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Abstract
We revisit the linear boundary-layer approximation that expresses a generalized
Ekman balance and use it to clarify a range of interpretations in the previous
literature on the tropical cyclone boundary layer. Some of these interpretations
relate to the reasons for inflow in the boundary layer and others relate to the pre-
sumed effects of inertial stability on boundary-layer dynamics. Inertial stability
has been invoked, for example, to explain aspects of boundary-layer behaviour,
including the frontogenetic nature of the boundary layer and its relationship
to vortex spin-up. Our analysis exposes the fallacy of invoking inertial stability
as a resistance to radial inflow in the boundary layer. The analysis shows also
that the nonlinear acceleration terms become comparable to the linear Coriolis
acceleration terms in relatively narrow vortices that are inertially stable above
the boundary layer. Estimates of the nonlinear accelerations using the linear
solutions are expected to underestimate the actual contribution in a nonlin-
ear boundary-layer model, cautioning against neglecting the nonlinear terms in
diagnostic or prognostic models.
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1 INTRODUCTION

The surface boundary layer of a tropical cyclone is known
to have a strong control on the evolution of the vortex (e.g.,
Braun and Tao, 2000; Nolan et al., 2009a; 2009b; Smith
and Thomsen, 2010; Kilroy et al., 2016 and the review
by Montgomery and Smith, 2017). The first three papers
cited showed that vortex evolution in a numerical model is
sensitive to the boundary-layer parametrization employed

in the model, highlighting the need for improved observa-
tions of the inner-core boundary layer. To this end, recent
work applying analyses of observational data to improve
forecast models has been described by Zhang et al. (2015;
2017) and Zhang and Rogers (2019).

In idealized studies, Kilroy et al. (2016) developed the
concept of “boundary-layer control” as part of an expla-
nation for the long-term behaviour of tropical cyclones
in the prototype problem for cyclone intensification on
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an f -plane using a non-hydrostatic, three-dimensional
numerical model, while Kilroy et al. (2017) showed that
the boundary layer was an important feature of tropical
cyclogenesis, even at comparatively low wind speeds.

In the context of a high-resolution (at that time, a
horizontal grid spacing of 6 km) simulation of hurricane
Andrew (1992), Zhang et al. (2001) set out, inter alia, to
answer three main questions: “To what extent is the gra-
dient wind balance model a good approximation to the
local and azimuthally averaged tangential winds in an
intensifying hurricane? What causes the gradient wind
imbalance locally and in an azimuthally averaged state?
What is the intensifying mechanism of tangential winds in
the eyewall?”

Their answer to the first question was yes, to a degree
within approximately 10%. However, supergradient winds
were found to play an important role in the corner flow
region of the simulated storm and also in the eyewall
where the air motion has an outward component. Zhang
et al. (2001) found that (p. 106): “The radial momentum
budgets show that supergradient flows and forces, even
after being temporally and azimuthally averaged, are well
organized from the bottom of the eye center to the upper
outflow layer in the eyewall.”

Zhang et al. (2001) then explained the development
of the supergradient wind and spin-up of the eyewall
as follows (p. 106): “ … the development of unbalanced
flows in the eyewall during the intensifying stage could
be readily understood as follows. As the storm deepens,
the cross-isobaric radial inflow in the marine boundary
layer transports more absolute angular momentum from
the hurricane environment into the eyewall region than
frictional dissipation. The major radial inflow decelerates
as it approaches the radius of maximum wind where the
centrifugal force exceeds radial pressure gradient force.
The more the radius of the eyewall shrinks, the greater is
the maximum tangential wind near the top of the marine
boundary layer. Then, all the inflow air mass must ascend
in the eyewall, transporting absolute angular momentum
upward to spin up the tangential flow above. This upward
transport of absolute angular momentum could increase
significantly the local centrifugal force, thereby causing
the pronounced supergradient acceleration and the devel-
opment of radial outflow in the eyewall. In the present
case, the supergradient acceleration occurs at the same
order of magnitude as radial pressure gradient force in
the vicinity of V max (the maximum wind speed, our inser-
tion), and accounts for the generation of an outflow jet
near the top of the marine boundary layer. However, the
local changes in tangential winds are always small due to
the intense advection in the eyewall. It is evident that (a)
the intensity of the radial outflow depends critically on
the upward transport of absolute angular momentum, and

(b) the spin-down of the eyewall by radial outflow must
be overcompensated by the upward transport of absolute
angular momentum if the storm is to deepen. Of course,
the underlying ocean (and latent heat release in the eye-
wall) is the fundamental energy source for the deepening
of tropical cyclones.”

According to the foregoing view, the evaporation of
water from the underlying ocean supports a nonlinear
spin-up mechanism wherein the development of super-
gradient winds in the boundary layer of the vortex, in
combination with the upward transport of absolute angu-
lar momentum from the boundary layer, plays an essen-
tial role in the intensification of the storm’s eyewall
cloud. Similar findings were reported in idealized, but
finer-resolution numerical simulations by Smith et al.
(2009), Persing et al. (2013) and Smith et al. (2017). The
nonlinear dynamics of the vortex boundary layer and its
contribution to spinning up the eyewall is discussed fur-
ther from the perspective of the newly developed rotating
convection paradigm by Montgomery and Smith (2017).

The upshot of these findings is that if the unbalanced
processes play such a pronounced role in spinning up a
tropical cyclone eyewall, a more complete understanding
of the dynamics of the tropical cyclone boundary layer is
certainly warranted.

One of the simplest models for a vortex boundary
layer is the axisymmetric model that was first stud-
ied by Eliassen (1971) and Eliassen and Lystad (1977).
Montgomery et al. (2001) pointed out that the neglected
non-cyclostrophic terms in the boundary layer may
become significant at higher swirl speeds, which might
limit the applicability of the theory to tropical cyclones.

An analytical solution of the linear boundary layer
model was obtained by Kepert (2001), who further
extended the model to a moving vortex and, in a follow-up
study, Kepert and Wang (2001) compared predictions of
the analytical solution of the linear model with a numeri-
cal solutions of a nonlinear model and used the compari-
son as a basis for interpreting boundary-layer behaviour.

Smith and Montgomery (2008) derived a slab version
of the linear boundary-layer model as one of a hierar-
chy of approximations for the slab model and solutions
were compared with full nonlinear solutions of the slab
model. They examined also the self-consistency of the lin-
ear approximation and showed that it required the small-
ness of a generalized vortex Rossby number. This Rossby
number will generally not be small in the inner-core region
of a sharply peaked tangential wind profile at the top of
the boundary layer. The scale analysis developed in that
study was extended to the more general linear case by
Vogl and Smith (2009) and the self-consistency of the lin-
ear approximation was investigated in the tropical cyclone
context. These authors examined also the extent to which
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the accuracy of the linear approximation depends on the
profile of the imposed tangential wind field at the top of
the boundary layer. Consistent with Vogl and Smith (2009),
Abarca et al. (2015) found that the generalized Ekman
balance became invalid in both the intensifying primary
eyewall region and forming secondary eyewall region.

Despite the limitations of the linear boundary-layer
model, it remains of intrinsic scientific interest because it is
an extension of the classical Ekman boundary-layer theory
to circular flow and because it may be solved analytically.
In this paper we review the solutions of the linear bound-
ary layer for broad and narrow profiles of gradient wind at
the top of the boundary layer and revisit the interpretations
of these solutions presented in previous studies, which are
frequently invoked to explain behaviour in the nonlinear
boundary-layer problem also. We lay particular emphasis
in reviewing these interpretations on the presumed role
of inertial stability on the boundary-layer structure. The
concept of inertial stability has been called upon by numer-
ous authors, including three early landmark studies of the
boundary layer itself, by Shapiro (1983), Kepert (2001),
Kepert and Wang (2001), in the more recent study by
Kepert (2017), as well as explanations for convergence in
the boundary layer as part of an explanation for the physics
of tropical cyclone intensification by Emanuel (2018).

2 EQUATIONS AND SOLUTION
IN BRIEF

In this section we summarize briefly the generalized
Ekman model for a circular vortex that is in gradient wind
balance above the boundary layer. The presentation fol-
lows closely that of Vogl and Smith (2009) and we focus
only on the key results and interpretations pertinent to the
main goals of this study.

For an axisymmetric flow expressed in cylindrical
polar coordinates, the radial and tangential momentum
equations for the steady boundary layer may be written as:

u𝜕u
𝜕r

+ w𝜕u
𝜕z

− v′2
r

− 𝜉gv′ = 𝜕

𝜕z

(
K 𝜕u
𝜕z

)
, (1)

u𝜕v′
𝜕r

+ w𝜕v′
𝜕z

+ 𝜁agu = 𝜕

𝜕z

(
K 𝜕v′
𝜕z

)
, (2)

where vg(r) is the gradient wind at the top of the boundary
layer, v′ = v− vg is the agradient wind, that is, the depar-
ture of the tangential wind from the gradient wind, u and
w are the radial and vertical velocity components, and K
is a turbulent eddy diffusivity. It is assumed for simplic-
ity that the radial flow above the boundary layer is zero.
The quantities 𝜉g = 2vg∕r + f and 𝜁ag = dvg∕dr + vg∕r + f

are twice the absolute angular velocity and the absolute
vertical vorticity of the gradient wind, respectively.

Linearization of these equations gives

0 = 𝜉gv′ + 𝜕

𝜕z

(
K 𝜕u
𝜕z

)
, (3)

0 = −𝜁agu + 𝜕

𝜕z

(
K 𝜕v′
𝜕z

)
. (4)

Here the linear acceleration terms have been moved to
the right-hand sides of the equations, where they are then
interpreted as forces per unit mass. In this form, the lin-
ear equations are seen to express everywhere a local force
balance. These equations may be combined into a single
fourth-order ordinary differential equation for either v′
or u.

The vertical velocity in the boundary layer is deter-
mined by the continuity equation. Because the boundary
layer is typically thin, density variations across it may be
neglected and the continuity equation takes the approxi-
mate incompressible form:

𝜕ru
𝜕r

+ 𝜕rw
𝜕z

= 0. (5)

When K is treated as constant, Equations (3) and (4)
may be readily solved by taking, for example, the second
vertical derivative of (4) and using (3) to eliminate 𝜕2u/𝜕z2

leaving a single fourth-order differential equation for v′,
that is,

𝜕4v′
𝜕z4 + I2

K2 v′ = 0, (6)

where I2(r) = 𝜉g𝜁ag is the inertial stability of the gradient
flow at the top of the boundary layer. It may be verified that
the solution of (6) that is bounded as z→∞ is1

v′(r, z) = vg(r) e−z∕𝛿{a1 cos(z∕𝛿) + a2 sin(z∕𝛿)}, (7)

where 𝛿 = (2K∕I)1∕2 is the boundary-layer scale thickness
and, as shown below, a1 and a2 are functions of radius.
The corresponding solution for u is obtained simply by
substituting for v′ in (4), that is,

u(r, z) = −𝜒vg(r) e−z∕𝛿{a2 cos(z∕𝛿) − a1 sin(z∕𝛿)}, (8)

where 𝜒 = (𝜉g∕𝜁ag)1∕2. It follows from (7) that
v′(r,0)/vg(r)= a1 and from (8), that u(r, 0)∕vg(r) = −𝜒a2.

1Note that Equation (6) has solutions of the form exp(𝛼z), where
𝛼4 = −(K2∕I2) or (K2∕I2) exp(𝜋i + 2n𝜋i), i=

√
−1 and n is an integer.

Then possible values of 𝛼 are ± exp(i𝜋∕4) and ± exp(3i𝜋∕4), or
±(1 ± i)∕

√
2. The two values that lead to bounded solutions as z→∞

are −(1 ± i)∕
√

2.
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3438 SMITH and MONTGOMERY

The values for a1 and a2, which are functions of radius,
are determined by suitable boundary conditions at the sea
surface, z= 0.

For a turbulent boundary layer like that in a tropical
cyclone, an appropriate boundary condition at the surface
is to prescribe the surface stress, 𝛕s, as a function of the
near-surface wind speed, normally taken to be the wind
speed at a height of 10 m, and a drag coefficient, CD. The
condition takes the form

𝛕s

𝜌
= K 𝜕us

𝜕z
= CD|us|us, (9)

where us = (u,vg(r)+ v′)s is the wind vector at a height
of 10 m. We apply a linearized form of this condition at
z= 0, appropriate for the linearized form of the equations,
to determine the constants a1 and a2 in (7) and (8). The
derivation is as follows. The substitution of (7) and (8) into
the boundary condition (9) leads before linearization to the
following pair of algebraic equations for a1 and a2:

a2 + a1 = −𝜈a2
√

X , (10)

a2 − a1 = 𝜈(1 + a1)
√

X , (11)

where X = (1 + a1)2 + 𝜒2a2
2, 𝜈 = CDRe and Re = vg𝛿∕K is

a Reynolds number for the boundary layer. When a1 and
a2 are small compared with unity, consistent with the lin-
ear theory, the expression for X can be linearized to give
X ≈ 1+ 2a1, whereupon

√
X ≈ 1 + a1. Then the linearized

forms of (10) and (11) are

a2 + a1 = −𝜈a2, (12)

a2 − a1 = 𝜈(1 + 2a1), (13)

which have the unique solution

a1 = − 𝜈(𝜈 + 1)
2𝜈2 + 𝜈 + 2

, a2 = 𝜈

2𝜈2 + 𝜈 + 2
. (14)

The vertical velocity, w(r,z) is obtained by integrating
the continuity Equation (5) with respect to z:

w(r, z) = 1
r
𝜕

𝜕r

[ rKvg

𝜁ag𝛿
(a2 − a1)

{
1 − e−z∕𝛿 cos z

𝛿

}

+ e−z∕𝛿(a1 + a2) sin z
𝛿

]
. (15)

3 SOLUTIONS

Given a radial profile of vg(r), such as one of those shown
in Figure 1, together with values for K, CD and f , it

F I G U R E 1 Tangential wind profiles as a function of radius.
This profile has the form vg(r)= v1s/(1+ sx), where s= smr/rm, r is
the radius, rm = 50 km and sm and v1 are constants chosen to make
v= vgm, the maximum tangential wind speed, when r = rm. The red
curve has x = 1.6, and the blue curve has x = 2.3. The thin black
reference curves are discussed in the text. These have the form
v= vgm/(rm/r)n, where the exponent n equals either 0.5 or 1

is possible to calculate the full boundary-layer solution
(u(r,z),v(r,z),w(r,z)) on the basis of Equations (7), (8) and
(15). For illustration purposes, we choose typical values
of the foregoing parameters: K = 50 m2⋅s−1, CD = 2.0× 10−3

and f = 10−4⋅s−1. The choice of the first two values is based
on the observations of Zhang et al. (2011) and Bell et al.
(2012) (Section 5.2 gives an examination of solution sen-
sitivity to K). For all these parameter values, the radial
variation of the quantities 𝜈, I2, a1 and a2 are shown in the
Appendix for the two profiles of vg(r) in Figure 1.

As a point of reference, corresponding wind profiles
for a Rankine (v∼ r−1) and a modified Rankine (v∼ r−0.5)
vortex are shown outside the radius of maximum winds.
Although the narrow vortex profile decays more rapidly
than the modified Rankine vortex outside of 100 km
radius, the decay is still slower than that for the Rankine
vortex to 400 km radius and hence inertially (centrifugally)
stable for any latitude in this radial span.

Figure 2 shows radius–height cross-sections of the iso-
tachs of u, v and w below a height of 2 km for solutions with
the tangential wind profiles shown in Figure 1. It shows
also the radial variation of the boundary-layer depth-scale,
𝛿, as defined above. Note that 𝛿 decreases markedly
with decreasing radius, while the inflow increases. The
decrease of 𝛿 is simply related to the radial increase in
the inertial stability parameter, I2, with decreasing radius,
but it ignores the likely increase in eddy diffusivity as the
gradient wind speed increases as would be expected in a
more realistic representation (see e.g. Smith and Thomsen
2010). With the broader wind profile (x = 1.6), the maxi-
mum inflow occurs at a radius of about 85 km, which is
45 km outside the radius of maximum tangential wind
speed above the boundary layer, rm (Figure 2a).

There is a region of weak outflow above the inflow
layer with the maximum occurring at a similar radius
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

F I G U R E 2 Isotachs of (a),(b) radial velocity u, (c),(d) tangential velocity v and (e),(f) vertical velocity w in the r − z plane obtained by
solving Equations (3) and (4) with the two tangential wind profiles shown in Figure 1. Left columns are for the wind profile with x = 1.6, right
columns with x = 2.3. Contour intervals: for u, 2 m⋅s−1 for negative values (blue contours) and 0.05 m⋅s−1 for positive values (thin red
contours); for v, 5 m⋅s−1 for values <50 m⋅s−1 (red contours) and 0.5 m⋅s−1 for values >50 m⋅s−1 (thin blue contours); for w, 0.02 m⋅s−1 for
positive values (red contours) and 0.005 m⋅s−1 for negative values (thin blue contours). (g),(h) show the corresponding radial variation of
boundary-layer scale depth, 𝛿(r) (km)

to that of the maximum inflow. The tangential flow is
slightly supergradient (i.e., v′ > 0) in a region near the
radius of maximum gradient wind rm (Figure 2c) and the
maximum vertical velocity occurs within this region. The
maximum vertical velocity at “large heights” peaks at a
radius of about 30 km, well inside rm (Figure 2c). There

is ascent in a region that expands in radius with height
from about 30 km near the surface to about 190 km at a
height of 2 km (Figure 2e). Beyond this region there is
weak subsidence, the maximum subsidence peaking at
a radius of about 220 km and a height of about 500 m.
The boundary-layer depth-scale increases from just over
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3440 SMITH and MONTGOMERY

100 m near the rotation axis to under 1000 m at r = 400 km
(Figure 2g).

With the narrower wind profile (x = 2.3), the radial
inflow is markedly stronger and somewhat deeper, but
the maximum inflow occurs further outwards, near a
radius of 100 km (Figure 2b). The tangential flow is again
slightly supergradient in a region near the radius of max-
imum gradient wind, rm (Figure 2d). The vertical velocity
is considerably stronger (note the larger contour spac-
ing in Figure 2f than in Figure 2e) and the maximum
ascent now occurs significantly further outwards, beyond
80 km radius, and at a significantly larger altitude. The
slope of the region of ascent has greatly increased and the
strongest subsidence has become more confined radially
and is much closer to the region of maximum ascent.

4 INTERPRETATIONS

Since the linear boundary-layer approximation, or gener-
alized Ekman balance approximation, is an expression of a
local force balance in a situation where the material accel-
eration of air parcels is negligibly small, one cannot appeal
to the material acceleration terms in Newton’s second
law to explain the differences in behaviour for the broad
and narrow profiles. Any interpretations of flow behaviour
must be based on the assumption of force balance, which,
of course, is reflected in the structure of the solution for
the velocity components in Equations (7), (8) and (15).

4.1 Factors determining the inflow
and vertical motion

In the tangential wind direction, the force balance
expressed by Equation (4) is between the generalized Cori-
olis force, −𝜁agu (minus the generalized Coriolis acceler-
ation), which is positive, and the downward diffusion of
tangential momentum, which is negative. This balance is
sometimes referred to as torque balance when the equation
is multiplied by the radius. It follows that, in the linear the-
ory, the radial flow is determined by the tangential (sic)
momentum equation. As discussed in section 6, this gen-
eralized Ekman balance has led a number of authors to
erroneously argue that the inflow in the nonlinear problem
is determined also by torque balance. In fact, the inflow is
determined by integrating the nonlinear radial acceleration,
u𝜕u/𝜕r +w𝜕u/𝜕z− v′2/r, along the air parcel trajectories
(e.g., sections 5.2 and 6). Using Equation (1), the radial
acceleration is equal to the generalized Coriolis force, 𝜉gv′,
plus the frictional force. Because 𝜉gv′ is a leading-order
measure of the degree of gradient wind imbalance, we refer
to it here as the agradient force.

At a given radius, the only parameter in the linear
solution that contains information about the local radial
variation of the flow is the absolute vorticity, 𝜁ag(r). In con-
junction with 𝜉g, 𝜁ag enters in determining the amplitude
of the radial velocity in Equation (8) through the factor
𝜒vg(r), where 𝜒 = (𝜉g∕𝜁ag)1∕2. Moreover, 𝜁ag and 𝜉g deter-
mine the inertial stability I2, which, in turn, is a parameter
involved in determining the boundary-layer depth 𝛿. It is
only indirectly through the dependence of 𝛿 on I2 that the
inertial stability appears in the solution for the radial flow.

Since the coefficients a1(r) and a2(r) depend on 𝛿 and
therefore on I2 through their dependence on 𝜈(r), it is
difficult to discern the precise mathematical dependence
of the radial inflow on I2 because of the height depen-
dence of a2 cos(z∕𝛿) − a1 sin(z∕𝛿) in the formula for u in
Equation (8). Notwithstanding this dependence, the radial
profiles of 𝜒 and 𝜒vg(r) for the two vortex profiles shown
in Figure 3 help to provide an understanding the differ-
ent structure of the radial flow seen in Figure 2a, b. These
profiles are compared in Figure 3a, b, respectively.

First note that, as r → 0, 𝜉g is dominated by 2vg/r and 𝜁a
is dominated by the relative vorticity, 𝜁g = dvg∕dr + vg∕r,
so that 𝜒 ≈ 1. In contrast, as r →∞, both quantities are
dominated by f , so that, again, 𝜒 → 1. In both vortex pro-
files, 𝜒 exceeds unity for all other radii but, whereas for
the broad vortex profile with x = 1.6 the radial profile of 𝜒
is comparatively flat, for the narrower profile with x = 2.3
it has a sharp peak near a radius of 120 km. This peak is
close to the radius of minimum 𝜁ag, the magnitude of this
minimum being smaller for the sharper profile on account
of the smaller minimum of 𝜁g. The radial profiles of 𝜒vg(r)
shown in Figure 3b show also a sharper peak for the nar-
rower vortex profile, the peak being located at a radius of
100 km, compared with only 60 km for the broader peak of
the broader vortex profile.

The linear solution (Figure 2) shows that the maximum
radial inflow is stronger for the narrower vortex profile (a
little over 16 m⋅s−1 compared with a little over 10 m⋅s−1).
This property is succinctly captured by the pre-factor,
𝜒vg(r), plotted in Figure 3b. The stronger radial inflow at
radii beyond rm for the broader vortex profile (cf. Figure 2)
is captured also by the pre-factor 𝜒vg(r). If the inflow
was controlled primarily by the inertial stability, the radial
inflow would be weaker for the broader profile. Precisely
the opposite behaviour is found!

4.2 Supergradient winds in the linear
solution

In section 3 we showed that the tangential flow is slightly
supergradient (i.e., v′ > 0) in a region near the radius of
maximum gradient wind rm. In the linear boundary-layer
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SMITH and MONTGOMERY 3441

(a) (b)

(c) (d)

F I G U R E 3 Radial variation of (a) 𝜒 and (b) 𝜒vg(r) (m⋅s−1) for the two vortex profiles in Figure 1, for profile exponent x = 1.6 in red and
x = 2.3 in blue. Variation of (c) umin (m⋅s−1, blue) and wmax (cm⋅s−1, red) and (d) rumin (km, blue) and rwmax (km, red) with wind profile
exponent x.

solution, in regions of supergradient winds, the agradient
force in the radial momentum equation is radially out-
wards, that is, 𝜉gv′ > 0, and this force is exactly balanced by
the upward diffusion of negative radial momentum, that
is, 𝜕𝜏rz∕𝜕z < 0, where 𝜏rz = K𝜕u∕𝜕z is the radial stress at
height z (Equation (3)). In turn, the generalized Corio-
lis force −𝜁agu associated with the diffused negative radial
momentum u is balanced by the downward diffusion of
tangential momentum as represented by Equation (4).

4.3 Dependence on vortex size

The broader velocity profile has a mostly larger inertial sta-
bility than the narrower profile, a fact that is reflected in a
mostly shallower vertical depth-scale in this case (compare
Figures 2g, h). For this reason, the more radially confined
pattern of radial and vertical flow seen in Figures 2b, f com-
pared with those in panels Figures 2a, e cannot be attributed
to the differences in inertial stability.

Figures 3c, d summarize the changes in the maximum
inflow, umin, and maximum ascent, wmax, in the linear
boundary-layer solutions as the imposed vortex profile
becomes narrower, that is, the exponent x increases. It is
seen that both umin and wmax increase with x. The increase
is slow at first, especially for umin, but becomes more rapid
as x exceeds about 2 in the case of wmax and about 2.2 in the
case of umin. The radius of maximum inflow rumin changes

little until x exceeds 2, whereafter it begins to increase
with x until x = 2.4. Shortly after this value of x, the vortex
profile becomes inertially unstable for a latitude of 20◦.
In contrast, the radius of maximum ascent, rwmax, steadily
increases with x at a rate that is approximately linear from
a value of only 30 km for x = 1.6 to a value near 95 km for
x = 2.3.

5 LIMITATIONS OF THE LINEAR
THEORY

While providing a qualitatively correct picture of the fric-
tionally induced convergence in the boundary layer, a scale
analysis of the boundary-layer equations would suggest
that the linear approximation may become poor quanti-
tatively in a tropical cyclone strength vortex because the
nonlinear acceleration terms may not be ignored: indeed,
they may even dominate the linear terms (Vogl and Smith,
2009).

Figure 4 shows the structure of linear and nonlinear
acceleration terms as well as their sum in the radial and
tangential momentum equations (1) and (2), respectively,
for the broad and narrow gradient wind profiles shown
in Figure 2. The nonlinear acceleration terms on the
left-hand side of each of these equations is calculated from
the linear solutions (Equations (7), (8) and (15)) shown in
Figure 2.
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xetrovworraNxetrovdaorB
(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

F I G U R E 4 Isopleths in the r–z plane of (a, b) linear radial acceleration −𝜉v′ in Equation (1), (c, d) nonlinear radial acceleration
u𝜕u/𝜕r +w𝜕u/𝜕z− v′ 2/r, with the nonlinear term calculated from the linear solution to Equations (7) and (8), (e, f) total radial acceleration
(linear + nonlinear) u𝜕u∕𝜕r + w𝜕u∕𝜕z − v′2∕r − 𝜉v′, (g, h) linear tangential acceleration 𝜁au in Equation (2), and (i, j) nonlinear tangential
acceleration u𝜕v′ /𝜕r +w𝜕v′ /𝜕z+uv′ /r with the nonlinear term calculated from the linear solution to Equations (7) and (8), (k, l) total
tangential acceleration (linear + nonlinear) u𝜕v′∕𝜕r + w𝜕v′∕𝜕z + uv′∕r + 𝜁au. The left column is for the tangential wind profile in Figure 1
with x = 1.6, and the right column for x = 2.3. Contour intervals for radial terms are 5 m⋅ s−1⋅hr−1 (thick contours), 1 m⋅s−1⋅hr−1 (thin
contours); for tangential terms are 2 m⋅s−1⋅hr−1 (thick contours), 0.5 m⋅s−1⋅hr−1 (thin contours). Positive values are red, solid, and negative
values blue, dashed
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SMITH and MONTGOMERY 3443

The linear radial acceleration, −𝜉gv′, in Figures 4a, b
show a radially outward acceleration at low levels with
maximum values at the surface at radii between 30 and
40 km. This positive acceleration is equivalent to an agra-
dient force that is of the opposite sign and in the linear
solution is exactly balanced by the radial frictional force.
Therefore, in this balanced perspective, the positive accel-
eration should not be interpreted as decelerating the
boundary-layer inflow (Equation 3). At larger heights,
the radial acceleration is negative with a minimum value
between 20 and 40 km radius and an altitude between 200
and 400 m.

The nonlinear radial acceleration, u𝜕u/𝜕r +w𝜕u/
𝜕z− v′2/r, in Figures 4c, d is positive in the innermost
region and negative beyond. For the broad gradient wind
profile (x = 1.6) this term is relatively small in magnitude
compared with the linear acceleration term, but for the
narrow profile (x = 2.3), its magnitude is much larger
and it makes a significant contribution to the total radial
acceleration in Figure 4f.

The linear tangential acceleration, 𝜁agu, in Figures 4g, h
is mostly negative, but in each case there are small posi-
tive values aloft. These are most noticeable above 400 m in
height and inside a radius of 50 km. As noted in Section 4.1,
in the linear solution, the negative acceleration corre-
sponds to a positive generalized Coriolis force which, in
turn, is balanced by a negative frictional drag.

The nonlinear tangential acceleration, u𝜕v′/𝜕r +w𝜕v′
/𝜕z+uv′/r, in Figures 4i, j is positive for both the broad
and narrow vortex profiles and in neither case is its mag-
nitude negligibly small compared with the linear solution.
Accordingly, it makes a substantial contribution to the
total acceleration in Figures 4k, l.

Significantly, the nonlinear acceleration terms in both
the radial and tangential directions are positive. In the
radial direction, the nonlinear acceleration adds to the lin-
ear acceleration at small radii and reduces it at larger radii,
while in the tangential direction, the positive nonlinear
acceleration reduces the frictional deceleration of tangen-
tial winds in the lower Ekman layer. For these reasons
one might expect the linear solution to produce a weaker
and broader inflow than a corresponding nonlinear solu-
tion and thereby a weaker and less concentrated region of
ascent at inner radii. Not surprisingly, all the radial and
tangential acceleration terms are more radially confined
for the narrow vortex profile.

Since the foregoing estimates of the importance of
the nonlinear terms is based on the linear solution,
due to the quadratic nature of the nonlinearity, these
estimates using the linear solutions can be expected to
underestimate the actual contribution in a nonlinear
boundary-layer model (e.g., figures 2–4 in Smith and
Montgomery, 2008).

5.1 Supergradient winds in the
nonlinear boundary layer

As shown by Vogl and Smith (2009), the primary reason
for the departure of the linear solution from the nonlinear
solution is the neglect of the radial advection of pertur-
bation tangential momentum. The neglect of the vertical
advection of the perturbation tangential momentum is
a factor also, especially at radii near where the inflow
terminates and ascends into the eyewall. The separate
contributions of the radial advection and vertical advec-
tion of momentum to the total advection are illustrated in
Figures 5a–f for the narrow vortex profile solution (x = 2.3)
and with K = 50 m2⋅s−1. As in the previous section, the
nonlinear terms are estimated using the linear solution
and are likely to represent lower bounds on the contribu-
tions from a corresponding full nonlinear solution.

The left column of Figure 5 refers to the nonlinear
terms in the radial momentum equation and the right col-
umn to those in the tangential momentum equation. In
the radial momentum equation, the contributions from
radial and vertical advection are positive inside a radius of
about 100 km and negative beyond this radius, with max-
ima a little over 10 m⋅s−1⋅hr−1. Further, the positive values
are comparable in magnitude in both contributions. In the
tangential momentum equation, the radial advection has
a maximum value slightly exceeding 10 m⋅s−1⋅hr−1, which
is a few times larger than the maximum of the vertical
contribution (i.e., well over 2 m⋅s−1⋅hr−1).

The radial advection of perturbation tangential
momentum shown in Figure 5b encapsulates the nonlin-
ear boundary layer spin-up mechanism as articulated most
recently by Smith and Montgomery (2017), pp. 1501–1502.
This mechanism was already anticipated in the early stud-
ies of Anthes, (1971; 1974), Shapiro (1983) and Zhang
et al. (2001). The mechanism accounts for the generation
of much stronger supergradient winds inside and near
the radius of maximum gradient wind than those which
occur in the linear boundary-layer solution. In a related
study based on an idealized numerical simulation, Abarca
et al. (2015) showed that the supergradient winds in both
the intensifying primary eyewall region and forming sec-
ondary eyewall region were so large that the generalized
Ekman balance would be a poor approximation (their
figures 3 and 4 and accompanying discussion).

5.2 Dependence on K

In footnote 3 of their paper, Kepert and Nolan (2014) wrote:
“Some may be surprised by the satisfactory performance
of the linearized model, given that Vogl and Smith (2009)
analyzed a linearized tropical cyclone boundary-layer
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K = 50 m2 s− 1

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

K = 20 m2 s− 1

K = 90 m2 s− 1

F I G U R E 5 (a–f) Isotachs in the r–z plane of the contributions to the nonlinear (left) radial and (right) tangential acceleration terms
and the sum of these contribution in the calculation with K = 50 m2⋅s−1. All terms are calculated from the linear solution. (a) Radial
advection contribution including the perturbation centripetal acceleration, u𝜕u/𝜕r − v′ 2/r; (c) vertical advection contribution w𝜕u/𝜕z to (e)
the nonlinear radial acceleration u𝜕u/𝜕r +w𝜕u/𝜕z− v′ 2/r; (d) radial advection contribution u𝜕v′ /𝜕r +uv′ /r; (e) vertical advection
contribution w𝜕v′ /𝜕z to (f) the nonlinear tangential acceleration u𝜕v′ /𝜕r +w𝜕v′ /𝜕z+uv′ /r. (g) shows nonlinear radial acceleration and (h)
nonlinear tangential acceleration based on the linear solution with K = 20 m2⋅s−1. (i) shows nonlinear radial acceleration and (j) nonlinear
tangential acceleration based on the linear solution with K = 90 m2⋅s−1. Contour intervals for radial terms are 5 m⋅s−1⋅hr−1 (thick contours),
1 m⋅s−1⋅hr−1 (thin contours), and for tangential terms are 2 m⋅s−1⋅hr−1 (thick contours), 0.5 m⋅s−1⋅hr−1 (thin contours). Positive values are
red, solid and negative values blue, dashed
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SMITH and MONTGOMERY 3445

model similar to that of Kepert (2001) and claimed that
the removal of the nonlinear terms was not consistent.
These terms are certainly important, as shown by Kepert
(2001), Kepert and Wang (2001), and Kepert (2013). How-
ever, Vogl and Smith’s analysis exaggerates their impor-
tance, because they use a very small value of the diffusivity,
K = 10 m2⋅s−1, which leads to a boundary layer that is too
shallow. The inflow becomes too strong to maintain the
necessary advective flux of absolute angular momentum
to balance its frictional destruction at the surface (Kepert,
2013). Thus, the nonlinear advection terms are exagger-
ated.”

Since the publication of Vogl and Smith (2009), some
observational guidance has emerged on the vertical eddy
diffusivities in tropical cyclones (Zhang et al., 2011, figure
10). Typical values of K given by Zhang et al. are on the
order of 50 m2⋅s−1, although, there is considerable scatter
in the observations, which show a dependence also of K on
mean wind speed. The value chosen here is within the mid-
dle range of observed values with the lowest values around
10 m2⋅s−1 and highest values around 100 m2⋅s−1, while the
value used by Vogl and Smith (2009) is at the lower end of
the range, though not entirely unrealistic. A more substan-
tial issue would be the assumption of a constant value for
K at all radii and therefore all wind speeds. The variation
of K with radius is certainly an important feature to repre-
sent in a realistic forecast model, but this lies outside the
scope of the current study.

To investigate the dependence of the nonlinear terms
on the value of K, we show in Figures 5g–j cross-sections of
these terms for (g, h) K = 20 m2⋅s−1 and (i, j) K = 90 m2⋅s−1,
which should be compared with those for K = 50 m2⋅s−1 in
(e, f). While supporting Kepert’s supposition that the mag-
nitude of the nonlinear terms will increase with decreasing
K, one cannot safely claim that the values in Vogl and
Smith (2009) are exaggerated as those estimates, like the
ones in Figure 5, are likely to be lower estimates for these
terms (Section 5). The foregoing analysis shows that the
findings of Vogl and Smith are robust.

It is pertinent to analyse the penultimate sentence in
the foregoing quotation from Kepert and Nolan (2014):
“The inflow becomes too strong to maintain the necessary
advective flux of absolute angular momentum to balance
its frictional destruction at the surface (Kepert, 2013)”.
This sentence is non sequitur because it does not say to
what “the inflow” refers. If it refers to the inflow in the
linear solution, then it cannot be “too strong to maintain
the necessary advective flux of absolute angular momen-
tum to balance its frictional destruction”, since it is from
this constraint that the inflow is determined. If, instead, it
refers to the inflow in the nonlinear solution (which was
not calculated by Vogl and Smith, 2009), it would be an
example of the misleading invocation of torque balance to

explain the reason for inflow in the nonlinear boundary
layer.

6 CONFUSION IN THE
LITERATURE

The foregoing exposition of linear boundary layer theory
provides a basis for clarifying a range of interpretations in
the previous literature on the tropical cyclone boundary
layer. Some of these interpretations relate to the presumed
effects of inertial stability on boundary-layer dynamics as
invoked, for example, by Shapiro (1983), Kepert and Wang
(2001), Zhang et al. (2001) and Kepert (2017) to explain
aspects of boundary-layer behaviour, and by Emanuel
(2018) to explain the frontogenetic nature of the boundary
layer and its relationship to vortex spin-up.

6.1 Reasons for the boundary-layer
inflow

As pointed out in Section 4.1, the inflow in the nonlin-
ear boundary layer arises because of the agradient force in
the radial momentum equation. In contrast, in the linear
problem, the agradient force is exactly balanced by the fric-
tional force in the radial direction. In the tangential direc-
tion, the generalized Coriolis acceleration,−𝜁agu, is exactly
balanced by the frictional force, which is equivalent to
an assumption of torque balance. In this case, the radial
flow is determined by the tangential momentum equation.
On the assumption that the nonlinear boundary-layer flow
does not deviate greatly from torque balance (Willoughby,
1988, p. 1862) a number of authors have been led to erro-
neously argue that the inflow in the nonlinear problem is
determined by torque balance also.

The issues involved are subtle. Even if the degree of
imbalance expressed by the agradient force and friction is
small, it should not be inferred that the imbalance can be
neglected. For one thing, the effects of a small net inward
force can accumulate over 100 km or more in radius, just as
the buoyancy force based on a few degrees of temperature
excess in a cumulonumbus cloud can lead to a significant
updraught strength. For another thing, torque balance
cannot account for the development of significant super-
gradient winds, which have been found in observations
(Kepert 2006; Sanger et al., 2014; Montgomery et al., 2014),
and their contribution to the nonlinear deceleration of

2 There, Willoughby, writes: “Although the wind may be supergradient
where the boundary-layer inflow decelerates and turns upwards into the
eyewall, the role of the imbalance in the secondary circulation has been
exaggerated.”
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3446 SMITH and MONTGOMERY

the boundary-layer inflow inside the radius of maximum
gradient wind speed.

As one illustration of the foregoing issues, Kepert and
Wang (2001) note on the first page of their paper that
“vertical diffusion could maintain inflow in the presence
of a weakly supergradient jet in the upper boundary lay-
er”. The reader is left to work out what is being diffused
(presumably some component of horizontal momentum),
and the authors do not say how the diffusion “maintains
the inflow” nor do they explain the role of the “weakly
supergradient jet”, which is in the tangential direction and
not the radial direction. It would appear that here they
are invoking torque balance, even for the fully nonlinear
problem. As shown above, this would be incorrect.

While acknowledging the radial force imbalance as
the source for the radial acceleration in their statement
on p. 2493: “From a Lagrangian point of view, the imbal-
ance in the adjustment terms directly accelerates the
air parcels inward”, Kepert and Wang return to invok-
ing torque to describe the nonlinear behaviour of the
radial inflow for the inertially stable and neutral cases.
For example, on p. 2493: sentence beginning “Our analy-
sis so far has strongly suggested that… ”; p. 2495: sentence
beginning: “In summary, frictional destruction of… ”, and
p. 2500: paragraph beginning “The spatial distribution of
the jet… ”.

6.2 The presumed role of inertial
stability

The concept of inertial (or centrifugal) stability of an
axisymmetric vortex with tangential wind distribution v(r)
relates to the restoring force that acts on a fluid parcel
at some radius when it is displaced radially through a
small distance Δr. If the vortex is situated on an f -plane,
the restoring force per unit mass F = −I2Δr, where I2

is defined just below Equation (6) (Rayleigh, 1917). It
is unclear how this concept relates to the vortex bound-
ary layer where, on account of friction, there is already a
non-zero agradient force acting on all fluid parcels.

The so-called inertial stability, I2, appears as a coeffi-
cient in the Sawyer–Eliassen equation for the streamfunc-
tion of a slowly evolving balanced vortex, another impor-
tant coefficient being the static stability N2 characterizing
the vertical restoring force per unit mass for a vertical dis-
placement, Δz, of a fluid parcel (Willoughby, 1979). Based
on the work of Eliassen (1951), Shapiro and Willoughby
(1982) pointed out that the circulation induced by a point
source of heating or momentum in such a balanced flow
is confined in radius if I2 > >N2 and confined in the ver-
tical if N2 > >I2. Kepert and Wang (2001) explained the
strength of the inflow in their nonlinear boundary-layer

solutions using this balance framework. It is again entirely
unclear that balance dynamics can be applied to the
boundary layer. For one thing, the linear boundary-layer
solution expresses a rather different balance (i.e., gen-
eralized Ekman balance) compared with thermal wind
balance assumed by Shapiro and Willoughby (1982). For
another thing, the existence of inflow in the frictional
boundary layer is fundamentally a consequence of radial
force imbalance.

Possibly the first reference to the presumed role of iner-
tial stability as a restoring force in the boundary layer was
that by Shapiro (1983). When describing the axisymmetric
nonlinear boundary-layer response to an imposed radial
pressure gradient forcing, Shapiro, wrote on p. 1988: “The
inertial ‘wall’, evidenced by the rapid increase in vortic-
ity (𝜁o), just inside rmax (the radius of maximum tangential
wind speed, our insertion) leads to the rapid decelera-
tion of uo (the radial velocity, our insertion), and strong
boundary-layer convergence”.

Kepert and Wang (2001) used a similar argument, stat-
ing on p. 2493: “ … the radius of maximum winds is
a highly favorable location for low-level jet occurrence,
due to the sudden increase in inertial stability allowing a
strong updraft there, and the increased radial gradient of
Ma (the absolute angular momentum of the gradient wind:
our insertion)”. The argument is similar to that of Shapiro
(1983) because the radial gradient of Ma is proportional to
the absolute vorticity.

Referring to the fact that the peak axisymmetric
updraught typically falls a few kilometres within the radius
of maximum tangential wind, Kepert (2017) argued on
p. 3319 that “Essentially, this displacement is a measure
of the overshoot as the inflowing near-surface air encoun-
ters the greater inertial stability of the gradient wind at the
eyewall and decelerates”.

In a similar vein, Emanuel (2018) argued on p. 15. of his
monograph on tropical cyclones: “ … the boundary layer
near the radius of maximum winds is strongly frontogenet-
ical, with convergence of the Ekman boundary-layer flow
guaranteed by the large radially inward increase of inertial
stability as the vorticity rapidly increases inward”.3

3Strictly speaking, this reasoning, like that of Kepert and Wang (2001)
cited above, is not entirely sound. This is because, while the absolute
vorticity on the left-hand side of torque balance increases with
decreasing radius, the quadratic drag on the right-hand side of torque
balance increases with decreasing radius also. According to torque
balance, the radial inflow is determined by the ratio of the tangential
drag per unit depth to the absolute vertical vorticity, both of which
increase with decreasing radius. Although one might surmise that the
increase in absolute vorticity is more rapid than that of the drag per unit
depth, it is not obvious which effect wins, except for the special case of a
Rankine vortex (v∼ r−1). However, torque balance becomes invalid in
the case of a Rankine vortex (e.g., McWilliams, 1971; Kepert, 2001).
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SMITH and MONTGOMERY 3447

All the foregoing arguments would appear to be based
on torque balance. As noted earlier, if one assumes that, to
a first approximation, linear Ekman balance holds in the
boundary layer, the radial velocity given by Equation (4)4

is inversely proportional to 𝜁ag. It is evident that all the
authors are conflating absolute vorticity with inertial sta-
bility. While it is true that, in cases where the vortex core
is approximately in solid body rotation, inertial stability
and absolute vorticity both show a sharp increase with
decreasing radius near and inside the radius of maximum
gradient wind, these quantities do not have the same phys-
ical meaning and absolute vorticity should not be confused
with a restoring force.

Further confusion relating to the role of inertial sta-
bility in the boundary layer is found in Zhang et al.
(2001) who wrote on p. 101: “Clearly, it is the centrifugal
force (or inertial stability) that prevents the low-level radial
inflow from reaching the eye, and vents the air from the
bottom of the eye to maintain the mass balance”. While
their arguments regarding the role of the centrifugal force
are broadly correct (see paragraph below), these authors
conflate “inertial stability” with the centrifugal force.

In the nonlinear boundary layer, the rapid deceleration
of the inflow near and inside the radius of maximum gra-
dient wind is due to the positive agradient force, which is
associated, mostly through the dominance of the centrifu-
gal force, with the development of supergradient winds in
that region (e.g., Anthes, 1974, p. 506; Zhang et al., 2001,
section 4; Nguyen et al., 2002, section 5b; Smith and Vogl,
2008, p. 342; Smith et al., 2009). Thus, we would argue
that it is fallacious to invoke inertial stability to explain
the rapid deceleration of the inflow in the boundary layer.
The foregoing examples are only a few of the instances
we found in the literature where inertial stability has been
invoked to explain boundary-layer behaviour, an indica-
tion that such misleading interpretations have become
entrenched.

7 CONCLUSIONS

We have reviewed the linear theory of a turbulent vor-
tex boundary layer in the context of tropical cyclones
and have examined in detail two solutions of the linear
boundary-layer equations for broad and narrow gradient
wind profiles that have the same radius of maximum tan-
gential wind speed. We examined further the integrity

4If Equation (4) is integrated vertically over the depth of the boundary
layer, the mean inflow is seen to be proportional to the surface stress in
the tangential direction and inversely proportional to the product of the
boundary-layer depth times the absolute vorticity of the gradient wind
(e.g., Willoughby, 1995, equation (2.11)).

of these solutions by using them to estimate the nonlin-
ear terms that were neglected in their derivation. These
terms are not negligible for the narrower vortex profile.
The analysis shows that the linear approximation is best
for the broader gradient wind profile. It shows also that the
structural differences between the two solutions cannot be
explained on the basis of inertial stability arguments.

We have argued that, even if the degree of radial force
imbalance in the boundary layer is small, its effects can-
not be simply dismissed. The reason is that the effects of
a small, but persistent net inward force can accumulate
over 100 km or more in radius. In particular, it is falla-
cious to attribute inflow in the nonlinear boundary layer
to torque balance, because it would be determined then
by the tangential (sic) momentum equation. We pointed
out that, in the tangential direction, torque balance can-
not account for the development of supergradient winds
and their contribution to the rapid deceleration of the
boundary-layer inflow inside the radius of maximum gra-
dient wind speed. These effects are intrinsically nonlinear
and require consideration of both horizontal momentum
equations.

We have examined some previous interpretations
of both linear and nonlinear boundary-layer behaviour,
which we believe are deficient. In particular, we have
examined arguments about boundary-layer behaviour that
invoke inertial stability ideas borrowed from balance vor-
tex theory and have questioned the application of such
ideas when applied to the vortex boundary layer.
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APPENDIX

Radial variation of 𝝂, I2, a1 and a2
Figure A1 shows the radial variation of the quantities

𝜈, I2, a1 and a2 that appear in the solution to the linear
boundary-layer problem. These quantities are calculated
with the parameter values given at the start of Section 3
and the two vortex profiles defined therein. It is seen that
the parameter 𝜈, the drag coefficient multiplied by the
boundary layer Reynolds number, lies within the range
0 to 1 (Figure A1a), as do the profiles of a1 and a2 that
appear in the solutions (7), (8) and (15) (Figure A1c, d).
The profiles of a1 have the same qualitative behaviour as
those of 𝜈, starting with a value of zero at r = 0. For x = 1.6,
these profiles show a broad maximum near r = 220 km,
beyond which they slowly decline. For x = 2.3, the max-
imum is more peaked near r = 120 km and both profiles
decline more rapidly. The profile of a2 is more peaked than
for x = 1.6 than x = 2.3, but the maxima occur at similar
radii. Since the coefficients a1 and a2 appear in the com-
bination a2 cos(z∕𝛿) − a1 sin(z∕𝛿) in the solution for u(r,z)
in Equation (8), their individual contribution to u(r,z) will
vary with height.

Figure A1b shows the radial variation of the inertial
stability, I2, illustrating the rapid increase with decreasing
radius inside the radius of maximum gradient wind and
the fact that the broader vortex has a larger increase than
the narrower vortex.

Parameter ν(r)(a) (b)

(c) (d)

Parameter I 2(r)

Parameter a1(r) Parameter a2(r)

F I G U R E A1 Radial variation of (a) 𝜈, (b) I2, (c) a1 and (d) a2. Curves for x = 1.6 are in red, for x = 2.3 in blue
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