THE THYROID 1988

Proceedings of the International Thyroid Symposium, Tokyo, 13–15 July 1988

Editors:

Shigenobu Nagataki
First Department of Internal Medicine
Nagasaka University School of Medicine
Nagasaka, Japan

Kanji Torizuka
Fuku Medical School
Fuku, Japan
Due to unavoidable circumstances the papers marked with an * could not be presented at the meeting but have, nevertheless, been included in this volume.

SPECIAL LECTURE

Future trend in thyroidology
S.H. Ingbar 1

PLENARY LECTURES

In vitro TSH secretion-refractoriness: Interaction of TRH receptor-related phosphatidylinositol (PI) metabolism
T. Michimata, T. Iritchiijima and M. Mori 7

Endocrine and developmental regulation of thyrotropin (TSH) carbohydrate synthesis
B.D. Weintraub, N. Gesundheit, P.W. Gyves, T. Taylor and G.S. DeCherney 13

Thyrotropin and cyclic AMP analogue enhance thyroid peroxidase mRNA level through a regulatory protein in cultured human thyrocytes

A pregoIgi membrane-bound form of thyroglobulin (TG) contains mannose phosphate and tetraiodothyronine (T4)
M. DeLuca, P. Santisteban, S. Shifrin and L.D. Kohn 25

Cellular origin of thyroid heterogeneity
G. Huber, M. Derwahl, H.-J. Peter and H. Studer 33

Coincident regulation of rat thyroid MHC Class II RT1.Dα and RT1.Dβ transcripts
D.S. Neufeld and T.F. Davies 37

'Rehabilitation' of cytokines in thyroid autoimmunity: Are they only exerting negative effects?
U. Deuss, M. Buscema and G.F. Bottazzo 43

Antibody against c-erb A protein can interact with rat liver nuclear Tα receptors
H. Nakamura, K. Masuda, T. Tagami and H. Imura 51

High-field surface-coil MR imaging in thyroid disease
Europe: ‘Between-country’ diversity in the management of hyperthyroidism due to Graves’ disease

D. Glinoer, D. Hesch, P. Laurberg, M. Malinsky, B. Haak, H. Fritzschel and R. Lagasse

63

THYROID AUTOIMMUNITY

Cellular immunity and MHC Class 2 antigen

MHC Class 2 antigen expression in high and low responders with interferon γ injected mice

Y. Kawakami, N. Kuzuya and K. Yamashita

71

Non-toxic nodular goitre and papillary carcinoma of the thyroid are not autoimmune thyroid diseases

J. Aguayo, Y. Sakatsume, C. Jamieson, V.V. Row and R. Volpé

75

Intrathyroidal lymphocyte subpopulation study in Graves’ disease

K.L. Liaw, Y.C. Tu, C.C. Yao and J.J. Su

81

The cellular interaction in thyroid glands from patients with Graves’ disease (immunohistochemical staining and phenotypic marker of thyroid infiltrating mononuclear cells)

85

TSH-binding inhibitor immunoglobulin (TBII) and lymphocyte subsets of thyroidal venous blood in patients with Graves’ disease

A. Sugenoya, Y. Kasuga, S. Kobayashi, H. Masuda and F. Iida

89

Cellular immunity and autoantibody

Circulating Tal + cells: A new index of immunological activities in patients with Graves’ disease

95

In vitro induction of anti-thyroid microsomal antibody secreting cells in peripheral lymphocytes from normal subjects

M. Iitaka, J. Ishii and R. Volpé

99

Suppressor cell function in thyroid autoimmune disease is affected by plasmid encoded proteins of enteropathogenic Yersinia

B.E. Wenzel, J. Heesemann, S. Grammerstorff and P.C. Scriba

105

Immunogenetic factors in the pathogenesis of goiter and autoimmune thyroiditis in iodine-sufficient areas of Kentucky, USA, and Colombia, SA

109
Thyroid functional disorders with thyroid autoantibody manifested after habitual ingestion of excess iodide

K. Okamura, K. Sato, H. Ikenoue, M. Yoshinari, M. Nakagawa, T. Kuroda and M. Fujishima

115

Antiperoxidase and antithyroglobulin antibodies

New monoclonal antibody radioimmunoassay (RIA) of anti-thyroid peroxidase autoantibodies

S. Mariotti, S. Anelli, P. Piccolo, P. Caturegli, J. Ruf, P. Carayon and A. Pinchera

Studies on human thyroid peroxidase (TPO) autoantigenicity by cloned cDNA recombinant epitopes

121

101 kDa thyroid microsomal antigen - Two forms?

125

Common antigenic determinants of thyroglobulin and thyroid peroxidase: Possible autoantigenic determinants related to the causes of thyroiditis

Y. Kohno, N. Naito, K. Saito, O. Tarutani, H. Nakajima and T. Hosoya

133

IgG subclasses of microsomal and thyroglobulin antibodies: Functional affinity and patterns of inheritance

S.M. McLachlan, A. Stephenson, M. Devey, K. Bleasdale, S. Moffitt, F. Clark, E.T. Young and B. Rees Smith

137

Monoclonal antithyroglobulin autoantibody in Hashimoto’s serum

G.B. Salabe’, A. Olivieri, H. Lotz-Salabe’ and G. Ravagnan

141

Effect of MMI and PTU on the production of thyroglobulin (TG) and thyroid hormone antibodies in mice and rats immunized with TG

145

Anti-thyroid hormone and anti-thyroglobulin autoantibodies in BB/W rat susceptible to spontaneous autoimmune thyroiditis

149

Antithyroid hormone antibody

The role of thyroglobulin as an antigen of thyroid hormone antibodies

155

Chronic amiodarone therapy is not associated with higher prevalence of serum autoantibodies to triiodothyronine and thyroxine

L. Bartalena, A. Loviselli, S. Balzano, L. Buratti, V. Sica, G. Giannessi, M. Pilosu, F. Aghini-Lombardi, L. Petrini and E. Martino

159
Clinical features of patients with thyroid hormone autoantibodies

N. Kojima, S. Sakata, S. Nakamura, K. Nagai, T. Komaki, M. Matsuda,
H. Takuno, J. Takamatsu, N. Tokimitsu and K. Miura

Measurement of TSH receptor autoantibodies (TR Ab) in children with hyperthyroidism

F. Péter

Thyroid stimulating immunoglobulin assay by solubilized porcine thyroid membrane preparation

H. Uchimura, K. Inoue, Y. Fukue, T. Mitsuhashi, K. Kubota, N. Sasaki,
F. Takaku, Y. Manabe and K. Ito

Binding antibodies to affinity purified human TSH receptors in euthyroid Graves’ disease

T. Shinozawa, Y. Matsushita, K. Arikawa, Y. Ichikawa, M. Homma and K. Ito

Thyroid stimulating antibody

Anti-human IgG antibodies enhance the activity of thyroid stimulating antibodies in vitro

T. Saito, H. Shimura, T. Endo and T. Onaya

Identification of antigens of abnormal thyroid stimulators by Western blotting

N. Kuzuya, Y. Kawakami and K. Yamashita

Anti-TSH antibodies in Graves’ disease – Binding characteristics to intact TSH and porcine TSH subunits and interaction with TSH receptor antibodies

Y. Ochi, M. Imokawa, T. Nagamune, Y. Nakajima, M. Ishida, Y. Kajita,
T. Hachiya and H. Ogura

Comparison of thyroid stimulating activities measured by cyclic AMP production, those by radioiodine uptake in FRTL-5 cells and TSH-binding inhibitory activities in patients with hyperthyroid and euthyroid Graves’ diseases

K. Kasagi, A. Hidaka, H. Hatabu, Y. Tokuda, T. Misaki, Y. Iida and J. Konishi

Glycosaminoglycan (GAG) synthesis in thyroid cells: Stimulation by thyrotropin (TSH), insulin-like growth factor-I (IGF-I), and IgG preparations from Graves’ patients with pretibial myxedema

F.V. Alvarez, C.M. Rotella, W.A. Valente, J. Chan, O. Isozaki,
R. Toccafondi, A.D. Kohn and L.D. Kohn

Changes in thyroglobulin release-stimulating activity (Tg-RSA) in immunoglobulin G from patients with Graves’ disease during therapy with thionamide drug

Y. Fukue, K. Kubota, N. Sasaki, F. Takaku, Y. Kanaji and H. Uchimura
Thyroid stimulation blocking antibody

Autoantibodies able to block thyroid adenylate cyclase inhibit TSH- and TSAb-stimulated growth of FRTL-5 cells

Role of blocking type TSH receptor antibodies in primary myxedema

Autoantibodies in patients with Graves’ disease which block the thyroid stimulating activities of autoantibodies associated with Graves’ dermopathy

T.W. Tao, S.L. Leu and J.P. Kriss 217

Clinical aspects

High plasma concentrations of human atrial natriuretic peptide in hyperthyroidism

The elevated plasma levels of atrial natriuretic peptide (ANP) in patients with hyperthyroidism

TSH concentrations in amniotic fluid of pregnant women with blocking-type TSH receptor antibodies: Its usefulness in predicting neonatal hypothyroidism

S. Sakane, J. Takamatsu, H. Kitaoka, K. Okuda and K. Kasagi 233

Relationship between pregnant and offsprings in thyroid dysfunction

M. Kambara, K. Sawada, M. Murata, N. Momotani, K. Okada and M. Matsumoto 237

Autoimmune thyroiditis and primary Sjögren’s syndrome

U.-B. Ericsson, B. Hansen and R. Manthorpe 241

Long term prospective observation of patients with silent thyroiditis: Close relationship with Graves’ disease, and high prevalence of relapse of silent thyroiditis, and development of hypothyroidism

Y. Ozawa and Y. Shishiba 245

Occurrence of Graves’ hyperthyroidism preceded by silent thyroiditis

J. Noh, M. Yoshimoto, N. Ishikawa, N. Momotani, N. Hamada, H. Morii and K. Ito 249

Clinical significance of anterior pituitary cell surface antibodies (PCSA) in Graves’ disease

I. Kobayashi, T. Inukai, A. Ishii, Y. Yamaguchi, T. Yamaguchi, S. Kobayashi, A. Hashimoto and M. Sugiura 253

T₃-predominant Graves’ disease: Clinical characteristics and pathogenesis of T₃ overproduction

Long-term sodium ipodate treatment for Graves’ disease: High rate of recurrent thyrotoxicosis

E. Martino, S. Balzano, A. Loviselli, V. Sica, L. Petrini, L. Grasso, M. Falcone and L. Bartalena

A duration until normalization of serum TBII levels as a reliable marker to predict prognosis in hyperthyroid patients

K. Kamijo, M. Sato, K. Kawasaki and A. Yachi

IODINE AND THYROID

Iodine and thyroid function

*Observations on the placental permeability to maternal thyroxine in the rat

X.L. Liu, Z.P. Chen, B.Z. Hou and T. Ma

Thyroiditis in BB/W rats bred with excessive iodine intake

M. Li, R.A. Osborn, D. Wu, G.F. Maberly and C.J. Eastman

*Effect of drinking water of iodine excess on function of pituitary thyroid axis in the inhabitants

X. Chen, X. Zhang, Y. Tao, S. Yang, Y. Chen, J. Zhao, Q. Liu, C. Wei, S. Wang, Z. Zhang and J. Feng

Iodine intake and thyroid function in normal individuals

Thyroid diseases in various areas

The role of nutritional factors in etiopathogenesis of simple goiter

B. Krishna Ram, P. Shah and A.K. Sharma

The influence of humic substances on the thyrotropin receptor

T.C. Chang and F.J. Lu

Goitre survey in a North Indian village

P.N. Singh, B. Hasan, J. Ahmed, O. Chandra, S. Kulshreshtha and V. Kumar

Profile of thyroid diseases. A hospital experience in India (Delhi and Agra), Libya and Iran

Thyroiditis and hypothyroidism

Incidence of thyroiditis among euthyroid goitres

Features of endemic cretinism in Qinghai, China
A high prevalence of pituitary tumour in myxedematous endemic cretins
F. Yasin, G. Ma, G. Maberly, C. Eastman, D. English and B. Armstrong

Prevention of IDD
Goitre, iodine deficiency (ID) and goitre prevention in the German Democratic Republic (GDR)
W. Meng, K. Bauch, G. Knappe, G. Kirsch and F.E. Ulrich
Iodized oil injections fail to benefit myxedematous cretins, from Qinghai, China
Thyroid function of subjects with goitre and cretinism in an endemic goitre area of rural China after use of iodized salt
A. Ouyang, X.P. Pang, T.S. Su and J.M. Hershman

THYROID HORMONE ACTIONS AND METABOLISM

Thyroid hormone binding proteins
Cloning of thyroxine-binding globulin (TBG) cDNA and analysis of TBG mRNA
F. Kambe, H. Seo, Y. Murata and N. Matsui
Human apolipoproteins A-I and C are novel thyroxine-binding proteins
S. Benvenga, H.J. Cahnmann and J. Robbins
Drug effects of serum thyroid hormone binding
J.R. Stockigt, C.F. Lim, J.W. Barlow, Y. Bai and D.J. Topliss
Cellular uptake of circulating triiodothyronine (T3) and the hormonal effect in peripheral tissues of the rat
Conformational transition of human c-erb A protein upon thyroid hormone binding
The mitochondrial pathway of thyroid hormone action
K. Sterling
Thyroid hormone binding to hemoglobin
S. Sakata, S. Nakamura, N. Yoshioka, M. Zouhair Atassi and K. Miura
Mechanism of hormone action and metabolism

Thyroid hormone induces gene expression of fibronectin in the rat liver
Y. Murata, H. Seo and N. Matsui 381

Thyroid hormone modulates the synthesis of proteoglycans by human skin fibroblasts in culture
Y. Shishiba, Y. Takeuchi, N. Yokoi, Y. Ozawa and T. Shimizu 385

Decreased respiration and α-glycerophosphate dehydrogenase activity in heart mitochondria from cold-exposed, triiodothyronine-treated hypothyroid rats
A.A. Zaninovich, J.A. Brignone, I.R. Mignone, C.R. Ricci and C.M. Brignone 389

Non-GSH, NADPH-dependent cytosolic thiol cofactor for iodothyronine deiodination
K. Ivase, B.C.W. Hummel and P.G. Walfish 393

Possible idiotypic differences among the 5′-deiodinating isoenzymes of iodothyronines
C.S. Pittman, R.R. Cavalieri and L.A. Gavin 397

Biological actions

Effect of hyperthyroid sera on rat embryogenesis

The consecutive observation on learning capacity in the 1st-3rd generations of iodine deficiency rat
Z.P. Chen, L. Dong and T. Ma 407

Evoked potential abnormalities in thyroid disorders
T.S. Huang, Y.C. Chang, S.H. Lee and F.W. Chen 411

Effects of thyroid hormone on the latency of evoked potentials by photic and electrical stimulations observed in the lateral geniculate nucleus and the visual cortex
M. Takeda, M. Suzuki and M. Kato 415

The effect of thyroid status on isoniazid acetylation

Hypothyroidism-induced hypothermia in the rat: Role of the brain cholinergic mechanism

Thyroid diseases

Radioimmunoassays for free thyroxine and free triiodothyronine in serum, with magnetic separation of the solid phase
W. May, K. Waite and C.J. Eastman 431
Clinical study on decreased serum thyroxine binding globulin due to radiofrequency hyperthermia

T. Hashimoto, H. Hisazumi, K. Nakajima and F. Matsubara

Studies on thyroid indicators during the relapse of Graves' disease following discontinuation of antithyroid drug therapy

H. Akiyama, I. Kobayashi, T. Yamaguchi, Y. Shoda, K. Ohshima, M. Mori, Y. Shimomura and S. Kobayashi

Erythrocyte zinc concentration in patients with hyperthyroidism

Serum ferritin concentration in patients with hyperthyroidism, hypothyroidism and thyroid hormone autoantibodies

Studies on the remission of Graves' disease: Role of thyroid stimulators on overshoot of thyroidal radioiodine uptake in Graves' disease following discontinuation of antithyroid drug

T. Yamaguchi, I. Kobayashi, T. Inukai, A. Iwashita, Y. Shoda, H. Akiyama, S. Kobayashi and Y. Kondo

The effects of aminophylline on thyrotoxic tremor

Thyroid state and serum angiotensin-converting enzyme during acute starvation

G. Komaki, H. Tamai, S. Matsubayashi, N. Kobayashi, S. Mori and T. Nakagawa

Non thyroidal illness

Changes in thyroidal secretion of T3 to TRH in patients with anorexia nervosa: Before and after weight recovery

H. Tamai, K. Kiyohara, N. Kobayashi, G. Komaki, T. Nakagawa and S. Nagataki

*Functional status of the thyroid gland in malnutrition

I. Chakravarty and D. Das

*Thyroid hormones in protein energy malnutrition (PEM)

Y. Sachdev

Studies on the pituitary and thyroid functions in patients with nonthyroidal illnesses: Assessment of bioactivity for serum TSH in patients with chronic renal failure on hemodialysis

M. Horimoto, M. Nishikawa, N. Yoshikawa and M. Inada

No lymphocyte production of immunoreactive thyrotropin (IR-TSH) in thyroid diseases

THYROID DISEASES

Hypothyroidism

High incidence of primary non autoimmune hypothyroidism in adult thalassemia major patients
M.E. Lai, S. Balzano, M.L. Murtas, A. Figus, V. Sica, S. Jannelli, P. Farci, A. Balestrieri and E. Martino

Study of water excretion in patients with hypothyroidism

The influence of thyroid status on serum lipid parameters of athyreotic patients

Thyroid function following head and neck radiotherapy

Sensitive TSH measurement on triiodothyronine therapy in the diagnosis of thyroid hormone resistance
J. Takamatsu, M. Majima, T. Majima and S. Ueda

Thyroid functions in ankylostomiasis

Nodule, thyroiditis and hyperthyroidism

Scintigraphic and sonographic studies in thyroid diseases
C.C. Wu, J.K. Torng and Y.H. Ho

Effects of inhalational anesthesia and abdominal surgery on thyroid functions in man
A. Matsuki and T. Oyama

Subacute thyroiditis as a systemic multi-organ disease
S. Hamada, T. Yagura, H. Ishii, T. Yoshimasa, T. Oonishi, H. Ishida and K. Tanaka

A case of painless thyroiditis associated with periodic paralysis

Results of drug treatment in Graves’ disease and non-immunogenic hyperthyroidism (disseminated autonomy)
W. Meng, S. Meng, R. Hampel, M. Ventz, E. Männchen and G. Kirsch

Drug treatment of thyrotoxicosis: Rapid response in iodine deficiency
T. Jones, A. Mithal, N. Kochupillai, B.V. Babu, M. Yamin, P.G. Sundara-Raman and M.M.S. Ahuja
THYROID GROWTH AND CANCER

Growth factors

Mitogenic effect of human serum on rat FRTL5 cell line and its relationship to serum concentration of insulin-like growth factor-I

T. Misaki, R.M.B. Maciel, D. Tramontano, A.C. Moses, A. Lombardi and S.H. Ingbar

Growth stimulating activity secreted by cultured human thyrocytes

K. Kubota, Y. Fukue, N. Sasaki, F. Takaku and H. Uchimura

Human chorionic gonadotropin stimulates iodide uptake, adenylate cyclase, and DNA synthesis in cultured rat thyroid cells

Iodide potentiates a growth-promoting activity of epidermal growth factor in human thyroid cells in monolayer culture

T. Okugawa, N. Ogawa, Y. Goto, S. Endo, H. Ohashi, M. Hakamata and M. Itoh

The role of TSH in mediating compensatory changes in the remaining thyroid lobe after hemithyroidectomy

G.A. Hedge, M. Michalkiewicz, J.M. Connors and L.J. Huffman

Malignant transformation of benign nodules of rat thyroid gland induced by diisopropanolnitrosamine (DIPN) an immunohistochemical study

A. Kawaoi, H. Ushiyama, Y. Katoh, H. Matsumoto and S. Moriyama

Thyroid tumor

Effects of castration before and after treatment with N-bis(2-hydroxypropyl)-nitrosamine (DHPN) on the development of thyroid tumors in rats treated with DHPN followed by phenobarbital

Human leucocyte antigens and immunoglobulin heavy-chain allotype in malignant lymphoma of the thyroid

Effect of estradiol (E$_2$) on calcitonin (CT) secretion and the finding of E$_2$ receptors in medullary thyroid carcinoma (MCT)

W. de la Torre, E. Rosell, J. Rodriguez, F. Ribera and A. Garcia Ameijeiras

Anaplastic thyroid carcinoma. An immunohistological study of 48 cases

S. Tamai, Y. Hosoda, K. Yakumaru and K. Ito

Fine-needle biopsy (FNB) and the outcome of benign thyroid nodules

S. Tseleni-Balafoutas, K. Katsouyanni, J. Kitsopanides and D.A. Koutras
Chromosomal pattern of offsprings of patients with differentiated thyroid cancer treated with radioiodine
587

Treatment of thyroid tumor

Treatment of thyroid adenocarcinoma with natural interferon (IFN)-gamma
 N. Aoki, Y. Ohno, H. Hiramatsu and I. Nagata
595
Mortality from papillary thyroid carcinoma: A case-matched control study of 56 lethal cases treated at one institution during a 25 year period
 I.D. Hay, S.A. Smith, J.R. Goellner, J.J. Ryan and W.M. McConahey
601
Natural course of benign solitary thyroid nodules and the effect of thyroxine therapy
 P.S.Y. Cheung, J.M.H. Lee and J.H. Boey
605

THYROID CELL BIOLOGY

Establishment of azaguanine resistant clones from FRTL5 and their application to hybridization with Graves’ thyroid cells and human fibroblast
 H. Sugawa, T. Mori and H. Imura
611
Polarized thyroid cells in monolayers cultured on collagen gel: Their cytoskeleton organization, iodine uptake and resting membrane potentials
 N. Takasu, S. Ohno and T. Yamada
615
Mechanism of action and presence in patients’ sera of anti-fucosyl GM1 ganglioside antibody
 S. Kosugi, T. Mori, M. Iwamori, Y. Nagai and H. Imura
619
Calcium dependent NADPH-oxidase in thyroid plasma membrane fraction produces superoxide anion as detected by diacetyldeuteroheme-substituted horseradish peroxidase
 Y. Nakamura, S. Ohtaki, R. Makino and Y. Ishimura
623
Thyroid stimulating antibody assayed by iodothyronine release into medium using porcine thyroid cells
 M. Saji, T. Toshio, M. Arai, Y. Tsuchiya, M. Miyagawa, O. Isozaki, K. Sato and K. Shizume
627
Effect of amiodarone on 127I mapping of mice thyroid follicle: Relative quantitation by analytical ion microscope (AIM)
 P. Fragu, C. Briancon and S. Halpern
631

THYROGLOBULIN

Structure and gene expression

Intrathyroidal metabolism of 35S-PTU and 35S-MMI in rats
 A. Taurog and M. Dorris
637
Fluorescence, hydrodynamic and immunological studies on human deglycosylated thyroglobulin (dTg)

S. Grimaldi, D. Pozzi, R. Verna, S. Lio, G. Napolitano, G. Giganti and F. Monaco

Active but inefficient hormone formation in a very highly iodinated and glycosylated protein(s) in hagfish thyroid

Y. Ohmiya, S. Suzuki and Y. Kondo

Epitopes common to thyroglobulin and acetylcholinesterase demonstrated at the molecular level

M. Ludgate, Q. Dong, C. Dinsart, P. Taylor and G. Vassart

Physicochemical and immunological properties of serum thyroglobulin from serum of healthy individuals

K. Saito, Y. Kohno, O. Tarutani, T. Ishikita, S. Sakata and H. Nakajima

Abnormal thyroglobulin in mice with inherited congenital goiter (cog/cog)

A.B. Schneider, M. Basche and W.G. Beamer

Defective expression of the thyroglobulin gene in familial congenital goiter

Activation of thyroglobulin gene by Graves' IgG in cultured human thyroid cells

A.W.C. Kung, J.P. Banga, K. Collison and A.M. McGregor

Serum level and measurement

Advantage of monoclonal antibody in determination of serum thyroglobulin enzyme immunoassay and histochemical staining

S. Noguchi, R. Kato, M. Adachi, N. Murakami and M. Toda

Serial determination of serum thyroglobulin concentrations in Graves' disease

Tumor marker antigens relating to thyroid follicular and parafollicular cell in various thyroid disorders

Serum thyroglobulin determination in thyroid cancer. A ten year experience

F. Pacini, C. Ceccarelli, R. Elisei, L. Grasso and A. Pinchera

Index of authors
SUPPRESSOR CELL FUNCTION IN THYROID AUTOIMMUNE DISEASE IS AFFECTED BY PLASMID ENCODED PROTEINS OF ENTEROPATHOGENIC YERSinia

B.E. WENZEL*; J. HEESEMANN**; S. GRAMMERSTORF*; P.C. SCRIBA*
Dept. Internal Medicine, Med. University Lübeck* and Inst. Microbiol. & Immunol., University Hamburg, FR Germany

INTRODUCTION

Autoimmune thyroid disease (AITD) and Yersinia enterocolitica (Y.e.) show striking crossreactivities of humoral and cellular immunity (1,2,3). Since Y.e. also has binding sites for thyrotrophin (TSH), the role Y.e. might play for the pathogenesis of AITD became a matter of interest. Recently it became evident that a pre-requisite of virulence in enteropathogenic Y.e.-infections is the presence of a 42-46 Mda plasmid which is rapidly lost after subcultivation (4). This plasmid mediates virulence functions such as serum- and phagocytosis resistance or cell adherence (5). The plasmid also encodes for at least 6 proteins against which humans and animals produce antibodies after Y.e.-infections. In calcium deficient culture medium these immunogenic release-proteins (RPs) are secreted in high quantities (6).

We recently reported that patients with AITD have high frequencies of RP-antibodies of IgM, IgA and IgG class as well as antibodies to a 25 kDa RP. This 25 kDa RP shows antigenic homologies with the TSH-receptor (7). Moreover, in Graves' disease (GD) antibodies to the 25 kDa RP and antibodies of IgA class emerge early at the onset of the disease but later than the TSH-receptor antibodies are detected in patients' blood (8). Within 12 months thereafter these antibodies vanish (9).

Since bacteria carrying the plasmid affect some properties of macrophages, i.e. cell adherence and phagocytosis resistance (5), we now investigate the functional effect the RPs and Y.e.-plasma membranes (YOP) might have on the immune surveillance in patients with AITD. In the present study we looked at the effect of RPs and of Y.e.-plasma membranes on lymphocyte stimulation with an unrelated antigen, tetanus toxoid antigen (TTA).

MATERIAL AND METHODS

Patients profile

Patients with Graves' hyperthyroidism and normal individuals who previously had been sensitized to TTA were assessed for RP antibodies. All GD patients (n=5) were RP antibody positive and had TSH-receptor antibodies. If their last TTA vaccination was more than 2 years ago, the individuals were re-sensitized with their consent.

Lymphocyte Fractions

Heparinized peripheral blood was submitted to Ficoll density centrifugation. The lymphocyte fraction (PBL) was suspended with sheep red blood cells (SRBC). The spontaneously formed rosettes (SRBC-R) were separated from non-T-cells on Ficoll and finally the SRBC were lysed with water. One part of PBLs was plated for 2 hours in plastic dishes with complete RPMI 1640 medium with 20% fetal calf serum (FCS). The adherent cells and the non-adherent lymphocytes were collected, counted and stored for the reconstitution experi-
ments. The yield of adherent macrophages (φM) varied from 2-4% of the initial PBLs.

Antigens
TTA was kindly provided by BEHRING SA, Marburg, FRG. The standard concentration used was 2Lf/ml TTA. Y.e.-RPs were separated from the calcium deficient medium by ultrafiltration (AMICON, PM 10). RPs were resuspended by sonification and passed through a 0.45μ sterile filter. The Y.e.-serotypes used were 0:3 and 0:9 strains. In lymphocyte cultures RPs were used at 100ng/ml final concentration. For the preparation of bacterial outer membranes (YOP), membranes were washed, extensively sonicated and passed through a 0.45μ filter. The protein which passed the filter was used at 10ng/ml final concentration.

When indicated, indomethacin (IM) was applied at 1-10ng/ml.

Lymphocyte cultures
Cells were cultured in 96 well plates, 5 wells per sample. The complete culture medium contained 10% FCS. Lymphocytes were used at 1.5x10^6 cells/ml. When indicated, 2% adherent φM were added. Lymphocytes were cultured for 6 days with TTA with or without adding: φM, RPs, YOPs, IM. For the last 24 hours 0.5μCi/ml 3H-thymidine (3H-TdR). Thereafter, cells were collected with an automated cellharvester applying the sequence water, TCA 10%, ethanol. Samples were counted in a scintillation counter and calculated as stimulation index (SI) ± standard deviation (SD). Stimulation or inhibition of the TTA response were expressed as % of the stimulation with TTA alone (TTA=100%).

RESULTS

Figure 1: Effect of Y.e.-plasmid encoded antigens on the TTA response of normal peripheral blood lymphocytes. RP Release Proteins, M-P YOP from Y.e.with/ Mφ without plasmid, φM macrophages, T-T lymphocytes, T-tetanus toxoid antigen.

Figure 1 shows how the RPs are suppressing the TTA response of normal PBLs (70%±4, n=5, p<0.05). YOP-fractions, however, do not affect the TTA stimulation, regardlessly of whether they derive from bacteria with plasmid (M-P) or without (Mφ). A similar pattern is
found with T-cells reconstituted with macrophages (M). In the absence of macrophages the RPs do not influence the TTA response of T-lymphocytes. In contrast, PBLs from patients with GD are not affected by RPs which only produce an insignificant reduction of the TTA response (Figure 2). The YOPs, however, produce an excess stimulation.

Figure 3 demonstrates that the suppressive potency of RPs is macrophage dependent. Depletion of PBLs from macrophages or administration of indomethacin (IM) abolishes the suppression of the TTA response with normal PBLs.

CONCLUSIONS

Our experiments show for the first time that the plasmid of enteropathogenic Y.e. does interfere through its protein products with the immune surveillance in normal individuals. The suppressive effect of RPs on the TTA response is exerted on the adherent macrophages. The effect on the T-cell proliferation appears to be mediated by Prostaglandins, since the cyclo-oxygenase blocker, IM, abolishes the suppression. Although phagocytosis resistance and cell adherence of enteropathogenic Y.e. are attributed to the plasmid encoded YOP1 antigen, our membrane fractions did not suppress the TTA response. In contrast, both, membranes from Y.e. with or without plasmid, stimulated lymphocytes from patients with GD, who were pre-sensitized by Y.e. (RP-antibody positive). This may indicate that the plasmid dependent (YOP1) suppressive effect is counteracted by the stimulatory properties of the membrane lipoproteins (10). The macrophages in GD appear not to react to the RPs, although phagocytosis resistance is plasmid encoded (5).

This could mean that macrophages are rendered inactive by RPs. Hence, bacteria can not be eliminated through phagocytosis and a latent or chronic infection might result. This scenario would be reflected by the persisting high prevalence of Y.e.-antibodies in GD-patients (8). In genetically committed individuals antigenic mimicry...
of RPs with thyroid antigens (7) would lead to the break of self-tolerance and the development of AITD. These are, of course, hypothetical considerations, since in our system the Y.e.-RPs are secreted under non-physiological conditions, i.e. calcium deficiency. Further investigations will show what significance RPs might have in vivo.

Figure 3: Effect of indomethacin on the RP mediated suppression of the TTA response with normal PBLs.

RP = Release Proteins
TTA = tetanus toxoid antigen; oM = macrophages
IM = indomethacin

REFERENCES

Supported by "Deutsche Forschungsgemeinschaft": SFB 232; He-1297/1-4
Index of authors

Adachi, M., 673
Adams, J.G., 109
Agarwal, R.K., 507
Aghini-Lombardi, F., 159
Agrawal, J.K., 307
Aguayo, J., 75
Ahmed, J., 297
Ahuja, M.M.S., 533
Akazawa, M., 403
Akazawa, S., 403
Akiyama, H., 439, 451
Akuwa, M., 423
Alkimin, M., 661
Alvarez, F.V., 197
Anelli, S., 121
Aoki, N., 595
Arai, M., 627
Arai, T., 443
Arikawa, K., 175
Armstrong, B., 319
Ashizawa, K., 19
Astudillo, J., 109

Babu, B.V., 533
Bai, Y., 349
Bajpai, H.S., 307
Bajpai, H.S., 307
Ballesterri, A., 487
Baizano, S., 159, 261, 487
Banga, J.P., 667
Barbosa, S., 661
Barlow, J.W., 349
Bartalena, L., 159, 261
Basche, M., 657
Bass, P., 209
Bauch, K., 325
Beamer, W.G., 657
Bennenga, S., 343
Bhatt, R.P., 307
Bleasdale, K., 137
Boey, J.H., 605
Bottazzo, G.F., 43
Boyages, S.C., 311, 315, 329
Brianc, C., 631
Brignone, C.M., 389
Brignone, J.A., 389
Buratti, L., 159
Buscema, M., 43
Buss, D., 455

Cahnmann, H.J., 343
Carayon, P., 121, 125
Catureglio, P., 121
Cavalieri, R.R., 397
Ceccharelli, C., 587, 685
Cesaretti, G., 587
Chakravarty, I., 469
Chan, J., 197
Chandra, O., 297
Chang, T.C., 293
Chang, Y.C., 411
Chapman, S.W., 109
Chen, F.W., 411
Chen, J.H., 491
Chen, X., 279
Chen, Y., 279
Chen, Z.P., 271, 407
Cheung, P.S.Y., 605
Chiovato, L., 209
Cho, B.Y., 213
Clark, F., 137
Collins, J., 311
Collison, K., 667
Connors, J.M., 555
Cooksey, R.C., 109
Cruse, J.M., 109

D'Abronz, F.H., 661
Das, D., 469
Davies, T.F., 37
De la Torre, W., 573
DeCherney, G.S., 13
Degroot, L.J., 129, 357
DeLuca, M., 25
Derwaal, M., 33
Deuss, U., 43
Deve, M., 137
Dinsart, C., 125, 449
Dong, L., 407
Dong, Q., 649
Dorris, M., 637
Duntas, L., 223, 481, 495

Eastman, C., 275, 311, 315, 319, 329, 431
Eguchi, K., 85, 95
Elisei, R., 685
Endo, S., 551
Endo, T., 181
English, D., 319
Ericsson, U.-B., 241
Matsumoto, T., 19
Matsunaga, M., 85
Matsuo, K., 19
Matsushita, Y., 175
Matsuzuka, F., 569
Matuki, H., 565
May, W., 431
McConahey, W.M., 601
McGregor, A.M., 667
McLachlan, S.M., 137
Medeiros-Neto, G., 661
Meng, S., 529
Meng, W., 325, 529
Merk, I., 481
Meydrech, E.F., 109
Michalkiewicz, M., 555
Michimata, T., 7, 423
Migita, K., 85, 95
Mignone, I.R., 389
Min, H.K., 213
Minami, S., 57, 565
Mirell, C.J., 547
Misaki, T., 193, 539
Mishra, V., 507
Mithal, A., 533
Mitsuhashi, T., 171
Miura, K., 145, 155, 163, 375, 447, 681
Miura, S., 149, 677
Miyagawa, M., 627
Miyakawa, T., 423, 569
Moffitt, S., 137
Momotani, N., 237, 249
Monaco, F., 641
Mori, M., 7, 423, 439
Mori, S., 459
Mori, T., 611, 619
Morii, H., 129, 249
Morita, T., 569
Moriyama, S., 559
Moses, A.C., 539
Mouloupolous, S.D., 283
Mouloupolou, D.S., 283
Murakami, M., 423
Murakami, N., 673
Murata, M., 237
Murata, Y., 339, 381
Murtas, M.L., 487
Nagai, K., 155, 163, 447
Nagai, Y., 619
Nagamune, T., 189
Nagasaka, A., 681
Nagata, I., 595
Nagataki, S., 19, 85, 95, 403, 465, 569
Nagatsu, I., 681
Nagayama, I., 353
Nagayama, Y., 19, 403
Naito, N., 133
Nakagawa, M., 115
Nakagawa, T., 459, 465
Nakajima, H., 133, 653
Nakajima, K., 435
Nakajima, Y., 189
Nakamura, H., 51
Nakamura, S., 145, 163, 375, 447
Nakamura, Y., 623
Nakano, Y., 57
Nakao, H., 85, 95
Napolitano, G., 641
Neufeld, D.S., 37
Nishi, Y., 357
Nishikawa, M., 477
Noguchi, S., 673
Noh, J., 249
Noma, S., 57
Ochi, Y., 189
Oda, S., 525
Ogawa, N., 551
Ogura, H., 189
Ohashi, H., 551
Ohmiya, Y., 645
Ohno, M., 129
Ohno, S., 615
Ohno, Y., 595
Ohshima, K., 439
Ohshima, M., 565
Ohtaki, S., 623
Ohtani, S., 681
Ohyama, T., 681
Okada, K., 237
Okamoto, K., 129
Okamoto, S., 565
Okamura, K., 115, 229
Okuda, K., 233
Okugawa, T., 551
Olivieri, A., 141
Onaya, T., 181
Oonishi, T., 521
Osborn, R.A., 275
Osumi, T., 357
Otsubo, T., 85, 95
Otsuka, H., 357
Ouyang, A., 333
Oyama, T., 517
Ozawa, Y., 245, 385
Pacini, F., 587, 685
Pang, X.P., 333, 547
Pekary, A.E., 547
Perpoli, F., 587
Péter, F., 167
Peter, H.-J., 33
Petrini, L., 159, 261
Pfeiffer, E.F., 223, 481, 495
Phillips, D., 419, 455
Piccolo, P., 121, 125
Pilosu, M., 159
Pinchera, A., 121, 125, 209, 587, 685
Piperingos, G.D., 283
Pittman, C.S., 397
Pozzi, D., 641
Preuss, T.M., 109
Propato, F., 661

Rajan, A., 507
Ravagnan, G., 141
Rees Smith, B., 137
Ribera, F., 573
Ricci, C.R., 389
Robbins, J., 343
Rodriguez, J., 573
Rohatgi, V.K., 499
Rosell, E., 573
Rosenthal, J., 223
Rotella, C.M., 197
Routeledge, P., 419, 455
Row, V.V., 75
Ruf, J., 121
Ryan, J.J., 601

Rajagopalan, C., 141
Ravagnan, G., 141
Rees Smith, B., 137
Ribera, F., 573
Ricci, C.R., 389
Robbins, J., 343
Rodriguez, J., 573
Rohatgi, V.K., 499
Rosell, E., 573
Rosenthal, J., 223
Rotella, C.M., 197
Routeledge, P., 419, 455
Row, V.V., 75
Ruf, J., 121
Ryan, J.J., 601

Sachdev, Y., 473
Sago, T., 57
Saito, K., 133, 155, 353, 653
Saito, S., 443
Saito, T., 181, 353
Saji, M., 627
Sakaguchi, Y., 565
Sakane, S., 233, 257
Sakata, S., 145, 155, 163, 375, 447, 653
Sakatsume, Y., 75, 677
Sakurada, T., 233
Sakurada, T., 443
Sakurai, S., 149, 677
Salabe, G.B., 141
Santini, F., 125. 209
Santisteban, P., 25
Sasak, N., 171, 203, 543
Sato, K., 115, 149, 229, 627, 677
Sato, M., 265
Sato, T., 423
Sawada, K., 237
Schneider, A.B., 657
Schrezenmeier, H., 481
Scriba, P.C., 105
Seo, H., 339, 381
Sfountouris, J., 283
Shah, P., 289
Sharma, A.K., 289
Shifrin, S., 25
Shima, H., 145
Shimizu, T., 385
Shimomura, C., 85, 95
Shimomura, Y., 439
Shimoyama, T., 565
Shimura, H., 181
Shin, S.J., 491
Shinoda, S., 681
Shizumura, T., 175
Shishiba, Y., 245, 385
Shizuma, T., 627
Shoda, Y., 439, 451
Shong, Y.K., 213
Shukla, A.K., 499, 507
Sica, V., 159, 261, 487
Singh, P.N., 297
Singh, R., 301, 499, 507
Singh, S., 301, 507
Singh, S.K., 307
Smith, S.A., 601
Souvatzoglou, A., 283
Spragg, B., 419
Srivastava, R.N.L., 499
Srivastava, S.K., 307
Stephenson, A., 137
Sterling, K., 361
Stockigt, J.R., 349
Studer, H., 33
Su, I.J., 81
Su, T.S., 333
Sugawa, H., 611
Sugawara, M., 257, 547
Sugeno, A., 89
Sugiura, M., 253
Sundara-Raman, P.G., 533
Suri, V., 301
Suzuki, H., 525
Suzuki, M., 415
Suzuki, S., 645
Tagami, T., 51
Takaku, F., 171, 203, 543
Takamatsu, J., 163, 233, 257, 503
Takasu, N., 615
Takeda, K., 257
Takeda, M., 415
Takeuchi, Y., 385
Takun, H., 145, 155, 163, 447
Tamai, H., 459, 465, 569
Tamai, S., 579
Tanaka, K., 521
Tanikawa, T., 149, 677
Tao, T.W., 217
Tao, Y., 279
Tarantino, E., 587
Targovnik, H., 661
Tarutani, O., 133, 155, 257, 653
Taurog, A., 637
Taylor, P., 649
Taylor, T., 13
Tezuka, H., 85
Toccafondi, R., 197
Toda, M., 673
Tokimoto, N., 155, 163, 447
Tokuda, Y., 193
Topliss, D.J., 349
Torizuka, K., 57
Toshiro, T., 627
Tramontano, D., 539
Tsai, J.H., 491
Tseleni-Balafoutas, S., 583
Tsukiyama, Y., 627
Tsujii, T., 565
Tsujimura, T., 681
Tu, Y.C., 81

Uchimura, H., 171, 203, 543
Ueda, S., 503
Ueki, Y., 85, 95
Ulrich, F.E., 325
Urabe, M., 149, 677
Ushiyama, H., 559

Valente, W.A., 197
Varela, V., 661
Vassart, G., 125, 649
Ventz, M., 529
Verna, R., 641
Vitti, P., 209
Volpé, R., 75, 99

Waite, K., 431
Wajchenberg, B., 661
Walfish, P.G., 393
Wang, S., 279
Watanabe, K., 525
Watanabe, T., 443
Wechsler, J.G., 495
Wei, C., 279
Weintraub, B.D., 13
Wenzel, B.E., 105
Wieshammer, S., 495
Wong, Z.-H., 311, 315, 329
Wu, C.C., 513

Wu, D., 275

Yachi, A., 265
Yagura, T., 521
Yahata, K., 525
Yakumaru, K., 579
Yamada, T., 357, 615
Yamaguchi, M., 423
Yamaguchi, T., 253, 439, 451
Yamaguchi, Y., 253
Yamakawa, J., 129
Yamamoto, K., 353
Yamamoto, M., 443
Yamamoto, S., 525
Yamashita, K., 71, 185
Yamashita, S., 19, 403
Yamauchi, K., 357
Yamin, M., 533
Yanagisawa, M., 149, 547, 677
Yang, S., 279
Yao, C.C., 81
Yasin, F., 319
Yi, Y.C., 311
Yokoi, N., 385
Yoshida, K., 443
Yoshikawa, N., 477
Yoshimasa, T., 521
Yoshimoto, M., 249
Yoshinaga, K., 443
Yoshinari, M., 115, 229
Yoshioka, N., 375
You, C., 315, 329
Young, E.T., 137
Yu, D., 329

Zaninovich, A.A., 389
Zeki, K., 525
Zhang, X., 279
Zhang, Z., 279
Zhao, J., 279
Zouhair Atassi, M., 375