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CALCULATION OF ENERGY DEPOSITION SPECTRA
A.M. KELLERER

Strahlenbiologisches Institut der Universitdt Miinchen und
Institut fiir Biologie
der Gesellschaft fiir Strahlenforschung Neuherberg

Abstract: Classical straggling theory is of limited applicabi-
lity in microdosimetry. A new derivation of the energy loss
distributions and some theoretical properties of the Compound
Poisson process are discussed.

The energy transfer from an ionizing particle to a structure

of microscopic dimensions is a stochastic process. Rigorous
treatment of this highly complicated process has become possi=-
ble since ROSSI and co-workers1 have introduced the spectra,
P(AZ), of local energy increments. It is the strength of ROSSI's
concept that, unlike classical LET-theory, it integrates all the
different factors involved. Therefore, it covers efficiently
even those cases which are still too complex to be understood

in all details., With the steadily improving experimental de-
termination of the local energy density spectra, however, with
their increasing impact on radiation biology, and with the emer-
gence of a theory of microdosimetry one has to look for the com=-
plete picture. It turns out that the local energy density spec-
tra are far more than a mere synthesis of LET-spectra and track
length distribution in the sensitive structures. The statisti-
cal nature of energy deposition along the track of an ionizing
particle is a most important additional aspect brought up by
microdosimetry (if we may use this somewhat preposterous name
for the moment). In many instances it is also the decisive fac-
tor for the shape of the local energy density spectra. Track

length distribution and even LET-spectra are often of minor im-
portance2.

Even in those cases where 'straggling' is not the decisive fac=-
tor, it is still the one which presents the most serious diffi=

culties as far as physical knowledge and mathematical evaluation
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are concerned. One may almost state that calculation of local
energy density spectra is essentially a problem of computing
the energy loss distributions. If this problem is solved the
explicit probability distributions for different sizes of the
critical area and for different LET-spectra are put together
easily. This may be seen from first calculations which some

3

years ago have been done in a Monte Carlo approximation~”.

This paper is concerned with the derivation of the energy loss
distributions for an additional reason. In radiation physics
the problem of energy straggling has been treated extensively.
The theories of BOHRh, LANDAUs, and SYMON6 have led to the re-
cent solution given by VAVIL0V7, and to its tabulation by
SELTZER and BERGERe. This solution is based on a few simplify-
ing assumptions. It neglects the atomic binding of the electrons,
and while, on the one hand, it requires that only a minor frac-
tion of the kinetic energy of the ionizing particle is lost, it
is, on the other hand, restricted to a large number of primary
collisions. These approximations, while perfectly valid in some
high energy applications, turn out to be prohibitive in micro=-
dosimetry. In radiobiological applications the binding energy
of the electrons cannot be neglected, the number of collisions
in the structures of interest is often small, and a delta~-ray
cut-off has to be applied whenever only the energy locally im=
parted is of interest.

For these reasons a new method has been developed for the de-
rivation of the energy loss distributions for arbitrary colli-
sion laws over the whole range of collision numbers, While this
approach may be the only choice in many radiobiological applicea=-
tions, it should also prove useful in general radiation physics
and even in high energy physics, whenever more rigorous treat-
ment - for example, a correction for delta-ray escape in the

?)

work with solid state detectors (see - i8 desired.



I. Derivation of the energy loss distributions

Let us for the moment assume that the collision law, or delta=-
ray spectrum, is known. Let us also restrict our discussion to

a constant value of the stopping power, i. e. to the case of

an ionizing particle which in traversing a certain distance
looses only a small fraction of its kinetic energy. For easier
understanding some reference will be given to the VAVILOV-theory,
and ®lso the notation will be kept similar to the one which is
used, for example, in the NAS report on the penetration of charg-

ed particles in matter’o

« We will, however, not use that part of
the conventional terminology which is merely connected with the
special solutions valid for the l/E2 collision law or its rela-

tivistic modification.

Let f(E,s)+dE denote the probability that an ionizing particle
in traversing a path length s in the target will suffer an ener-
gy loss between E and dE as the result of successive collisions
with atomic electrons. The energy loss E in the target may vary
over a wide range. The fluctuations are due to the varying num-
ber of collisions in the target, and, what is much more impor-
tant, to the varying amount of energy transferred in the indivi-
dual collisions. If the single collision spectrum is designated
by ¢(E), then c(E).dE is the probability that a single collision
leads to an energy transfer between E and d4E.

VAVILOV has derived the distributions f(E,s) by integrating the
transport equation:

b
A f(Eis) o o /f(E-x,s)‘c(X) dx - f(E,s) ) (1)
9 s

e_ .
min
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By use of the Laplace transform he derives solutions for the
l/E2 collision law and its relativistic modifications. The
disadvantage of the method is that it cannot be used for modi-
fied collision spectra which take into account the electron
binding and the escape and influx of delta rays. Moreover the
solutions are expressed as an integral over some complicated
functions. This has made it necessary to adopt & mixed analy-

tical numerical proceduree.

A direct and generally applicable numerical method avoids the=-
se disadvantages. The alternative method derives the energy
loss distributions from an integral equation which is characte-
ristic for the Compound Poisson process. This integral equation
expresses the fact that the energy loss in neighbouring track

segments is statistically independent:

E
f(E,s1+32) = / f(E-x,s1)'f(x,s2) dax (2)
[e]

This means that, if a distance is split up into two parts, its
energy loss distribution is the convolution of the two distri-
butions belonging to the individual parts. Specifically we may

choose two equal segments, and obtain:

E
f(E,2s) = ‘/f f(E-x,s) f(x,s) dx (3)

[o}

Repeated application of this formula leads to arbitrarily high
values of s. If, therefore, the energy loss distribution is known

for a thin target it can be derived for all other values of s.



61

An essential point is that with repeated convolutions the in=-
crease in mean energy loss is exponential. Only 10 successive
convolutions are necessary to span a factor of 210, i. e. to
reach approximately 1000times the original target size. This
cam be made clear by the following equations where a star is

used as a shorthand notation for the convolution process:

t(E,2s) = f(E,s) =»f(E,s)
f(E,bs) = f(e,2s)%xf(E,2s)
f(E,8s) = f(E,Us)wf(E,bs)

(4)

1 1

£(E,2"s) = £(E,2% " «s)%£(E,2" '+3s)

All we need, therefore, is the energy loss distributions for
very small distances, These, however, can be given easily. If
the distance s is so small that in most cases no collision at
all occurs, then the probability for more than one collision

can be neglected and the distribution of energy loss is a simple
superposition of a delta function at zero energy and the single
collision spectrum c(E):

f(Eys) = (1-€)+86(E) + €+c(E) (s5)

wvhere ¢ < 1 is the mean collision number.

If, for exgmple, we start with e = 2'10, then the probability
for more than one collision is equal to 2"20 and can be safely
neglected. By 20 successive convolutions one generates a set

of energy loss distributions of which the last one belongs to a
mean collision number of 1012, By choosing the appropriate

starting point 8, one can reach any desired mean energy loss.
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This is in short summary the principle of the derivations of
the energy loss distributions. It gives enough information to
use the computer program developed on this basis. Nothing more
is required than the read-in of the single collision law c(E)
and the values of mean energy loss for which the distribution

functions are desired.

Nevertheless, it may be useful to mention at least some details
of the actual procedure. This will be done in the next paragraph
which is of more technical nature and may, therefore, be used

in conjunction with the program itself.

First, however, some remarks on the moments of the energy loss
distribution should be inserted. Theoretical determination of
the moments and comparison with the numerically obtained values

can be used for the accuracy control of the computations.

It can be shown , though a proof will not be given here, that

certain combinations of the moments, the so-called semi=-
invariants of the distribution f(E,s), all increase linearly
with s. Also their dependence on the moments of the collision
spectrum c(E) is simple., Let us designate the non-central mo=-
ments of c(E) by et

e

m
c_ = f
n

(o]

ax
ER. c(E) d4E (1)

Then one may derive that the n-th semiinvariant of the energy
loss distribution is equal to the n-th non-central moment of
the collision spectrum times the mean collision number. The
second and the third semiinvariant are equal to the second and
the third central moment, and the fourth semiinvariant is equsal

to the fourth central moment minus 3times the variance. Thus
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one obtains the following formulas for the central moments

of the energy loss distribution:

E = Nec, (N is the mean collision
number)
p—— -
(E-E) = Noc2 = E-02/c1
(EJE)3 = Nec_ = Eec_/c (8)
3 371
(E-E)" = Hee, - 3(Neey)? = F e fe, = 3(Eecy/e,)?

These are important general properties of the Compound Poisson
process.

It should be noted that the higher moments depend strongly on
the tails of the distributions. These tails can be computed accu=-
rately, but they cannot in general be determined exactly in the
experiment. Therefore, the higher moments have limited practical
meaning. The variance together with the mean, however, is an ex-
tremely important characteristic of the energy loss distributions.
In the local energy density spectra it is, indeed, a useful tool
to compare the relative importance of all the different factors
involved. Rather surprisingly it turns out that the relative va=
riance is the ;imgle sum of the variances introduced by the indi=-
o !

vidual factors « From the local energy spectra the concept may

even be extended to cover the biological aspects, and this is a

direct connection to the theory of the dose effect relations3.

Finally, it should be added that outside the range of our as=
sumption of constant stopping power, the moments are, indeed, a
practical means to derive the explicit energy loss distributions.

‘This has been worked out by TSCHALAR'Z,
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II, Details of the cqmputer progran

Formally the method described above looks rather simple. It
does not involve anything more than the repeated execution of

an integral of the type:

E
g(E) = jf-(E-x)of(x) ax (9)

(o]

Due to the type of functions involved, however, these integrals
present considerable numerical difficulties, and it has been a
main object in the development of the computer program to find

the optimal way to overcome these difficulties.

To illustrate the problems inyolved we may consider the usual
l/E2 collision law. Take the example of a 5 MeV proton. In this
case the maximum delta-ray energy is near to 10 KeV, and e in
is roughly O,4 eV, The collision spectrum c(E)’H/E2 varies very
rapidly in the low energy range, so that for the numerical ine
tegration one has to work on a point grid with intervals much
smaller than one eV. On a fixed linear energy scale that would
imply 10S points for the representation of the distribution.
Thus the straight forward approach on a linear grid of equi =
distant points is out of question; one convolution operation

would involve some 1010 products.

Therefore, one has to subsegment the integrals or else switch

to a new non-linear coordinate system. The latter is the more
elegant and more efficient way. One may choose a square root
scale or a logarithmic scale in E. Both coordinate systems ha=-
ve their advantages; in the present approach we will choose

the simplest and most easy to use method and adopt the more com=-

mon logarithmic scale.
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If on the logarithmic scale one chooses a series of equi-
distant points to represeant the function f(E), it turns out
that less than 100 points are in general quite sufficient for
an accurate approximation. This means that less than 10“ pro-
ducts are involved in the convolution of two distributions;
thus the computing times are kept very short. In accordance
with the coordinate transformation, however, one has to re=-
write equation (9).

Let us assume the following abbreviations:

n= nE |, E=2nx , vy(n) =gle) , ¢(n) = g(e") .

Then, as can easily be shown, the integral equation is trans-
formed into:

n=n2

y(n) = 2¢ / o(2n(eM-e®) )ep(g) e* ag (10)
£

min

This is still not the most efficient way of performing the ine-
tegration, since one of the arguments contains exponential

functions and a logarithm. This argument may be further simpli-
fied:

tn(e"-e®) = tn(e"(1-e5"M)) = n+rn(1-e®"M) (11)
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With the additional abbreviation:

d(x) = =tn(1-e)

the integral can be written in the following final form:
n=2n?2

() = 20 j o(n-d(n=g))+o(g)re® ag (12)

Emin

¢ are calculated in advance and need

The functions d(n=¢() and e
not be computed everytime they are needed. Thus, the integral
is again reduced to simple multiplication and addition. The

execution is, therefore, fast, and there are no limitations as

to the range of energy losses to be covered.

A final remark relates to the zero component in the distribu=
tions. While the equations contain these zero components in

form of delta function contributions, the zero component and
its contribution is, in fact, handled separately in the nume=-

rical procedure.

The program is presently available in FORTRAN IV and in ALGOL,
Its application is simple, since as input nothing more is re-
quired than the read-in of the unnormalized values of the col-
lision spectrum on a logarithmic point grid. Ome may also state
the number of coordinate points on a given interval. Normally

8 points on a factor of 2 are taken, but if highest accuracy

is required, one may state the number of 16 or even 32, If one
also states a final mean energy loss, one obtains a series of
distributions which leads up to the distribution with the de-
sired mean energy loss. The distributions are successively

spaced by a factor of two as can be seen from equations (k).

The accuracy of the computations is limited only by the fact
that the continuous integrals are substituted by discrete sums,

We do not need a detailed discussion of the errors involved,
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since the theoretical determination of the moments and the
comparison with their numerically obtained values warrant a
steady control of the accuracy. With a point grid of 8 points
on a factor of 2, and for the usual collision laws the in=-
accuracy of the mean, the standard deviation, and the second
and third central moments is still below 1% after 20 convo=-
lutions, a precision good enough for almost all practical
applications. Should in special cases highest accuracy be de=-
sired, then one may take a finer point grid. Also the linear
interpolation in the integration may be replaced by a more
accurate one, Presently, however, this appears to be quite
pointless.

III. Practical implications

It is not in the scope of this paper to discuss numerical
results of the energy loss calculations. An example may, howe
ever, serve to illustrate the new method. In order to give a
comparison with the VAVILOV theory, a case will be taken which
is not quite out of the range of applicability of this theory.
It has to be kept in mind that the differences become much

more expressed with smaller mean energy loss.

A 1,58 MeV proton in traversing a tissue equivalent layer of
0,1 micron looses 1,9 KeV on the average. But there are marked
deviations from this mean value, as can be seen from recent
experiments performed by GLASS and SAMSKY '3, The VAVILOV theo-
ry is in general agreement with the data (see Fig.1). The ex-
perimental curve is, however, broader at low and medium ener-
gies., This is at least partly due to the electron binding.
Unfortunately, we have little information on the actual shape

of the collision spectrum at low and medium energies. We do,
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Figo

1

"of & 1,58 MeV proton in a layer of 10"

energy in keV

Probability distribution for the energy deposition

> gm/cm2 com=-

pared with the VAVILOV theory (according to GLASS
and SAMSKY'3),
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however, know that the 1/E2 relation is extremely unrealistic
in this range, and the most reasonable guess may at the moment
be based on the experimental findings of RAUTH and SIMPSON1h.
It is the shortcoming of these data that they do not extend to
energies of much more than 100 eV. Thus one has to interpolate.
The interpolation is to a certain degree determined by the con-
dition that the cross-sections above 300 eV as well as the to-
tal stopping power have to be kept. Without going into the de-
tails we present & modified spectrum in Fig. 2 a. Some of the
resulting energy loss distributions in comparison with the ones
for the 1/E2 relation are given in Fig. 2 b. The distribution
for a mean energy loss of 1,9 KeV is compared with the experi-
mental data in Fig. 3. At low and medium energies this curve 1is
in agreement with the results. Another considerable difference
between experiment and theory remains., The experimental values
fall off much more steeply at higher energies than the VAVILOV
theory predicts. This is clearly due to the loss of delta rays.
A treatment which calculates escape and influx probabilities
for the different delta rays in a foil of 0,1 micron leads to a
good fit at high energies, but the influx of deltas increases
the probabilities in the medium energy range much more than is
experimentally observed. Therefore, the geometry of a foil seems
not appropriate for the experiment, and, accordingly, the pro=-
_babilities have been calculated for a cylinder of 0,05 micron
radius and O,1 micron length. In this case the energy loss is
mostly radial, and there is little influx of delta rays. The
resulting collision spectrum is also indicated in Fig. 2 a.
This collision spectrum leads to a good agreement with the expe-
rimental data over the whole range of energies (see Fig. 4). The-
se remarks should be taken as an illustration, not as a defini-
tive proof for a particular collision spectrum. There are quite
a number of interesting questions involved in the problem, and
it has to be dealt with in detail,
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energy in eV

The 1/E2 collision spectrum for 1,58 MeV protons,

energy in eV

Some energy loss distributions for a 1,58 MeV proton

according to the 1/E2 collision spectrum (dotted lines)

and the adjusted spectrum (full lines). The mean ener=-
gy loss is: 30 eV, 119 eV, 475 eV, and 1,9 KeV.
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Fig.

Relative Frequency f(E)

energy in keV

The experimental data compared with the distribution
adjusted at low energies but not corrected for delta-

ray escape.

energy in keV

The experimental data compared with the distribution

adjusted at low energies and also corrected for delta-
ray escape.
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The necessity for a detailed treatment is also the reason that
no attempt is made to discuss the derivation of the local ener-
gy density spectra with all the factors involved. It may suf-
fice to say that the computer program discussed here is the cen-
tral building block of an extended version which takes arbitrary
collision spectra, LET-spectra, and track length distributions,
and puts them together for the actual local energy density dis-
tributions, P(AZ). The main formulas which govern the inclusion
of the LET~- and track length-spectra are simple and have been

discussed earlier3 (see also11).

The results have to be evaluated in close connection with the
experimental data. The experiment is limited at low energies,
while the theory, due to the complicated problem of delta-rday
escape, runs into difficulties at high energies. This will pro=-
bably make the best spectra a combination of a theoretical low
energy part and a high energy part determined in experiments

with wall-less proportional counters.

There is a last point which, in fact, has been the starting point
for this work. This is the problem of computing the dose-dependent
local energy density spectra P(Z) from the increment spectra
P(4Z). It is interesting to note that P(Z) is in exactly the

same relation to P(4Z) as f(E,s) is to c¢(E). The reason is that
both P(Z) and f(E,s) are the result of a Compound Poisson process.
That is, they are the result of statistically independent in-
crenents. The distribution of increments, i. e. the spectrum of
the Poisson process, is P(AZ) in the one case, and c(E) in the
other. Thus the computer program which is a general solution of
the Compound Poisson process can be used for both problems with=-
out any change. The only difference is in the shape of the spec-
tra. The distributions P(AZ) are easier to handle than some of

the extremely skew collision spectra c(E).



73

Indeed, the derivation of the P(Z) spectra from the single
event spectra P(AZ) has been done first. It was B, BIAVATI

15 which

who has developed a rigorous program for this purpose
in contrast to the Monte Carlo calculations3 produces exact
solutions. His method lies in a similar direction as the pre-
sent approach. As a matter of fact the work reported here has
been greatly stimulated and advanced by the close cooperation
with the working group at the Columbia University Radiation

Research Laboratories.
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