2

(eV) (deg.) (a Sr/0
2 ) (a Sr/0

2 )

7.047 45.0 2.49E−04 1.41E−11
7.212 44.6 1.08E−05 1.40E−11

Fig. 27. Square of the electric (FL) and magnetic (FT ) form factors for the elastic
scattering of electrons from 115In as a function of momentum transfer q. FL

2 from
the phase-shift analysis (————) for =E 183i MeV and −−−−−( ) for =E 250i

MeV, as described in the text; ⋯⋯ F, L
2 in PWBA. − − − F· · , T

2 taken from
Donnelly and Sick [48] (plotted versus q rather than versus qeff , and their FT

2

multiplied by π4 ). Included are the experimental data for FL
2 from Crannell et al.

(▴, [33]) and from Hahn et al. (▪, [34]), measured in the forward hemisphere,
and from Box (∘, [49]) recorded at an angle near °180 . The data (□) at the
higher q are taken from [48].

Fig. 28. Differential cross section ( )dσ
dΩ 0 from (37) for electrons (—————)

and positrons −−−−−( ) scattering from 115In as a function of collision energy
Ei. Upper curves, = °θ 90 , lower curves, = °θ 150 . The results (26) from po-
tential scattering for the respective particles are also shown ⋯⋯( ). The ex-
perimental data for electron scattering ▪( ) are from Hahn et al. [34].
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°150 in the Born approximation as compared to the phase-shift results
for electron and positron scattering. In contrast to the diffraction
structures seen for electrons or positrons, UB decreases monotonously
with Ei, tending to its high-energy limit of ° =sin150 0.5. It is seen that
this limit is also approached for the leptons. Moreover, as follows from
21–25, ≈U 0 for positrons when ≲E 1i keV, irrespective of θ. This in-
dicates that for that species, also the low-energy Born limit is acquired.
The same is true for T, i.e. ≈T 1 for ≲E 1i keV and ≈T θcos at large Ei.
This small-Ei plane-wave-type behaviour of the positrons confirms our
earlier result on S that the target electrons merely induce screening of
the nuclear charge, and do not act as separate scattering centers.

For electron impact, on the other hand, as seen in Figs. 9–13, U and
T show diffraction structures at ≲E 1i keV, in concord with the struc-
tures in the differential cross section.

In spin asymmetry investigations at ultrahigh energies, instead of U
and T, the parameters L and R are used. These parameters are linear
combinations of U and T according to

= + = −L U θ T θ R U θ T θsin cos , cos sin , (43)

with the Born limits,

= = − =L θ R θ Ecos , sin for 0,B B
i

= = → ∞L R E1, 0 for .B B
i (44)

The advantage of this change of variables is the θ-independence of
the high-energy Born limits of L and R. Both parameters are, like U and
T, accessible for beam electrons polarized longitudinally (for L), re-
spectively transversely (for R). However, in that case, the outgoing
lepton has to be in a helicity eigenstate (with spin polarization parallel
or antiparallel to its direction of motion) [53].

4. Conclusions

The present study reports on the pure elastic and the total scattering
of electrons and positrons from indium atoms over a broad energy
range 1 eV⩽ ⩽Ei 0.5 GeV. The calculations involving various scattering
observables (DCS, ICS, MTCS, VCS, INCS, TCS) are carried out within
the framework of the relativistic Dirac partial-wave phase-shift ana-
lysis. Two different theoretical approaches, OPM and NSA, are em-
ployed to cover this broad energy domain. The OPM, valid for
1 eV⩽ ⩽Ei 5MeV, considers interactions of the incident projectile with
both the nucleus and the bound electrons of the target atom. Whereas
the NSA, valid for ⩾Ei 1MeV, incorporates only the projectile-nucleus
interaction. As our target 115In is a spin-9/2 isotope, the phase shift
analysis is supplemented with the contributions for the magnetic scat-
tering from the nucleus. This magnetic scattering leads to a noticeable
enhancement of the differential cross section at scattering angles in the
backward hemisphere and collision energies above 150MeV. It is
amazing to observe that the OPM merges smoothly with the NSA at
about −1 5 MeV for both electron and positron scattering.

This study provides a more detailed analysis of the CMs in the DCS
distributions of both electrons and positrons scattering from indium
atoms than the previous calculations. For electron-indium scattering, a
total of 13 CMs are revealed and 26 maximum polarization points are
obtained in their proximity, while earlier calculations predicted a
smaller number of CMs. It is noted that the number of CMs depends
upon the method of analysis, signifying that the analysis of CMs is
highly sensitive to the method of analysis and so provides a finer test of
a theory. The comparison of our elastic and total cross sections and spin
asymmetries reveals an overall reasonable agreement with the available
experimental data and other theoretical calculations. These results in-
dicate that the OPM in conjunction with the NSA can provide a sa-
tisfactory description of electron-atom and positron-atom scattering
over a broad energy domain. Our analysis of the CMs and the predic-
tions for positron scattering still awaits verification by future experi-
ments.
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