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We present a method that is optimized to explicitly obtain all the constraints and thereby count the
propagating degrees of freedom in (almost all) manifestly first-order classical field theories. Our proposal
uses as its only inputs a Lagrangian density and the identification of the a priori independent field variables
it depends on. This coordinate-dependent, purely Lagrangian approach is complementary to and in perfect
agreement with the related vast literature. Besides, generally overlooked technical challenges and problems
derived from an incomplete analysis are addressed in detail. The theoretical framework is minutely
illustrated in the Maxwell, Proca and Palatini theories for all finite d ≥ 2 spacetime dimensions. Our novel
analysis of Palatini gravity constitutes a noteworthy set of results on its own. In particular, its computational
simplicity is visible, as compared to previous Hamiltonian studies. We argue for the potential value of both
the method and the given examples in the context of generalized Proca and their coupling to gravity. The
possibilities of the method are not exhausted by this concrete proposal.
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I. INTRODUCTION

It is hard to overemphasize the importance of field theory
in high-energy physics. Suffice it to recall that each and
every of the fundamental interactions we are aware of as
of yet—the gravitational, electromagnetic, strong and
weak interactions—are described in terms of fields.
Correspondingly, their dynamics are studied by means of
field theory. Most often, this is done by writing a
Lagrangian (or a Hamiltonian) density that is a real smooth
function of the field components (and their conjugate
momenta) and that is then subjected to the principle of
stationary action. It is customary to encounter the situation
where not all of the a priori independent quantities—field
components and/or conjugate momenta—are conferred a
dynamical evolution through the equations of motion. In
such a case, the field theory is said to be singular or
constrained. For instance, it is well known that all gauge
theories are singular.

In this work, we focus on singular classical field theories
that are manifestly first order and analyze them employing
exclusively the Lagrangian formalism. Nonsingular theo-
ries are also in (trivial) reach. Throughout the paper,
manifest first order shall stand for a Lagrangian that
depends only on the field variables and their first deriv-
atives. This implies the equations of motion are guaranteed
to be second order at most. Within this framework, we
present a systematic methodology that is optimized to
determine the number of field components that do propa-
gate, which we denominate physical and propagating
modes and degrees of freedom. To do so, we explicitly
obtain the constraints: specific functional relations among
the field variables and their time derivatives that avoid the
propagation of the remaining field components. Our
approach is complementary to the similarly aimed proce-
dures in [1–3] and is markedly distinct from, yet equivalent
to, that in [4].
Apart from the intrinsic relevance of understanding and

characterizing the constraint structure of those theories
satisfying our postulates, an ulterior motivation for this
investigation is to pave the way toward a consistent theory
building principle. Indeed, theoretical physics is currently
in need of new fundamental and effective field theories
that are capable of accounting for experimental data—the
strong CP problem, neutrino masses and the nature of the
dark sector, to mention but a few of the most relevant
examples. A recurrent and challenging obstacle in the
development of well-defined field theories consists in
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guaranteeing the correct number of physical modes. In this
context, most effort is devoted to avoiding the propagation
of Ostrogradsky instabilities [5]—additional unphysical
degrees of freedom, which we shall denote ghosts for
short. The general problem is delineated in [6] and
numerous realizations of this idea can be found, e.g.,
[7]. However, it is equally important to ensure the theory
is not overconstrained, i.e., there are fewer than required
propagating modes. Our subsequent prescription provides a
solid footing to this (double) end and is presented in a
comprehensible and ready-to-be-used manner, with the
goal of being useful to communities such as, but not
limited to, theoretical cosmology and black hole physics.
We describe how to convert the analytical tool here exposed
into a constructive one, but the concrete realization of this
idea is postponed to future investigations.
A specific materialization of the preceding general

discussion (and the one we later on employ to ground
our conversion proposal) is as follows. We recall that an
earlier version of the method here augmented and refined
already allowed for the development of the most general
nonlinear multivector field theory over four-dimensional
flat spacetime: the Maxwell-Proca theory [8,9]. There, the
inclusion of a dynamical gravitational field was beyond
scope. The present work provides a sound footing for the
study of singular field theories defined over curved back-
grounds. Thus, it paves the way for the ghost-free coupling
of Maxwell-Proca to gravity.
Bearing in mind the above future objective and in order

to clarify the formal presentation of the method, we
(re)analyze the simplest spin-one and -two theories by
means of our proposed procedure: Maxwell, Proca and
Einstein’s gravity. While the former two are manifestly first
order, the latter is not. Indeed, gravity, cast in the Einstein-
Hilbert way, is a second-order Lagrangian for the metric, up
to a noncovariant boundary term. As such, it exceeds the
domain of applicability of our approach. Favorably, this
property can be circumvented taking advantage of the
deluge of reformulations available for the theory. Among
them, we single out the Palatini formalism—see [10] for a
historical overview—which considers the metric and the
affine connection as a priori independent fields.
Our determination of the explicit constraints present in

Palatini, while not yielding novel information about the
theory, conforms a remarkable piece of work. Not only is it
carried out minutely and can be readily seen to be
computationally easier and shorter than the previously
performed Hamiltonian studies, e.g., [11–14], it also
provides the basis for a consistent inclusion of matter
fields. As such, we regard this comprehensive analysis as
an intrinsically valuable result.

A. Organization of the paper

In the following Sec. II, we introduce the Lagrangian
methodology we shall use throughout the paper. Our

approach is complementary to the existing literature. In
particular, it is equivalent to the recent proposal in [4], as
argued and exemplified in Sec. VA.
We proceed to employ it to analyze various well-known

theories: Maxwell electromagnetism, together with the
(hard) Proca action in Sec. III and the Palatini formulation
of gravity in Sec. IV. Their study is cornerstone to under-
stand the Maxwell-Proca theory [8,9] and paves the way to
its consistent coupling to gravity. This is discussed in
Sec. V B.
We conclude in Sec. VI, restating the instances when our

method is most convenient and emphasizing two crucial
aspects that are sometimes overlooked.

B. Conventions

We work on a d-dimensional spacetime manifold M of
the topologyM ≅ R × Σ. Namely, we assumeM admits a
foliation along a timelike direction. This is true for all
(pseudo-)Riemannian manifolds. For simplicity, we con-
sider Σ has no boundary. The dimension d is taken to be
arbitrary but finite, with the lower bound d ≥ 2. Spacetime
indices are denoted by the Greek letters ðμ; ν;…Þ and
raised or lowered with the metric gμν and its inverse gμν. We
employ the standard short-hand notation ∂μ ≔ ∂

∂xμ, where
xμ ≔ ðx0; x1;…; xd−1Þ≡ ðx0; xiÞ, with i ¼ 1; 2;…; d − 1,
are spacetime local coordinates, naturally adapted to the
foliation R × Σ. The dot stands for derivation with respect
to time, so that for local functions f∶ M → R, we write
_f ≔ ∂0f and f̈ ≔ ∂

2
0f. Brackets indicating symmetrization

and antisymmetrization of indices are defined as TðμνÞ ≔
ðTμν þ TνμÞ=2 and T ½μν� ≔ ðTμν − TνμÞ=2, respectively. As
is customary, summation over repeated indices should be
understood at all times.

II. EXPOSITION OF THE METHOD

We begin by putting forward a coordinate-dependent,
i.e., nongeometrical, Lagrangian approach to obtain all the
constraints present in a manifestly first-order classical field
theory. Needless to say, there exists a vast literature on the
topic: some standard references are [15]; but for its
elegance and concision, we particularly recommend [16].
This section serves us to fix the notation used throughout
the paper and provide a self-contained derivation of all our
results. We stress that, although the method is not new per
se, we are not aware of any reference where this material is
comprehensively presented in a ready-to-be-used manner
and keeping the technicalities at a bare minimum, as we
do here.
Our only assumptions shall be the principle of stationary

action and finite reducibility. The first assumption is rather
obviously a very mild one, but it is worth noting that this is
not an essential requirement; for instance, see [17]. We will
explain the second assumption shortly. For the time being,
it suffices to note that, to our knowledge, the only known
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example of a classical field theory (of the kind here
considered) not satisfying it is bosonic string field theory,
both in its open [18] and closed [19] variants.
Given a Lagrangian density L within the above postu-

lates, our analysis yields the constraint structure character-
izing triplet

tðNÞ ≔ ðl; g; eÞ: ð2:1Þ

We stress that this is a purely Lagrangian statement, since it
collects the outcome of our subsequently proposed purely
Lagrangian method. Here, N is the number of a priori
independent field variables in terms of which L is written.
As such, N is equal to the dimension of the theory’s
configuration space, which we shall shortly introduce. The
other numbers l, g and e are defined below.
On shell, we obtain l: the total number of functionally

independent Lagrangian constraints. Our analysis elabo-
rates on the iterative algorithm presented in [1] and
employed in Appendix A of [8]. It is the suitable gener-
alization to field theory of the coordinate-dependent
method used in [2] for particle systems, which is in turn
based on [20]. The nontrivial geometric extension to field
theory of [2] was carried out in [3], where the discussion
was extended to the treatment of off-shell constraints as
well. Thus, our discussion is complementary to all these
references [1–3].
Off shell, we shall obtain g and e: the number of gauge

identities and effective gauge parameters, respectively.
Gauge identities are to be understood in the usual sense,
as (differential) relations between certain functional varia-
tions of the action that identically vanish. By effective
gauge parameters we mean the number of independent
gauge parameters plus their successive time derivatives that
explicitly appear in the gauge transformations. We deter-
mine g and e for theories where the gauge transformations
are known a priori and provide suitable references that deal
with the treatment of theories where the gauge trans-
formations are unknown beforehand. Notice that knowl-
edge of the gauge transformations for the field theory is not
a necessary assumption, unlike the principle of stationary
action and finite reducibility. However, this information
considerably shortens the analysis and, being a feature of
all the theories we shall explicitly consider, we have opted
for only developing in detail such case.
Given the triplet tðNÞ, the physical degrees of freedom

ndof in the theory under study can be counted, employing
the result derived in [2]:

ndof ¼ N −
1

2
ðlþ gþ eÞ: ð2:2Þ

We will refer to (2.2) as the master formula, the way the
authors of [2] themselves do. The remarkable feature about
the previous counting is that it is purely Lagrangian, as
opposed to the usually employed Hamiltonian formula

ndof ¼ N − N1 −
1

2
N2; ð2:3Þ

attributed to Dirac. Here, ðN1; N2Þ denote the number of
first- and second-class constraints, respectively. As a
reminder, first- (second-) class constraints are those which
do (not) have a weakly vanishing Poisson bracket with all
of the constraints present in a given theory.
Needless to say, the proven equivalence between the

Lagrangian and Hamiltonian formulations of classical
theories [1,21] is a most celebrated body of work. The
two given prescriptions for the degree of freedom count
in (2.2) and (2.3) are a particular materialization of this
equivalence, which was further exploited in [2] to develop a
one-to-one mapping between the Lagrangian parameters
ðl; g; eÞ and their Hamiltonian counterparts:

l ¼ N1 þ N2 − NðPÞ
1 ; g ¼ NðPÞ

1 ; e ¼ N1; ð2:4Þ

where NðPÞ
1 stands for the number of so-called primary first-

class constraints, those first-class constraints that hold true
off shell. Using this information, the triplet tðNÞ defined in
(2.1) can be readily seen to admit the following equivalent
Hamiltonian parametrization:

tðNÞ ¼ ðNðPÞ
1 ; N1; N2Þ: ð2:5Þ

An important comment is in order here. Our sub-
sequently proposed Lagrangian approach to determine
tðNÞ does not guarantee ndof ∈ N ∪ f0g. This means that,
even though all l, g and e in (2.2) are integers by definition,
their sum need not be an even number. The reason is
simple: we put forward an analytical tool, not a mechanism
to detect (or even correct) ill-posed theories. If, for some
Lagrangian density L, a half-integer number of physical
degrees of freedom is found upon correctly employing our
prescription for tðNÞ together with (2.2), then it must be
concluded that the theory is unphysical. The (possibly
nontrivial) modifications required on L for it to propagate
an integer number of physical modes are a question beyond
the scope of this manuscript.1

For the renowned examples in Secs. III and IV, we
shall minutely determine the triplet tðNÞ defined in (2.1) and
then use (2.2) to explicitly count physical modes. As such,
we shall perform various countings solely in Lagrangian
terms. Afterward, we shall (partially) verify our results
by comparing them to a representative subset of the
Hamiltonian-based literature via (2.3) and (2.4). Addi-
tionally, the examples of Sec. III shall be worked out in
two different (but dynamically equivalent) Lagrangian
formulations, based on distinct values N and N ≠ N of

1This should not alarm the reader. The same is true on the
standard Hamiltonian formalism. In (2.3), N2 is not necessarily
an even number, unless demands are made on the Hamiltonian.
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the dimension of the configuration space. We will then see
that, even though the constraint structure characterizing
triplets do not coincide, the number of propagating modes
ndof does match for both descriptions:

tðNÞ ≔ ðl; g; eÞ ≠ tðNÞ ≔ ðl; g; eÞ;

N −
1

2
ðlþ gþ eÞ ¼ ndof ¼ N −

1

2
ðl þ gþ eÞ: ð2:6Þ

This is because ndof is a physical observable, while
ðN; l; g; eÞ are not. Obviously, the same situation arises
in the Hamiltonian picture as well, which we briefly
illustrate at the end of Sec. IV.
In the following, we explain how to obtain the constraint

structure characterizing triplet tðNÞ in (2.1).

A. On-shell Lagrangian constraints

Let C be the configuration space of a classical field theory.
As usual, we take C to be a differentiable Banach manifold
whose points are labeled by N real field variables QA:

C ¼ spanfQAg; A ¼ 1; 2;…; N: ð2:7Þ
We stress that A comprises all possible discrete indices that
the real field variables have. For instance, if one considers
Yang-Mills theory, A consists of both spacetime indices and
color indices. If onewishes to entertain complexYang-Mills,
then the real and imaginary parts of each and every Yang-
Mills field component must be counted separately in A. So,
for SUð2Þ complex Yang-Mills theory in four spacetime
dimensions, we would have that N ¼ 2ð4 · 3Þ ¼ 24. Notice
that QA are real smooth functions of spacetime QA ¼
QAðxμÞ, but we will suppress this dependence all along,
so as to alleviate notation. Thus, our notationmatches that in
[3] and leaves out the spacetime argument compared to the
condensed notation introduced by DeWitt in [22] and
extensively used in the literature, e.g., [23]. Then, TC is
the tangent bundle of C, which is spanned by fQA; _QAg. We
refer to ðQA; _QA; Q̈AÞ as the generalized coordinates, veloc-
ities and accelerations of the theory, respectively.
As already stated and common to most field theories, we

assume that the dynamics are derivable from a principle of
stationary action. In other words, the Euler-Lagrange
equations EA¼! 0 for the field theory follow from the
requirement that the action functional

S ¼ S½QA� ¼
Z
M

ddxL ¼
Z

t2

t1

dx0
Z
Σ
dd−1xL ð2:8Þ

remains stationary under arbitrary functional variations
δQA ¼ δQAðx0; xiÞ that vanish at times t1 and t2 on the
spatial slice Σ:

δS ¼ δS
δQA δQ

A ≡
Z
M

ddxEAδQA¼! 0; ð2:9Þ

with δQAðt1; xiÞ ¼ 0 ¼ δQAðt2; xiÞ. The above variational
derivative is defined as

EA ≔ ∂μ

�
∂L

∂ð∂μQAÞ
�
−

∂L
∂QA ¼

!
0; ð2:10Þ

where the latter equality is the on-shell demand. This on-
shell requirement commences the iterative algorithm we
shall employ to determine the Lagrangian constraints pre-
sent in the theory. Here, L ¼ L½QA� is the Lagrangian
density. Observe that we have already restricted attention to
manifestly first-order field theories; i.e., we consider L
depends only on QA and its first derivatives ∂μQA. The
study of higher-order field theories2—where L explicitly
depends on ∂

n
μQA, with n ≥ 2—lies beyond the scope of

our present investigations. We omit the possible depend-
ence of L on nondynamical field variables, such as the
spacetime metric in any special relativistic theory. The said
dependence can be easily incorporated to our analysis, but
it does not arise in the theories we discuss in this work.
An important remark on notation follows. As introduced

in (2.7), QA is an ordered set of a priori independent field
variables; it is neither a row nor a column vector. The same
is true for EA in (2.10): this is the ordered set of Euler-
Lagrange equations for the QA field variables, not a vector.
We have opted for a notation where the set indices are
always assigned the same position when ascribed to a
certain ordered set (for instance, upper position for the field
variables QA and lower position for the Euler-Lagrange
equations EA). The assignation is such that the Einstein
summation convention employed throughout the paper is
apparent. The only quantities that will show up in this
section which have a definite character within matrix
calculus are the following. The various Hessians, their
Moore-Penrose pseudoinverses and the Jacobians are all
matrices. The null vectors of the Hessians are row vectors.
Their transposed column vectors also show up. The row or
column character of the ordered sets is then straightfor-
wardly fixed according to dimensional analysis in all
formulas.
As a practical starting point for our iterative method, it is

convenient to recast the Euler-Lagrange equations (2.10) in
the form

2One may be tempted to evade the higher-order character of a
theory via the Ostrogradsky prescription, i.e., introducing addi-
tional generalized coordinates in a manner that results in a
manifestly first-order Lagrangian density. Such alteration of
TC must be compensated through the inclusion of Lagrange
multipliers that preserve the equivalence to the original setup. To
do so consistently, one needs to either verify the so-called
Ostrogradsky nonsingularity condition or exploit alternative
methods, as detailed in [24]. In view of these nontrivial subtleties,
we restrict ourselves to the study of manifestly first-order
theories.
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EB ¼ Q̈AWAB þ αB¼! 0; ð2:11Þ

where we have defined the so-called primary Hessian
WAB ≔ ∂ _A∂ _BL, as well as

αB ≔ ð∂ _B∂
i
ALþ ∂

i
B∂ _ALÞ∂i _QA þ ð∂iB∂jALÞ∂i∂jQA

þ ð∂iB∂ALÞ∂iQA þ ð∂ _B∂ALÞ _QA − ∂BL: ð2:12Þ

To alleviate notation, we have introduced the following
shorthand:

∂ _A ≔
∂

∂ _QA ; ∂
i
A ≔

∂

∂ð∂iQAÞ ; ∂A ≔
∂

∂QA ; ð2:13Þ

which we shall extensively employ henceforth.
We focus on singular (or constrained) field theories

next.3 That is, we look at field theories described by a
Lagrangian density whose primary Hessian has a vanishing
determinant detðWABÞ ¼ 0. This means that the rank of
WAB (the number of linearly independent rows or columns)
is not equal to its dimension N; instead, it is reduced.
By definition it follows that, for singular Lagrangians,

the N number of Euler-Lagrange equations in (2.11) can be
split into two types. First, primary equations of motion:
these are the R1 ≔ rankðWABÞ number of on-shell
second-order differential equations that explicitly involve
the generalized accelerations Q̈A. Second, primary
Lagrangian constraints: these are the M1 ≔ dimðWABÞ −
rankðWABÞ ¼ N −R1 number of on-shell relations
between the generalized coordinates QA and their gener-
alized velocities _QA. We stress an explicit dependence on
_QA (QA) is not necessary for the primary Lagrangian
constraints; they can be relations between the QA’s
( _QA’s) only. Consistency requires that these constraints
are preserved under time evolution.
In the following, we obtain the said constraints and

ensure the consistency of the field theory by means of an
iterative algorithm. We refer to each iteration in the
algorithm as a stage. In every stage, the above specified
notions of equations of motion and Lagrangian constraints
will arise. The algorithm closes when the preservation
under time evolution of all Lagrangian constraints is
guaranteed. Equivalently, when all nth stage Lagrangian
constraints are stable, for some finite integer n ≥ 2. An nth
stage Lagrangian constraint is said to be stable if its time
derivative does not lead to a new (i.e., functionally
independent) Lagrangian constraint in the subsequent
(nþ 1)th stage. Below, we explain in detail the different

manners in which the necessary stability of the functionally
independent Lagrangian constraints may manifest itself.

1. Primary stage

In order to determine the subset of M1 number of
primary Lagrangian constraints out of the set of all N
number of Euler-Lagrange equations in (2.11), we first
introduce a set of M1 number of linearly independent null
vectors γI associated to the primary Hessian WAB:

ðγIÞAWAB ¼ 0; I ¼ 1; 2;…;M1: ð2:14Þ

We require that these form an orthonormal basis of the
kernel of WAB, which amounts to imposing the normali-
zation condition

ðγIÞAðγJÞA ¼ δI
J; where γI ≔ ðγIÞT; ð2:15Þ

with T denoting the transpose operation. We stress that,
even though in all the examples considered in Secs. III
and IV we have chosen null vectors that are constant, this is
not a required feature for our formalism. Rather, this is just
a possible choice in all the given examples that has been
opted for due to its computational convenience. Only the
normalization (2.15) is an essential requirement for the null
vectors. In full generality, the null vectors of all stages can
have an explicit dependence on the field variables QA and
their first derivatives ∂μQA.
Then, the M1 primary Lagrangian constraints are

obtained by contracting the Euler-Lagrange equations EA
in (2.11) with the above null vectors.4 Namely, by perform-
ing the contraction with γI:

φI ≡ ðγIÞAEA ¼ ðγIÞAαA¼! 0: ð2:16Þ

Notice that the last equality is a direct consequence of the
on-shell demand in (2.10) or equivalently in (2.11). Hence,
the primary Lagrangian constraints are on-shell constraints
by definition. One can also see this through equivalence to
the more familiar Hamiltonian analysis. It is common
knowledge, e.g., [25], that primary Lagrangian constraints
relate to secondary constraints in the Hamiltonian frame-
work, which are on-shell constraints by definition.
The primary Lagrangian constraints in (2.16) need not be

functionally independent from each other.5 When they are,
the field theory is said to be irreducible at the primary
stage. Otherwise, the theory is reducible at the primary

3We leave out nonsingular field theories because the sub-
sequent analysis is redundant for them: in this case
detðWABÞ ≠ 0, which implies l ¼ 0 and one can directly move
on to Sec. II B. Within our framework, scalar field theories in flat
spacetime constitute a prominent example of nonsingularity.

4The complementary subset of R1 ¼ N −M1 primary equa-
tions of motion can be obtained by contracting EA with the basis
vectors of the image of WAB. Here, we concentrate only on the
Lagrangian constraints.

5This is in contrast to the primary equations of motion, which
are guaranteed by construction to be functionally independent
among themselves.
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stage. Before we carry on, we must restrict attention to the
functionally independent primary Lagrangian constraints

φI0¼! 0, where I0 ¼ 1; 2;…M0
1 ≤ M1. Their number is given

by M0
1 ¼ rankðJIΛÞ, where the Jacobian matrix JIΛ is

defined as

JIΛ ≔
∂φI

∂XΛ ; XΛ ¼ fQA; _QAg: ð2:17Þ

This test can be easily related to the standard Hamiltonian
framework: it is the pullback of the phase space regularity
conditions in [26]. For the theories we are concerned with
in this work, we verifyM0

1 ¼ M1. Hence, all of the primary
Lagrangian constraints in (2.16) must be considered in the
following.6

The vanishing of all the functionally independent pri-
mary Lagrangian constraints defines the so-called primary
constraint surface TC1, which is a subspace of the moduli
space TC0 of the field theory:

TC1 ≔ fðQA; _QAÞ ∈ TC0jφI ¼ 0g ⊆ TC0;

TC0 ≔ fðQA; _QAÞ ∈ TCjEA ¼ 0g ⊂ TC: ð2:18Þ
For brevity, we write

φI ∶≈
!

1
0: ð2:19Þ

Equalities that hold true in TC1 (and not in the entire of the
moduli space) shall be denoted≈

1
and referred to as primary

weak equalities.
As previously noted, consistency requires us to not only

enforce the primary Lagrangian constraints (2.19), but also
to ensure that these are preserved under time evolution.
Explicitly, ẼJ ≔ _φJ≈

!

1
0. This requirement starts the second

iteration in the algorithm.

2. Secondary stage

The freshly introduced demands ẼJ ≈
!
10

7 are known as
the secondary Euler-Lagrange equations. In order to split

them into secondary equations of motion and secondary
Lagrangian constraints, it is convenient to write them as

ẼJ ¼ Q̈AðγIÞAW̃IJ þ α̃J≈
!

1
0; ð2:20Þ

where we have defined

W̃IJ ≔ ðγIÞA∂ _AφJ;

α̃J ≔ ð−αAMAB
∂ _B þ _QA

∂A þ ð∂i _QAÞ∂iAÞφJ: ð2:21Þ

We point out that, in obtaining this expressions, we have
employed the on-shell statement (2.11), so as to eliminate
from (2.20) as much dependence on the generalized
accelerations Q̈A as possible.8 Here, W̃IJ is the so-called
secondary Hessian and the auxiliary matrix MAB is the
Moore-Penrose pseudoinverse (as detailed in [27]) of the
primary Hessian. The latter is ensured to always exist and
be unique. Its defining relations are9

MABWBC−δACþðγIÞCðγIÞA¼0; MABðγIÞB¼0: ð2:22Þ

To gain some more intuition into MAB, we note that it
constitutes a generalization of the standard matrix inverse.
It is introduced so that WABMBC and MABWBC are
orthogonal projections onto the image of WAB and MAB,
respectively. For regular square matrices, the Moore-
Penrose pseudoinverse is equivalent to the standard matrix
inverse: M ¼ W−1 iff detðWÞ ≠ 0.
If rankðW̃IJÞ¼dimðW̃IJÞ¼M1, no secondary Lagrangian

constraints arise and thus the primary Lagrangian constraints
are stable. In this case, we say that the consistency of the
primaryLagrangian constraints (2.19) under time evolution is
dynamically ensured, by a set ofM1 (necessarily functionally
independent) secondary equations of motion ẼJ ¼ ẼJðQ̈AÞ.
As a result, the total number of functionally independent
Lagrangian constraints present in such field theories is
l ¼ M0

1. However, this is not what happens in the theories
of our interest.
Generically, the rank of the secondary Hessian is smaller

than its dimension. Consequently, M2 ≔ dimðW̃IJÞ −
rankðW̃IJÞ of the equations in (2.20) are secondary
Lagrangian constraints, whose consistency under time
evolution must be ensured. This is done exactly as in

6If M0
1 < M1 and the functionally independent constraints are

not straightforwardly identifiable, more work is required. Indeed,
there exists an iterative algorithm to extract the functionally
independent subset of Lagrangian constraints from (2.16). This is
explained in Sec. II D of [3] and subsequently exemplified. When
the said algorithm requires a(n) finite (infinite) number of
iterations, we face a(n) finitely (infinitely) reducible theory. As
already pointed out, the procedure here described requires, at the
very least, the closure of the reducibility algorithm to proceed.
Thus, infinitely reducible theories cannot be studied with the
present formalism. We restate bosonic string field theory [18,19]
is the only physically relevant example of an infinitely reducible
theory we are aware of.

7For clarity, we will use a notation where tilde quantities
belong to the secondary stage and hat quantities pertain to the
tertiary stage. This will be particularly helpful in Sec. IVA.

8In the equivalent and more familiar Hamiltonian approach,
this corresponds to solving as many generalized velocities as
possible in terms of generalized coordinates and conjugate
momenta: _QA ¼ _QAðQA;ΠAÞ.

9In [1], the first relation is referred to as the completeness
relation. There, both equations in (2.22) are further used to obtain
the explicit form of the functionally independent secondary
equations of motion. Unlike at the primary stage, functional
independence is not guaranteed by construction. As in the first
iteration earlier on, our interest lies in the form of the secondary
Lagrangian constraints exclusively.
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the primary stage before. In other words, the analysis from
Eq. (2.14) onward is to be repeated.
In details, the M2 number of linearly independent null

vectors γ̃R of the secondary Hessian must be obtained:

ðγ̃RÞIW̃IJ ¼ 0; R ¼ 1; 2;…;M2; ð2:23Þ

and chosen so that the normalization condition

ðγ̃RÞIðγ̃SÞI ¼ δR
S; with γ̃S ≔ ðγ̃SÞT; ð2:24Þ

is satisfied. Then, these must be contracted with the
secondary Euler-Lagrange equations in (2.20) to yield
the secondary Lagrangian constraints in the theory:

φ̃R ≡ ðγ̃RÞIẼI ¼ ðγ̃RÞIα̃I≈
!

1
0: ð2:25Þ

If the secondary Lagrangian constraints vanish when
evaluated on the first constraint surface φ̃R≈

1
0, then the

total number of functionally independent Lagrangian con-
straints is l ¼ M0

1. Again, this is not what happens in (all of)
the theories of our interest.
As a consequence, we must proceed with the algorithm.

First, we need to obtain the (subset of) φ̃R’s which are
functionally independent among themselves when evalu-
ated on the first constraint surface. Their numberM0

2 ≤ M2

is given by

M0
2 ¼ rankðJ̃RΛÞ; where J̃RΛ ≔

∂

∂XΛ ðφ̃RjTC1Þ ð2:26Þ

and XΛ was introduced in (2.17). When M0
2 ≠ 0, we verify

M0
2 ¼ M2 for the theories we shall consider—so that they

are irreducible theories at the secondary stage. Thus, all
secondary Lagrangian constraints in (2.25) must be con-
sidered subsequently.10

The vanishing of the functionally independent secondary
Lagrangian constraints defines the secondary constraint

surface TC2 ⊂ TC1, which we write as φ̃R∶≈
!

2
0. Equalities

holding true in TC2 shall be denoted ≈
2
and referred to as

secondary weak equalities. It should be obvious that the
secondary Lagrangian constraints are on-shell constraints
by definition.

3. Tertiary stage

Let ŴRS ≔ ðγ̃RÞIðγIÞA∂ _Aφ̃S be the tertiary Hessian.
When the tertiary Hessian’s rank does not match its
dimension, the consistency under time evolution of
M3 ≔ dimðŴRSÞ − rankðŴRSÞ number of the functionally

independent secondary Lagrangian constraints is not
(dynamically) guaranteed. Instead, it must be enforced
through a third iteration of the just described procedure. We
stress that it is essential to close the iterative algorithm in
order to find the correct number l of functionally inde-
pendent Lagrangian constraints.
For completeness, we provide the explicit expressions

for all relevant quantities at some arbitrary stage of the
algorithm in the Appendix. These have not appeared in the
literature, as far as we know.

4. Closure of the algorithm

In full generality and as already anticipated, our algo-
rithm stops when all functionally independent Lagrangian
constraints have been stabilized. This can happen in either
of the following different manners:

(i) Dynamical closure.—Firstly, it may happen when
Mn ≔ dimðWðnÞÞ − rankðWðnÞÞ ¼ 0 for some nth
stage Hessian WðnÞ, with n ≥ 2. This implies that
no Lagrangian constraints arise at the nth stage,
since in this caseWðnÞ has full rank and hence admits
no null vector. Here, the consistency under time
evolution of the previous stage’s functionally inde-
pendent Lagrangian constraints φðn−1Þ is dynami-
cally ensured, i.e., through the (necessarily
functionally independent) nth stage equations of
motion. In other words, the functionally independent
φðn−1Þ’s are stable. This closure of the algorithm is
exemplified in Sec. III B.

(ii) Nondynamical closure.—Secondly, it may happen
when Mn > 0, but M0

n ¼ 0, again with n ≥ 2.
This implies that the nth stage functionally inde-
pendent Lagrangian constraints φðnÞ’s do not define
a new constraint surface, so that TCn ≡ TCn−1. We
differentiate two algebraically distinct scenarios:
(ii)(a) The φðnÞ’s vanish identically in the (n − 1)th

constraint surface: φðnÞ ≋
n−10. Such φðnÞ’s are

known as Lagrangian identities. Clearly,
Lagrangian identities are trivially stable.
The example of Sec. III A illustrates this
closure of the algorithm.

(ii)(b) The φðnÞ’s functionally depend on the
(n − 1)th stage functionally independent
Lagrangian constraints. Schematically,
φðnÞ ≈

n−2
ðf1 þ f2∂iÞφðn−1Þ, where ðf1; f2Þ

are arbitrary real smooth functions of the
generalized coordinates and velocities
ðQA; _QAÞ, such that ðf1; f2Þ are naturally
defined in TCn−2. Then, it readily follows
that φðnÞ ≈

n−1
0 and it is obvious that such

Lagrangian constrains are stable. This clo-
sure happens in both of the examples
in Sec. IV.

10When 0 < M0
2 < M2, the iterative algorithm referenced in

footnote 6 must be employed to extract the functionally inde-
pendent secondary Lagrangian constraints from (2.25).
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In all the detailed cases, the total number of functionally
independent Lagrangian constraints is given by

l ¼
Xn−1
a¼1

M0
a; ð2:27Þ

where M0
a counts the number of functionally independent

ath stage Lagrangian constraints and n ≥ 2. We are not
aware of any physically relevant example of a field theory
where n is infinite.

5. Noteworthy considerations

We restate that it is of utmost importance to close the
iterative procedure in order to determine l. If the algorithm
is not closed (only some or none of the constraints are
stabilized), one can only give a lower bound on l. While
this may be enough to ensure the absence of Ostrogradsky
instabilities [5] in the field theory, it is insufficient to
guarantee the propagation of a definite number of degrees
of freedom. In such case, one can only infer an upper bound
on ndof . This observation is further discussed and exem-
plified in Sec. VI.
We also point out that, in general, the different stabili-

zations of the functionally independent Lagrangian con-
straints that we listed are all present in a given field theory.
Namely, some functionally independent Lagrangian con-
straints in the theory are stabilized dynamically, while
others are stabilized nondynamically. This is indeed what
happens in our examples of Secs. III C and IV.
Besides, we warn the readers against deceiving them-

selves regarding the ease of the exposed iterative algorithm.
Even though our methodology is sound and rigorous and its
logic is easy to follow, there can be no misapprehension
as to the algebraic complexity of its implementation in
concrete theories, most significantly those involving grav-
ity. From this point of view, the examples in Sec. III are
uninvolved, while that in Sec. IVA is quite challenging.
The example in Sec. IV B constitutes an intermediate
difficulty case. We comment further on this important
(from a practical point of view) topic in Sec. VI.
At last, we remark that the algorithm just exposed does

not break covariance. Namely, if a field theory within our
postulates is covariant, its study under the outlined iterative
methodology will preserve this feature. Nonetheless, a
suitable space and time decomposition of the a priori
independent field variables and an evaluation of the
Lagrangian constraints in the various constraint surfaces
will generically break manifest covariance. This should not
be confused with the loss of covariance.

B. Off-shell gauge identities

We now obtain g and e, the two remaining numbers in
the triplet tðNÞ defined in (2.1) of our interest. To begin with,
we notice that in the principle of stationary action (2.9), we
have so far only considered that δS ¼ 0 follows from the

EA piece. However, δS ¼ 0 may also follow from the δQA

piece. Subsequently, we briefly review the latter scenario:
how the vanishing of δS may be a consequence of off-shell
identities stemming from a strict symmetry of the action.
This kind of symmetry—gauge invariance—is only mani-
fest through specific field variations δθQA, in contrast to
our previous consideration in Sec. II A of arbitrary δQA’s.
Correspondingly, we will differentiate between δθS and δS
as well.
There are different methods to obtain the said off-shell

identities, but it is not our goal to provide an overview of
them here. Our subsequent discussion summarizes and
employs the approach put forward in [28] and later on
adapted to exhibit manifest covariance in [14]. This
adaptation makes it straightforward to apply [28] to any
manifestly first-order classical field theory, which is our
framework.
Consider the field transformations QA → QA þ δθQA.

Let the changes δθQA be of the form

δθQA ¼
Xn
s¼0

ð−1Þsð∂μ1∂μ2…∂μsθ
βÞðΩβ

AÞμ1μ2…μs ; ð2:28Þ

where n ∈ N ∪ f0g, β is an (possibly collective) index that
is to be summed over and the θβ’s and Ωβ

A’s are known as
the gauge parameters and gauge generators of the trans-
formation, respectively. The θβ’s are real smooth functions
of the spacetime coordinates xμ, while theΩβ

A’s are defined
in TC and as such are real smooth functions of ðQA; _QAÞ.
The former are unspecified, while the latter are to be
determined. Introducing the above in (2.9) and operating,
one finds that

δθS ¼
Z
M

ddxθβϱβ;

ϱβ ≔
Xn
s¼0

∂μ1…∂μs ½EAðΩβ
AÞμ1μ2…μs �: ð2:29Þ

If, under the field variations (2.28) for some Ωβ
A’s, the

action remains invariant δθS≡ 0, then we have that

ϱβ ≡ 0 ð2:30Þ

holds true off shell (i.e., without making use of EA¼! 0). In
such a case, (2.28) and (2.30) are known as the gauge trans-
formations and gauge identities in the theory, respectively.
Given (2.28), g is equal to the number of different θ

parameters there present. Equivalently, g is the number of
linearly independent gauge identities (2.30). On the other
hand, e is equal to the total number of distinct parameters
plus their successive time derivatives ðθ; _θ; θ̈;…Þ that
appear in (2.28). Obviously, e ≥ g.
The recursive construction of the gauge generators

Ωβ
A has been a subject of vivid interest for decades.
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The approach in [29] is perhaps themost befitting to our own
exposition, requiring only a suitable adaptation fromparticle
systems to manifestly first-order field theories that is devoid
of conceptual subtleties. We shall not present the corre-
sponding discussion here because, for the theories at hand,
the explicit form of the gauge transformations is already
known. This a priori knowledge allows us to effortlessly
infer the generators Ωβ

A in all the subsequent examples.
We stress that the determination of g and e is possible

and has been made systematic in theories for which the
gauge transformations are unknown from the onset. The
calculations in such theories are more involved, but there is
no theoretical obstacle that has to be overcome. To illustrate
this point, the reader can consult [28] for the explicit
derivation of the gauge generators in Yang-Mills theory and
both the metric and Palatini formulations of general
relativity, by means of the formalism put forward in [29].
For the ease of the reader, we have schematically

depicted the main line of reasoning behind this Sec. II
in Fig. 1.

III. SIMPLE EXAMPLES:
VECTOR FIELD THEORIES

This section is devoted to the study of some of the
constraint structure characterizing triplets tðNÞ that are

possible for the theories (within the framework of Sec. II)
describing the dynamics of a single vector field. Recall there
are only two distinct types of vector fields that one can
entertain classically: massless and massive. For simplicity,
wewill restrict to realAbelianvector fields and focus on their
most elementary actions: Maxwell electromagnetism and
the (hard) Proca theory, respectively. We shall consider two
equivalent formulations of each of these theories, based on
different numbersN andN ≠ N ofa priori independent field
variables. Our forthcoming detailed analyses are based on
the purely Lagrangian method described in the previous
Sec. II and thus serve to illustrate it.
Besides and as we shall explain in Sec. V B, our forth-

coming elementary calculations turn out to be enough to
understand the complete set of manifestly first-order (self-)
interactions among an arbitrary number of both Maxwell
and (generalized) Proca [30] fields in four-dimensional flat
spacetime [8,9]. This hints to the convenience of the
proposed method, compared to other possible approaches,
a point that shall be reinforced in the more elaborate
examples of the next Sec. IV and discussed in the
concluding Sec. VI.
In the remaining of this section, we shall work on

d-dimensional Minkowski spacetime, still for finite d ≥ 2.
We will choose Cartesian coordinates with the mostly
positive signature, so that gμν ¼ ημν ¼ diagð−1; 1; 1;…; 1Þ.

FIG. 1. Schematics of Sec. II. Here, eqns., Lag. consts., f.i., and num. stand for equations, Lagrangian constraints, functionally
independent, and number, respectively. The computational challenge of the steps relating Lagrangian constraints to functionally
independent Lagrangian constraints (represented with a double arrow), as well as the relevance of closing the iterative algorithm, are
further discussed in Sec. VI.
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Subsequently, all spacetime indices shall be raised or
lowered by ημν and its inverse ημν.

A. Maxwell electromagnetism

This renowned manifestly first-order singular field
theory describes an Abelian massless vector field and its
linear interactions with sources in terms of N ¼ d number
of a priori independent field variables. As already stated,
we take the Maxwell vector field (which we denote Aμ) to
be real and consider the particularly simple case when there
are no sources.

1. Lagrangian constraints

The canonically normalized Lagrangian density of
sourceless classical electromagnetism is

LM ¼ −
1

4
AμνAμν; with Aμν ≔ ∂μAν − ∂νAμ ¼ −Aνμ:

ð3:1Þ
The components of the Maxwell field constitute the gener-
alized coordinates for this theory: QA ¼ fAμg, so that
A ¼ 1; 2;…; d ¼ dimðCÞ≡ N, as already announced. As
iswellknownandcanbeeasilycalculatedbymeansof (2.10),
the Euler-Lagrange equations following from (3.1) are

EA ≡ −∂μAμν¼! 0: ð3:2Þ

If we decompose the Maxwell field into its space and
time components Aμ ≔ ðA0; AiÞ≡ ðA; AiÞ with i ¼ 1;
2;…; d − 1, the Lagrangian (3.1) can be conveniently
rewritten as

LM ¼ 1

2
½ _A2

i þ ð∂iAÞ2 − 2 _Ai∂iA� −
1

4
A2
ij; ð3:3Þ

where sum over repeated indices is to be understood and we
have been careful to lower all indices with the flat metric ημν.
It is then easy to see that the primary Hessian following
from (3.3) isWAB ¼ δAB − δA

1δB
1 and therefore manifestly

possesses the symmetry dictated by its very definition:
WAB ¼ WBA. Further, its Moore-Penrose pseudoinverse is
given by MAB ¼ δAB − δ1

Aδ1
B. Since the primary Hessian

takes such an uncomplicated form, it readily follows that
R1 ¼ 3 and thusM1 ¼ 1ð¼ M0

1Þ in this case. A convenient
choice for the null vector of WAB amounts to ðγ1ÞA ¼ δ1

A.
Then, the one andonly primaryLagrangian constraint for the
theory can be effortlessly calculated to take the explicit form

φ1 ¼ ∂iAi0∶≈
!

1
0: ð3:4Þ

This is the familiar Gauss law, telling us that, in the absence
of sources, the electric field is divergenceless. Note that this
is an on-shell statement by construction.

The Gauss law constraint straightforwardly yields a
vanishing secondary Hessian W̃11 ≡ 0, so thatM2 ¼ M1 ¼
1 and we choose ðγ̃1Þ1 ¼ 1. With all this information, it is a
matter of easy algebra to find the only secondary
Lagrangian constraint:

φ̃1≋
1
0: ð3:5Þ

Therefore, M0
2 ¼ 0 and the end of the iterative algorithm is

signalled according to the nondynamical prescription in
case (iia). We have thus found that the total number of
Lagrangian constraints for Maxwell electromagnetism is
just l ¼ M0

1 þM0
2 ¼ 1.

2. Gauge identities

Maxwell’s theory enjoys an apparent Uð1Þ gauge sym-
metry. Indeed, under the transformation Aμ → Aμ þ ∂μθ,
the Lagrangian (3.1) remains invariant. Here, θ is the only
gauge parameter, while ðθ; _θÞ are the sole two effective
gauge parameters present in the fields’ transformation.
Consequently, we have that g ¼ 1 and e ¼ 2.
For completeness, we point out that the said trans-

formation, when compared to (2.28) immediately allows
us to read off the gauge generator of the symmetry. This is
ðΩAÞν ¼ −δAν. When combined with the primary Euler-
Lagrange equations (3.2) as indicated in (2.29), we can
right away verify the off-shell gauge identity we
counted: ϱ ¼ ∂μ∂νAμν ≡ 0.

3. Physical degrees of freedom

According to our prior analysis, which shows that the
constraint structure of classical electromagnetism in its
standard formulation with N ¼ d is

tðNÞ
M ¼ ðl ¼ 1; g ¼ 1; e ¼ 2Þ; ð3:6Þ

and making use of the master formula (2.2), we count
ndof ¼ d − 2 propagating modes. In d ¼ 4, these corre-
spond to the two polarizations of the photon. Exploiting the
equalities in (2.4), we check that our counting corresponds
to two first-class constraints, one primary and one secon-
dary. Therefore, our purely Lagrangian investigation is in
perfect agreement with the standard literature, e.g., [31]. It
also matches the Hamiltonian definition of the Maxwell
field given in [8]: “a real Abelian vector field ½…�
associated with two first-class constraints.” This latter
correspondence will play a role in Sec. V B.

B. The (hard) Proca theory

We turn our attention to the Proca theory next, in the
modern formulation of the original proposal in [32].
Namely, we focus on the (manifestly first-order) field
theory of a real Abelian vector field of mass m in the
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absence of any source described by N ¼ d a priori
independent field variables. The remark (hard) is to avoid
ambiguity with respect to the generalized Proca theory,
discussed in Sec. V B. We refer to the Proca field as Bμ.

1. Lagrangian constraints

The Lagrangian density of the said Proca theory is

LP ¼ −
1

4
BμνBμν −

1

2
m2BμBμ; with

Bμν ≔ ∂μBν − ∂νBμ ¼ −Bνμ: ð3:7Þ

As in the Maxwell case earlier on, the components of the
Proca field are the generalized coordinates: QA ¼ fBμg.
We thus see that A ¼ 1; 2;…; d ¼ dimðCÞ≡ N here as
well. The Euler-Lagrange equations following from (3.7)
can be easily obtained as indicated in (2.10). The result is

EA ≡ −∂μBμν þm2Bν¼! 0: ð3:8Þ

At this point, it is straightforward to see that the
primary Hessian—and hence also its Moore-Penrose
pseudoinverse—is the same as for the Maxwell theory
earlier on. This implies M1 ¼ 1ð¼ M0

1Þ and the associated
null vector can again be chosen as ðγ1ÞA ¼ δ1

A. The
primary Lagrangian constraint differs, though:

φ1 ¼ ∂iBi0 −m2B∶≈
!

1
0; ð3:9Þ

where we have introduced Bμ ≔ ðB0; BiÞ≡ ðB;BiÞ.
The above once more leads to a vanishing secondary

Hessian, so that M2 ¼ M1 ¼ 1 and ðγ̃1Þ1 ¼ 1. The secon-
dary Lagrangian constraint in this case takes the form

φ̃1 ¼ −m2 _B ∶≈
!

2
0: ð3:10Þ

Contrary to the Maxwell theory, (3.10) is obviously not a
Lagrangian identity, so the algorithm is not closing here
according to the prescription in case (iia). Notice as well
that φ1 and φ̃1 are functionally independent from each
other, so that we are not in case (iib) of the general method
either. Instead, we have M0

2 ¼ M2 ¼ 1 and we must move
on to the tertiary stage.
It is easy to check that the tertiary Hessian following

from (3.10) is Ŵ11 ¼ −m2. As such, its dimension and rank
match (M3 ¼ 0 ¼ M0

3) and the algorithm closes according
to the dynamical prescription in case (i). Namely, the
consistency of (3.10) under time evolution is ensured via a
tertiary equation of motion and there are no tertiary
constraints. As a result, we have obtained l ¼ M0

1 þM0
2 þ

M0
3 ¼ 2 functionally independent Lagrangian constraints in

the (hard) Proca theory.

2. Gauge identities

The mass term for the Proca field explicitly breaks the
Uð1Þ gauge invariance of Maxwell electromagnetism. In
our conventions, this means that there is no field trans-
formation of the form (2.28) that leaves the action invariant.
Therefore, there are no off-shell identities associated to
(3.7) and we have g ¼ 0 ¼ e.

3. Physical degrees of freedom

Using the (hard) Proca constraint structure for N ¼ d

tðNÞ
P ¼ ðl ¼ 2; g ¼ 0; e ¼ 0Þ ð3:11Þ

obtained before in the master formula (2.2), we count
ndof ¼ d − 1 degrees of freedom in the theory. By means of
(2.4), it is immediate to certify that this corresponds to two
second-class constraints, as explicitly shown, for instance,
in [33]. As with the Maxwell field before, we thus find
agreement with the Proca field’s definition given in [8]:
“a real Abelian vector field ½…� associated with two
second-class constraints.” We will further comment on this
connection in Sec. V B later on.

C. The Schwinger-Plebanski
reformulation of Maxwell and Proca

In this section, we reanalyze the constraint structures of
the above massless and massive vector field theories in
a formulation with N ≠ N ¼ d a priori degrees of free-
dom. Specifically, we entertain the reformulation of source-
less classical electromagnetism originally proposed by
Schwinger [34] and later on popularized by Plebanski
[35] and employ it for the (hard) Proca theory simulta-
neously. In this setup, the real Abelian (covariant) vector
field Cμ—be it massless or massive—and its antisymmetric
(contravariant) field strength Fμν are regarded as indepen-
dent at the onset:

QA ¼ fC≡ C0; Fij ¼ −Fji; Fi ≡ F0i ¼ −Fi0; Cig;
A ¼ 1; 2;…;N ¼ dðdþ 1Þ=2: ð3:12Þ

The aim of this Sec. III C is to determine the constraint
structure characterizing triplets tðNÞM and tðNÞP , so as to
illustrate in a simple double example the general claim
in (2.6). Namely, these triplets differ from the previously

determined ones tðNÞ
M and tðNÞ

P but yield the same number of
propagating degrees of freedom.
A clarifying remark follows. Classical electromagnetism

as written in [34] is commonly called the manifestly first-
order formulation of electrodynamics. This refers to the
order of its primary Euler-Lagrange equations, contrarily
to our convention here, where the order refers to the
Lagrangian density. For us, all examples in Secs. III
and IV are manifestly first order and as such can be
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investigated by means of the methodology in Sec. II. In
view of this dissonance, we can already anticipate that there
will be no primary equations of motion in our subsequent
examples. The primary Euler-Lagrange equations, being
first order, will not involve the generalized accelerations Q̈A

and so they will all be primary Lagrangian constraints.
Further, this is possible iff the primary Hessian of the
theories identically vanishes, as we shall see it does.

1. Lagrangian constraints

Inspired by [34], we take the Lagrangian density

LV ¼ LV½Cμ; Fμν� ¼ −
1

2
ð∂μCν − ∂νCμÞFμν

þ 1

4
FμνFμν −

1

2
m2CμCμ with m ≥ 0 ð3:13Þ

as our starting point. When m ¼ 0, (3.13) describes
classical electromagnetism. For m ≠ 0, the (hard) Proca
theory is portrayed. The Euler-Lagrange equations follow-
ing from (3.13) are

EðCνÞ ≔ −∂μFμν þm2Cν¼! 0;
EðFμνÞ ≔ Fμν − ∂μCν þ ∂νCμ¼! 0: ð3:14Þ

Solving the latter for Fμν and substituting the result into the
former, we recover Maxwell’s (3.2) or Proca’s (3.8) equa-
tions of motion, depending on the value ofm. Then, we say
both formulations, in (3.13) and in (3.1) or (3.7) as pertinent,
are dynamically equivalent, as foretold.
We proceed to explicitly confirm our predictions. The

primary Hessian following from (3.13) vanishes identically
WAB ≡ 0, so R1 ¼ 0 and M1 ¼ N. We can choose its
appropriate null vectors as ðγIÞA ¼ δI

A. As a result, the
primary Lagrangian constraints coincide with the
primary Euler-Lagrange equations. These can be readily
seen to be functionally independent among themselves.
Consequently, the first constraint surface TC1 coincides
with the moduli space in this case. This set of circum-
stances can be summarized as

0¼! EA ¼ αA ¼ ðγIÞAαA ¼ φI∶≈
!

1
0 ð3:15Þ

or simply asM0
1 ¼ M1 ¼ N. Notice thatWAB ≡ 0 immedi-

ately makes its Moore-Penrose pseudoinverse vanish as
well: MAB ¼ 0. We encounter this same situation of a zero
primary Hessian in both of the theories analyzed in Sec. IV.
We briefly depart from the application of the iterative

algorithm in order to introduce an extremely useful notation
that will be recurrent from now on. We wish to be able to
refer to each kind of field variables in (3.12) individually.
To this aim, we shall henceforth understand that the index A
therein decomposes into two distinct sets of indices

A≡A1A2, the first referring to the type of field variable
and the second to the spacetime structure of each type of
field variable. In this way, A1 ¼ 1; 2;…; 4 and we have

½Q1�≡C; ½Q2�ij≡Fij; ½Q3�i≡Fi; ½Q4�i≡Ci:

ð3:16Þ

Observe that we have employed the symbol ½·� to visually
split the A1 index from the A2 one.
Back to the algorithm and putting into practice the above

notation, we write the primary Lagrangian constraints as

½φ1� ¼ ∂iFi −m2C; ½φ2�ij ¼ Fij − 2∂½iCj�;

½φ3�i ¼ Fi þ _Ci − ∂iC; ½φ4�i ¼ − _Fi − ∂jFij þm2Ci:

ð3:17Þ

Notice that ½φ2�ij ¼ −½φ2�ji, as required by definition.
We go on to the secondary stage next. The secondary

Hessian W̃IJ ¼ ∂_IφJ can be portrayed in our recently
introduced notation as follows:

W̃IJ ¼

0
BBBBB@

½W̃11� ½W̃12�ij ½W̃13�i ½W̃14�i

ij½W̃21� ij½W̃22�kl ij½W̃23�k ij½W̃24�k

i½W̃31� i½W̃32�jk i½W̃33�j i½W̃34�j
i½W̃41� i½W̃42�jk i½W̃43�j i½W̃44�j

1
CCCCCA
;

ð3:18Þ

where, for each entry of the secondary Hessian, we have
placed the spacelike tensorial indices of the field variables
(primary Lagrangian constraints) labeled by I (J) to the left
(right). A few explicit examples that should clarify our
notation are

½W̃11� ≔
∂½φ1�
∂½Q1�≡

∂½φ1�
∂C

;

ij½W̃21� ≔
∂½φ1�
∂½Q2�ij ≡

∂½φ1�
∂Fij ;

i½W̃42�jk ≔
∂½φ2�jk
∂½Q4�i

≡ ∂½φ2�jk
∂Ci

: ð3:19Þ

The only nonzero components in (3.18) are

j½W̃43�i ¼ δji ¼ −i½W̃34�j; ð3:20Þ

which lead to a simple secondary Moore-Penrose pseu-
doinverse M̃AB with nonzero elements j½M̃43�i ¼ −δij ¼
i½M̃34�j. This corresponds to the transpose of (3.18). It is
easy to see thatR2 ≔ rankðW̃IJÞ ¼ 2ðd − 1Þ, which in turn
implies that M2 ¼ ðd2 − 3dþ 4Þ=2. We choose the
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suitably normalized linearly independent null vectors for
(3.18) as ðγ̃RÞI ¼ δR

I.
The above results can be employed to determine the

functionally independent secondary Lagrangian constraints

φ̃R∶≈
!

2
0. First, we calculate φ̃R ¼ ðγ̃RÞI _φI and obtain

½φ̃1� ¼ ∂i
_Fi −m2 _C; ½φ̃2�ij ¼ _Fij − 2∂½i _Cj�; ð3:21Þ

where again the antisymmetry property ½φ̃2�ij ¼ −½φ̃2�ji
required by definition is apparent. Evaluation on the first
constraint surface then gives

½φ̃1�≈
1
m2ð∂iCi − _CÞ; ½φ̃2�ij≈

1

_Fij þ 2∂½iFj�; ð3:22Þ

which respects the noted symmetry, as it must. In more
detail, the evaluation has been carried out as follows: by
setting to zero all φ’s in (3.17), solving for ð _Fi; _CiÞ and
plugging the resulting expressions into (3.21). Next, we
need to select only the functionally independent secondary
constraints. It is obvious that the massm plays a crucial role
here, as could easily be anticipated in view of our results in
the previous Secs. III A and III B. Indeed, if m ¼ 0, then
one constraint identically vanishes in the first constraint
surface ½φ̃1�≋

1
0. It is thus a Lagrangian identity, meaning

that ½φ1� is nondynamically (trivially) stabilized at the
secondary stage in this case. We therefore see that

M0
2 ¼

�
M2 − 1 if m ¼ 0;

M2 if m > 0:
ð3:23Þ

We turn to the time evolution of the functionally
independent secondary constraints; i.e., we commence
the tertiary stage. The tertiary Hessian can be succinctly
expressed as

ŴRS ¼
� ½Ŵ11� ½Ŵ12�ij

ij½Ŵ21� ij½Ŵ22�kl

�
; ð3:24Þ

where we have made use of the same notation as in (3.18)
earlier on, so that

½Ŵ11�≡ ∂½φ̃1�
∂ _C

; ½Ŵ12�ij ≡
∂½φ̃2�ij
∂ _C

;

ij½Ŵ21�≡ ∂½φ̃1�
∂ _Fij ; ij½Ŵ22�kl ≡ ∂½φ̃2�kl

∂ _Fij : ð3:25Þ

Notice that, for m ¼ 0, the first row ½Ŵ1R� should not be
present, as ½φ̃1� weakly vanishes in this case. However, we
keep it along here, so that both Maxwell and (hard) Proca
theories can be reanalyzed simultaneously. The nonzero
components are explicitly given by

½Ŵ11� ¼ −m2; ij½Ŵ22�kl ¼ 2δi½kδl�j: ð3:26Þ

Hence, the tertiary Hessian has full rank R3 ¼ M0
2 and

consequentlyM3 ¼ 0. Observe that this is true for both the
m ¼ 0 and the m > 0 cases. The functionally independent
secondary constraints’ consistency under time evolution is
at this point dynamically ensured and the algorithm closes
according to the prescription in case (i). The total number
of functionally independent Lagrangian constraints is

l ¼ M0
1 þM0

2 ¼
�
dðd − 1Þ þ 1 if m ¼ 0;

dðd − 1Þ þ 2 if m > 0:
ð3:27Þ

We see that the mass m gives rise to one more functionally
independent Lagrangian constraint, exactly as in the
previous sections, where we found that l ¼ 1 for electro-
magnetism, while l ¼ 2 for the (hard) Proca theory.
Here, the remaining constraints that l counts are asso-

ciated to the field strength Fμν, as a result of having
promoted it to a set of a priori independent field variables.
Notice that there are dðd − 1Þ number of such supplemen-
tary constraints, 2 times the number of independent
components in Fij. This duplicity makes it manifest that
these fields are superfluous when describing the dynamics
of the theory. In other words, no initial data are needed for
them: Fij and _Fij need not be specified at some initial time
t1 when solving their associated equations of motion. Yet
another way to understand this is to map them to the
Hamiltonian picture, where they correspond to second-
class constraints, as we shall shortly see.

2. Gauge identities

Consider the following transformations of the field
variables: Cμ → Cμ þ δθCμ and Fμν → Fμν þ δθFμν, with

δθCμ ¼ ∂μθ; δθFμν ¼ 0: ð3:28Þ

Here, θ is an arbitrary parameter. It can be easily checked
that, under the said transformations, the Lagrangian (3.13)
remains invariant iff m ¼ 0. Therefore, these are the very
same gauge transformations of the massless theory that
we noted in Sec. III A, while the massive theory does not
exhibit any kind of gauge symmetry. Straightforwardly,
we count

g ¼
�
1 if m ¼ 0;

0 if m > 0;
e ¼

�
2 if m ¼ 0;

0 if m > 0:
ð3:29Þ

For completeness, we provide the gauge identity and
generators for m ¼ 0 next. Comparing (2.28) and (3.28),
we can immediately read off the nonzero generators:

δθCμ ¼ −ð∂μ1θÞðΩμÞμ1 ; ðΩμÞμ1 ¼ −δμ1μ : ð3:30Þ
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Notice that here we have dropped the, in this case, single-
valued β index from (2.28). Putting together (3.14) and
(3.30) as indicated in (2.29), we readily confirm the gauge
identity:

ϱ ¼ ∂μ1 ½EðCμÞðΩμÞμ1 �≡ 0: ð3:31Þ

3. Physical degrees of freedom

We have now achieved our goal. Namely, we have
shown that the constraint structure characterizing triplet
for (3.13) is

tðNÞV ¼
�
tðNÞM ¼ ðl ¼ dðd− 1Þ þ 1;g¼ 1; e¼ 2Þ if m¼ 0;

tðNÞP ¼ ðl ¼ dðd− 1Þ þ 2;g¼ 0; e¼ 0Þ if m> 0:

ð3:32Þ

Substituting the quantities (3.32) into the master for-
mula (2.2), we count

ndof ¼
�
d − 2 if m ¼ 0;

d − 1 if m > 0;
ð3:33Þ

propagating degrees of freedom. This counting coincides
with the ones performed in Secs. III A and III B, where
appropriate. We have thus verified (2.6) in two simple
examples. Exploiting the equalities in (2.4), we see the
following relation to the Hamiltonian side. The massless
theory exhibits two first-class constraints, one of which is a
primary first-class constraint, and dðd − 1Þ second-class
constraints. On the other hand, the massive theory has only
second-class constraints, dðd − 1Þ þ 2 of them. Our purely
Lagrangian investigation is thus in perfect agreement with
the standard Hamiltonian literature, e.g., [36].

IV. A COMPREHENSIVE CONSTRAINT
ANALYSIS OF PALATINI THEORIES

In the following, we apply the general framework
presented in Sec. II to the Palatini action. We split our
calculations into the d > 2 and the d ¼ 2 cases, as these are
physically distinct theories. As we shall see, the former case
is much more algebraically involved than the latter.
However, compared to their equivalent Hamiltonian inves-
tigations, our Lagrangian approach shall prove much
simpler in both instances.
For concreteness, we specify our framework to be that of

the metric-affine Palatini formulation of general relativity,
ordinarily ascribed to Palatini but firstly suggested by
Einstein himself [10,37]. As such, we shall study a
manifestly first-order formulation of gravity based on N ¼
dðdþ 1Þ2=2 number of a priori independent degrees of
freedom. Even though alternative manifestly first-order
formulations do exist, such as the tetradic-Palatini action
(for example, see [38] and its recent canonical study [39]),

inconvenient subtleties to our aims arise in those frameworks
due to their geometric construction. For instance, unlike the
metric, vielbeine are not required to be invertible. In such
a scenario, the strict equivalence between Palatini and
Einstein’s gravity is lost due to a singular vielbein and, in
general, ends up in a dynamical manifestation of torsion
[40]. Similar situations might arise in other manifestly first-
order formulations, like the Barbero-Holst action [41] or
background field (BF)-like models [42], which happen to
enclose the most celebrated Plebanski action. For a complete
review on these topics, we refer the interested reader to [43].

A. Palatini in d > 2

The Palatini action in d > 2 is a well-known (re)
formulation of the Einstein-Hilbert action, which is
dynamically equivalent to it. This is explained shortly.
Most significantly for us, Palatini is a manifestly first-order
formulation of general relativity, which treats the spacetime
metric gμν ¼ gνμ and the affine connection Γρ

μν ¼ Γρ
νμ as

a priori independent variables. As such, and unlike
Einstein-Hilbert, it readily allows for the application of
the methodology introduced in Sec. II.

1. Lagrangian constraints

The Palatini action is of the general form given in (2.8)
and its Lagrangian density can be written as [44]

LPa ¼ −ð∂ρhμνÞGρ
μν þ hμνðcGρ

ρμGσ
σν −Gρ

σμGσ
ρνÞ;

with c ≔
1

d − 1
: ð4:1Þ

Here, the independent variables hμν and Gρ
μν are defined

exclusively in terms of the spacetime metric and affine
connection, respectively:

hμν ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

q
gμν; Gρ

μν ≔ Γρ
μν − δρðμΓ

σ
νÞσ; ð4:2Þ

and thus inherit their symmetry properties.
The primary Euler-Lagrange equations for hμν and Gλ

μν

following from (4.1) are

EðhμνÞ ≔ ∂ρG
ρ
μν þ cGρ

ρμGσ
σν −Gρ

σμGσ
ρν¼! 0;

EðGρ
μνÞ ≔ −∂ρhμν þ 2cGλ

λσh
σðμδνÞρ − 2Gðμ

ρσhνÞσ¼! 0: ð4:3Þ

Notice that these vanishings are on-shell statements.
Multiplying the second set of field equations by hμν and
employing the identity hμνhνρ ¼ δμ

ρ, one finds that

2ðc − 1ÞGμ
μρ − hμν∂ρhμν¼! 0: ð4:4Þ

Solving (4.4) implies that Gρ
μν is fixed (on shell) to be a

function of hμν and its first derivatives. The substitution of
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the resulting expression into (4.1) yields the second-order
formulation of general relativity and we say d > 2 Palatini
is dynamically equivalent to it.
It is natural and convenient to decompose the variables

in (4.2) as follows:

h≡ h00; hi ≡ h0i; G≡G0
00;

Gi ≡G0
0i; Gij ≡G0

ij; Gi ≡Gi
00;

Gi
j ≡Gi

0j; Gi
jk ≡Gi

jk: ð4:5Þ
The explicit form of the Lagrangian (4.1) in terms of the
above variables is

LPa ¼ − _hG − 2_hiGi − _hijGij − ð∂ihÞGi − 2ð∂ihjÞGi
j

− ð∂ihjkÞGi
jk þ h½ðc − 1ÞG2 þ 2ðcGGi

i −GiGiÞ
þ cGi

iG
j
j − Gi

jG
j
i � þ 2hi½ðc − 1ÞGGi þ cGGj

ij

þ cGiG
j
j −GjG

j
i −GijGj þ cGj

jG
k
ik − Gk

jG
j
ik�

þ hij½ðc − 1ÞGiGj þ 2ðcGðiGk
jÞk − GkðiGk

jÞÞ
þ cGk

ikG
l
jl − Gk

ilG
l
jk�: ð4:6Þ

We express the generalized coordinates of the Palatini
Lagrangian in (4.6) as

QA ¼ fh; hi; hij; G;Gi; Gij;Gi;Gi
j;G

i
jkg: ð4:7Þ

Notice that A comprises all possible indices of our chosen
field variables, so that

A ¼ 1; 2;…; dðdþ 1Þ2=2 ¼ dimðCÞ≡ N: ð4:8Þ

Henceforth, we shall employ the notation ½·� introduced in
Sec. III C for the collective index A above. In particular, see

(3.16) and explanations around. This notation shall prove
of utmost convenience. For instance, in this way, it is
obvious that

G≡ ½Q4� ≠ Q4 ¼
�
h11 if d ¼ 3;

h3 otherwise:
ð4:9Þ

The primary Hessian following from (4.6) vanishes
identically: WAB ≡ 0, as a result of having promoted
the affine connection to a set of a priori independent
field variables. This parallels the reformulations of classical
electromagnetism and the (hard) Proca theory in Sec. III C.
In passing, we note that the primary Hessian is symmetric
WAB ¼ WBA, as it should by definition. Obviously,
rankðWABÞ ¼ 0 and we have M1 ¼ N ¼ dðdþ 1Þ2=2.
This trivialization of the primary Hessian has a number
of direct implications. First, it allows us to straightfor-
wardly pick its suitably normalized null vectors to be
ðγIÞA ¼ δI

A. Second, it immediately makes its Moore-
Penrose pseudoinverse vanish as well: MAB ¼ 0. Third,
it becomes apparent that the primary Euler-Lagrange
equations coincide with the primary Lagrangian con-
straints. All of these constraints turn out to manifestly
be functionally independent from each other in this specific
theory. In other words, the moduli space is the primary
constraint surface in this case and we haveM0

1 ¼ M1. Thus,

0¼! EA ¼ αA ¼ ðγIÞAαA ¼ φI∶≈
!

1
0; ð4:10Þ

exactly as in our examples of Sec. III C before; see (3.15).
By means of the notation employed in (3.17), the explicit
form of the φI’s is

½φ1� ¼ −½ _Gþ ∂iGi þ GGþ 2ðcGGi
i − GiGiÞ þ Gi

jG
j
i �;

½φ2�i
2

¼ −½ _Gi þ ∂jG
j
i þ GGi þ cGGj

ij þ GjG
j
i −GijGj þ Gj

kG
k
ij�;

½φ3�ij ¼ −½ _Gij þ ∂kGk
ij þ GiGj þ 2ðcGðiGk

jÞk − GkðiGk
jÞÞ þ Gl

ikG
k
lj�;

½φ4� ¼ _h − 2½hGþ chGi
i þ hiGi þ chiGj

ij�;
½φ5�i
2

¼ _hi þ hGi − ½hiGþ hjGi
j þ hijGj þ chijGk

jk�;

½φ6�ij ¼ _hij þ 2ðhðiGjÞ þ hkðiGjÞ
k Þ;

½φ7�i ¼ ∂ihþ 2ðhGi þ hjGijÞ;
½φ8�ji
2

¼ ∂ihj − ½cðhGþ hkGkÞδji þ hGj
i þ hkGj

ik� þ hjGi þ hjkGik;

½φ9�jki ¼ ∂ihjk − 2½hðjðcGδkÞi þ GkÞ
i Þ þ hlðjðcGlδ

kÞ
i þ GkÞ

il Þ�; ð4:11Þ
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where we have defined

G ≔ ðc − 1ÞG; Gi ≔ ðc − 1ÞGi;

Gi
j ≔ cGk

kδ
i
j − Gi

j; Gi
jk ≔ cGl

klδ
i
j − Gi

jk: ð4:12Þ

Note that the φI’s in (4.11) are manifestly symmetric
where appropriate, i.e., ½φ3�ij ¼ ½φ3�ji, ½φ6�ij ¼ ½φ6�ji and
½φ9�jki ¼ ½φ9�kji .
We now turn to the secondary stage, where we inspect

the consistency under time evolution of the functionally
independent primary Lagrangian constraints. The secon-
dary Hessian is given by W̃IJ ¼ ∂_IφJ. With the conventions
introduced below (3.18), we may succinctly write it as

W̃IJ ¼

0
BBB@

½W̃11� � � � ½W̃19�jki
..
. . .

. ..
.

jk
i ½W̃91� � � � jk

i ½W̃99�mn
l

1
CCCA: ð4:13Þ

For clarity, we provide a few examples of what is meant by
our notation:

½W̃11�≡ ∂½φ1�
∂ _h

; i½W̃23�jk ≡
∂½φ3�jk
∂
_hi

;

½W̃45�i ≡ ∂½φ5�i
∂ _G

; jk
i ½W̃99�mn

l ≡ ∂½φ9�mn
l

∂ _Gi
jk

: ð4:14Þ

In (4.13), the only nonzero components are

½W̃14� ¼ −1 ¼ −½W̃41�; i½W̃25�j ¼ −2δji ¼ −j½W̃52�i;
ij½W̃36�kl ¼ −δkðiδ

l
jÞ ¼ −kl½W̃63�ij: ð4:15Þ

Notice that the secondary Hessian is antisymmetric
W̃IJ ¼ −W̃JI, as it should by definition. It is easy to see
that R2 ≔ rankðW̃IJÞ ¼ dðdþ 1Þ, thus yielding M2 ¼
dðd2 − 1Þ=2. This means that R2 number of the function-
ally independent primary Lagrangian constraints are being
dynamically stabilized at the secondary stage, while the
remaining M2 primary Lagrangian constraints are not
stable: they lead to secondary Lagrangian constraints,
which we proceed to determine.
To this aim, we first choose the suitably normalized

linearly independent null vectors associated to the secon-
dary Hessian as

ðγ̃RÞI ¼ ð0; 0;…; 0; 1; 0; 0;…; 0Þ; ð4:16Þ
where the nonvanishing vector component is at I¼R2þR.
Notice that all M2 null vectors have length M1 and their
first R2 components are zero.
All our results so far can be used to obtain the secondary

Lagrangian constraints φ̃R≈
!

1
0. These can readily be seen to

be functionally independent from each other, as well as
with respect to the primary constraints, so that M0

2 ¼ M2.
This means their vanishing defines the secondary constraint

surface: φ̃R∶≈
!

2
0. In our ½·� notation, we have

½φ̃1�i
2

≈
1
hðτ̃1Þi þ hjðτ̃2Þij;

½φ̃2�ji
2

≈
1
hjðτ̃1Þi þ hjkðτ̃2Þik þ hðτ̃3Þji þ hkðτ̃4Þjik;

½φ̃3�jki
2

≈
1
hðjðτ̃3ÞkÞi þ hlðjðτ̃4ÞkÞil ; ð4:17Þ

where we have defined

ðτ̃1Þi ≔ ∂iGþ ∂lk·iGk
l þ GGi − GGi þ ðc − 2ÞGkG

k
i þ Gk

l G̃
l
ik;

ðτ̃2Þij ≔ ∂iGj þ ∂lk·iGk
lj þ GjGi − GGij þ GkG

k
ij −GjkG

k
i þ Gk

jlG̃
l
ik;

ðτ̃3Þji ≔ −δj·li·m _Gm
l þ ∂ji·lGl þ GGj

i − GkG
k·j
i þ GlGj

il − Gm
l G

l·j
m·i;

ðτ̃4Þjik ≔ −δj·li·m _Gm
lk þ ∂ji·lGl

k −GklG
l·j
i þ Gl

kG
j
il − Gm

klG
l·j
m·i ð4:18Þ

in terms of (4.12) as well as the following quantities:

∂i ≔ ðc − 1Þ∂i; ∂ki·j ≔ cδki ∂j − δkj∂i; δk·li·j ≔ cδki δ
l
j − δkjδ

l
i; Gi ≔ cðGi þ Gk

ikÞ;
Gi·j
k·l ≔ cGi

kδ
j
l − Gj

kδ
i
l; Gi·j

k ≔ cGiδjk − Gjδik; G̃k
ij ≔ cðc − 1ÞGl

ilδ
k
j − Gk

ij: ð4:19Þ

Observe that the appropriate symmetry ½φ̃3�jki ¼ ½φ̃3�kji is
manifest. To obtain the above, we have first computed
φ̃R ¼ ðγ̃RÞI _φI. Then, we have evaluated the result in the
first constraint surface. In practice, this means that we
have substituted ð _G; _Gi;…; ∂ihjkÞ for their suitable weak

expressions in terms of the generalized coordinates QA,
which follow from setting to zero (4.11).
To conclude the secondary stage, we calculate the

Moore-Penrose pseudoinverse of W̃IJ. It can be easily
checked that this is M̃IJ ¼ −ðW̃IJÞT .
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Next, the consistency under time evolution of the above
functionally independent secondary Lagrangian constraints
is to be inspected at the tertiary stage. The first step is to
calculate the tertiary Hessian ŴRS ¼ ðγ̃RÞI∂_Iφ̃S. Employing
the same conventions as in (4.13) before, we write

ŴRS ¼

0
BBB@

i½Ŵ11�j i½Ŵ12�kj i½Ŵ13�klj
j
i½Ŵ21�l j

i½Ŵ22�ml j
i½Ŵ23�mn

l
jk
i ½Ŵ31�l jk

i ½Ŵ32�ml jk
i ½Ŵ33�mn

l

1
CCCA; ð4:20Þ

where the nonzero components are

j
i½Ŵ22�lk ≡ ∂½φ̃2�lk

∂ _Gi
j

¼ −2hðcδjiδlk − δliδ
j
kÞ;

jk
i ½Ŵ33�mn

l ≡ ∂½φ̃3�mn
l

∂ _Gi
jk

¼ 2ðδðmi hnÞðjδkÞl − cδðml hnÞðjδkÞi Þ;

j
i½Ŵ23�lmk ≡ ∂½φ̃3�lmk

∂ _Gi
j

¼ −2hðlðcδjiδmÞ
k − δmÞ

i δjkÞ

¼ ∂½φ̃2�ji
∂ _Gk

lm

≡ lm
k ½Ŵ32�ji : ð4:21Þ

Therefore, the tertiary Hessian obviously satisfies compo-
nentwise the symmetry properties that ensure ŴRS ¼ ŴSR,
as required by definition. It is not hard to see that R3 ≔
rankðŴRSÞ ¼ dðd2 − 3Þ=2 and hence M3 ¼ d. In more
detail, the rank is equal to all nonzero rows (equivalently,
columns) of the Hessian, minus one. There is the obvious set
of d − 1 number of zero rows given by i½Ŵ1R ¼ 0. But the
rank of the Hessian is further reduced by one because the
linear combination of rows i

i½Ŵ2R is zero. This vanishing is a
direct consequence of the velocity independence of ½φ̃2�ii in
TC1, as can be readily verified from (4.17) and (4.18). It
follows that R3 number of the functionally independent
secondary Lagrangian constraints are being dynamically
stabilized at the tertiary stage. The remainingM3 secondary
Lagrangian constraints are not stable: they lead to the tertiary
Lagrangian constraints that we shall find next.
The suitably normalized linearly independent null vec-

tors of the tertiary Hessian can be chosen as follows.
Associated to i½Ŵ1R ¼ 0, we pick

ðγ̂UÞR ¼ ð0; 0;…; 0; 1; 0; 0;…; 0Þ;
with U ¼ 1; 2;…;M3 − 1; ð4:22Þ

where the nonvanishing vector component is at R ¼ U.
These null vectors have length M2 and their last R3

components are all zero. Corresponding to i
i½Ŵ2R ¼ 0,

we select the null vector

ðγ̂U¼M3
ÞR ¼ 1ffiffiffiffiffiffiffiffiffiffi

d−1
p ð0;…;0;1;0;…;0;1;0;…;0Þ; ð4:23Þ

where the (d − 1) number of nonvanishing vector compo-
nents are at R ¼ M3; 2M3;…; ðd − 1ÞM3.

11

The tertiary Lagrangian constraints are given by the

requirement φ̂U ¼ ðγ̂UÞR _̃φR ≈
!

2
0. In this case, the derivation

with respect to time is particularly simple and coincides
with the naively expected one, so that

φ̂U ¼ ðγ̂UÞR½∂i _QA
∂
i
A þ _QA

∂A�φ̃R ≈
!

2
0: ð4:24Þ

In our shorthand notation, we find it convenient to express
these constraints as follows:

½φ̂1�i
2

¼ _hðτ̃1Þiþ _hjðτ̃2ÞijþO½hðτ̃1Þiþhjðτ̃2Þij�;
½φ̂2�
2

¼ _hiðτ̃1Þiþ _hijðτ̃2ÞijþO½hiðτ̃1Þiþhijðτ̃2Þij�; ð4:25Þ

where the operator O is defined as

O ≔ ð∂k _GÞ
∂

∂ð∂kGÞ
þ ð∂k _GlÞ

∂

∂ð∂kGlÞ
þ ð∂k _Gl

mÞ
∂

∂ð∂kGl
mÞ

þ ð∂k _Gl
mnÞ

∂

∂ð∂kGl
mnÞ

þ _G
∂

∂G
þ _Gk

∂

∂Gk

þ _Gkl
∂

∂Gkl
þ _Gk

l
∂

∂Gk
l

þ _Gk
lm

∂

∂Gk
lm

: ð4:26Þ

Recall that ðτ̃1Þi and ðτ̃2Þij are as introduced in (4.18).
Following the procedure described under (4.19), the

tertiary Lagrangian constraints in (4.25) can be evaluated
on the first constraint surface TC1. After tedious algebraic
manipulations, the weak tertiary Lagrangian constraints can
be written exclusively in terms of the functionally inde-
pendent secondary constraints as

½φ̂1�i≈
1
− ðδjiG − 2Gj

iÞ½φ̃1�j − ½δjiðGk þ ∂kÞ

−
1

2
δjk∂i − Gj

ik�½φ̃2�kj −Gjk½φ̃3�jki ;
½φ̂2�
2

≈
1
2Gi½φ̃1�i þ Gj

i ½φ̃2�ij þ ∂j½φ̃3�iji : ð4:27Þ

The above is a nontrivial result. Indeed, it becomes
increasingly computationally challenging to evaluate
Lagrangian constraints on constraint surfaces as one goes
to higher stages. We elaborate on this topic and advice on
how to handle the evaluations in Sec. VI.

11To determine the null vectors of ŴRS in (4.20), we consid-
ered the ansatz ðγ̂UÞR ¼ ðai; aij; aijkÞ, with aijk ¼ aikj. Then, the

equation ðγ̂UÞRŴRS ¼ 0 results in aji ¼ callδ
j
i and ajil ¼ cakklδ

j
i

but does not impose any condition on ai. The first equation
implies aij ¼ 0 for i ≠ j. Setting j ¼ l in the second equation
yields ajij ¼ 0, which in turn implies aijk ¼ 0 for all i, j, k.
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Our results in (4.27) must be further evaluated on the
second constraint surface TC2, namely, in the subspace of
TC1 defined by the vanishing of (4.17). We thus see that

½φ̂1�i≈
2
0; ½φ̂2�≈

2
0; ð4:28Þ

which implies TC3 ≡ TC2 and there are no functionally
independent tertiary constraintsM0

3 ¼ 0. Consequently, the
algorithm closes nondynamically, according to case (iib).
We are finally able to obtain the result of interest from

the analysis here presented. The number of functionally
independent Lagrangian constraints for the Palatini theory
in d > 2, when described in terms of N ¼ dðdþ 1Þ2=2
number of a priori independent field variables, is equal to

l ¼ M0
1 þM0

2 þM0
3 ¼ M1 þM2 þ 0

¼ d
2
ðdþ 1Þ2 þ d

2
ðd2 − 1Þ þ 0 ¼ d2ðdþ 1Þ: ð4:29Þ

2. Gauge identities

It is well known (for instance, see [14]) that the Palatini
action corresponding to the Lagrangian density (4.1)
remains invariant under the following transformations
of its independent variables: hμν → hμν þ δθhμν and
Gρ

μν → Gρ
μν þ δθG

ρ
μν, with

δθhμν ¼ 2hρðμ∂ρθνÞ − ∂ρðhμνθρÞ;
δθG

ρ
μν ¼ −∂μ∂νθρ þ δρðμ∂νÞ∂σθ

σ − θσ∂σG
ρ
μν

þ Gσ
μν∂σθ

ρ − 2Gρ
σðμ∂νÞθ

σ; ð4:30Þ

where θμ are the (unspecified) gauge parameters. Notice
that the pertinent symmetries δθhμν ¼ δθhνμ and δθG

ρ
μν ¼

δθG
ρ
νμ are apparent in the precedent expressions. Of course,

(4.30) is just the Palatini (re)formulation of the renowned
diffeomorphism invariance of the Einstein-Hilbert action.
This holds true off shell.
It is easy to see in (4.30) that the gauge parameters θμ

appear explicitly in all the gauge transformations ∀ μ.
Similarly, we note that the effective gauge parameters
ðθμ; _θμ; θ̈μÞ are manifestly present in the gauge transforma-
tions ∀ μ as well. By definition, it follows that

g ¼ d; e ¼ 3d; ð4:31Þ

which are the off-shell parameters we aimed to obtain in
this short analysis.
For completeness, we provide the gauge generators and

confirm the gauge identities of d > 2 Palatini next. A direct
comparison between (2.28) and (4.30) allows us to rewrite
the latter as

δθhμν ¼ θβ½ðΩβÞμν� − ð∂μ1θβÞ½ðΩβÞμν�μ1 ;
δθG

ρ
μν ¼ θβ½ðΩβÞρμν� − ð∂μ1θβÞ½ðΩβÞρμν�μ1

þ ð∂μ1∂μ2θβÞ½ðΩβÞρμν�μ1μ2 ; ð4:32Þ

where we have introduced a bracket ð·Þ to visually split the
(in general collective) indices β and A for latter conven-
ience. In view of these transformations, the gauge gen-
erators can easily be identified to be

½ðΩβÞμν� ¼−∂βhμν; ½ðΩβÞμν�μ1 ¼−2hμ1ðμδνÞβ þhμνδμ1β ;

½ðΩβÞρμν� ¼−∂βG
ρ
μν; ½ðΩβÞρμν�μ1 ¼ 2Gρ

βðμδ
μ1
νÞ −Gμ1

μνδ
ρ
β;

½ðΩβÞρμν�μ1μ2 ¼ δρðμδ
ðμ1
νÞ δ

μ2Þ
β −δμ1ðμδ

μ2
νÞδ

ρ
β: ð4:33Þ

Combining (4.3) with the above as prescribed in (2.29) and
working through, the gauge identities are obtained:

ρβ ¼ EðhμνÞ½ðΩβÞμν� þ ∂μ1ðEðhμνÞ½ðΩβÞμν�μ1Þ
þ EðGρ

μνÞ½ðΩβÞρμν� þ ∂μ1ðEðGρ
μνÞ½ðΩβÞρμν�μ1Þ

þ ∂μ1∂μ2ðEðGρ
μνÞ½ðΩβÞρμν�μ1μ2Þ≡ 0: ð4:34Þ

3. Physical degrees of freedom

Putting everything together, we can finally count the
number of propagating modes present in the theory.
Namely, employing (4.8), (4.29) and (4.31) in the master
formula (2.2), we get

ndof ¼
d
2
ðd − 3Þ: ð4:35Þ

When d ¼ 4, we have that ndof ¼ 2, corresponding to the
two massless tensor’s polarizations of the graviton. For
d ¼ 3, the widely known triviality is recovered, with no
physical degrees of freedom being propagated.
Our result is in perfect agreement with the counting

performed in [13,14], where a purely Hamiltonian analysis
was done. We have thus carried out another (nontrivial)
explicit verification of the already noted equivalence
between (2.2) and (2.3). This equivalence can be further
verified as follows. It is explicitly shown in [13,14] that

N1 ¼ 3d, N2 ¼ dðd − 1Þðdþ 2Þ and NðPÞ
1 ¼ d for the

d > 2 Palatini theory when (4.8) holds true. Substitution
of these results in (2.4) readily confirms our own counting
in (4.29) and (4.31). Besides, a direct comparison between
the calculations in [13,14] and those presented in this
Sec. IVA unequivocally shows that our purely Lagrangian
computation is an algebraically much simpler way to
derive (4.36), from which the number of physical modes
follows readily.
To sum up, we have derived the constraint structure

characterizing triplet tðNÞ
Pa , with N ¼ dðdþ 1Þ2=2, of the
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Palatini theory in d > 2 dimensions in a purely Lagrangian
approach and ratified its equivalence with a represen-
tative Hamiltonian analysis performed in the past.
Mathematically,

tðNÞ
Pa ¼ ðl ¼ d2ðdþ 1Þ; g ¼ d; e ¼ 3dÞ ð4:36Þ

in the Lagrangian picture, while

tðNÞ
Pa ¼ðNðPÞ

1 ¼ d;N1¼ 3d;N2¼ dðd−1Þðdþ2ÞÞ ð4:37Þ

in the Hamiltonian side—recall (2.5)—both of which
imply (4.35).

B. A special case: Palatini in d = 2

General relativity, in its standard second-order formu-
lation, behaves drastically different in two dimensions.
Specifically, it can be shown that

SEH ¼
Z
M2

d2x
ffiffiffiffiffiffi
−g

p
R ∝ χðM2Þ: ð4:38Þ

Namely, the Einstein-Hilbert action is proportional to the
Euler characteristic χ of the spacetime manifold M2; see
e.g., [45]. The above implies that general relativity is a
topological theory in d ¼ 2 and, accordingly, propagates no
degrees of freedom, a fact that we shall explicitly verify in
the following.
Turning to the Palatini Lagrangian in (4.1) for d ¼ 2, we

restate that this is not dynamically equivalent to two-
dimensional Einstein’s gravity (4.38). To see this, consider
its corresponding Euler-Lagrange equations in (4.3). These
are valid for d ≥ 2. However, recall that c ≔ ðd − 1Þ−1, so
that c ¼ 1 in two dimensions. In this particular case, it is
obvious that (4.4) cannot be solved as we said, i.e.,

Gρ
μν¼! Gρ

μνðhμν; ∂ρhμνÞ. As a result, the dynamical

equivalence to Einstein’s gravity is lost. A more general
yet detailed argumentation can be found in [46].
Correspondingly, the dynamics of the two-dimensional

Palatini action does not constitute a smooth limit of its
higher-dimensional counterpart. Namely, the Lagrangian
(4.1) in d ¼ 2 does not describe the evolution of the same
family of fields as that very same Lagrangian in d > 2:
these are two physically different theories. The easiest way
to ratify this second inequivalence is to note that the
counting of degrees of freedom in (4.35), when we set
d ¼ 2, yields a negative number of propagating modes,
which is an unphysical result. Thus, a different constraint
structure characterizing triplet

tðN¼9Þ
2Pa ≠ lim

d→2
tðNÞ
Pa ; where N ¼ dðdþ 1Þ2=2; ð4:39Þ

is then to be expected. We proceed to determine this

tðN¼9Þ
2Pa next.

1. Lagrangian constraints

As a starting point, we express the generalized coor-
dinates of the Palatini theory in d ¼ 2 as

QA ¼ fh; h1; h11; G;G1; G11;G1;G1
1;G

1
11g;

A ¼ 1; 2;…; 9 ¼ dimðCÞ≡ N; ð4:40Þ

in direct analogy to (4.7) earlier on. Next, we compute the
first stage quantities associated to the d ¼ 2 version of the
Palatini Lagrangian (4.6). One can verify that the set of
primary Lagrangian constraints thus obtained matches
the consistent d ¼ 2 evaluation of those for a generic
dimension in (4.10) and (4.11). Comparatively, these two-
dimensional constraints have a much simpler form, given
by the vanishing of

½φ1�¼−½ _Gþ∂1G1þ2ðGG1
1−G1G1Þ�; ½φ2�1

2
¼−½ _G1þ∂1G1

1þGG1
11−G11G1�;

½φ3�11¼−½ _G11þ∂1G1
11þ2ðG1G1

11−G11G1
1Þ�; ½φ4�¼ _h−2ðhG1

1þh1G1
11Þ;

½φ5�1
2

¼ _h1þhG1−h11G1
11; ½φ6�11¼ _h11þ2ðh1G1þh11G1

1Þ;

½φ7�1¼∂1hþ2ðhG1þh1G11Þ;
½φ8�11
2

¼∂1h1−hGþh11G11; ½φ9�111 ¼∂1h11−2ðh1Gþh11G1Þ: ð4:41Þ

The demand that the above be zero constitutes a set of
nine scalar primary Lagrangian constraints (M1 ¼ 9),
whose functional independence is rather obvious
(M0

1 ¼ 9)—and can be ratified through the Jacobian test
in (2.17). Therefore, such vanishing defines the primary
constraint surface TC1 of the theory, which coincides

with the moduli space due to the primary Hessian being
zero, as in the d > 2 case before. In other words, (4.10)
holds true here as well.
The progress to the subsequent stage parallels that of the

d > 2 case. The secondary Hessian is given by the skew-
symmetric constant matrix
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W̃IJ ¼

0
B@

0 −ω 0

ω 0 0

0 0 0

1
CA; with ω ≔ diagð1; 2; 1Þ:

ð4:42Þ

The Hessian (4.42) has rank R2 ¼ 6 and so M2 ¼ 3. This
means that six of the primary Lagrangian constraints are
dynamically stabilized by the (functionally independent)
secondary equations of motion. For the remaining three
primary Lagrangian constraints, the algorithm must be
pursued.
We choose the suitably normalized linearly independent

null vectors of (4.42) as

ðγ̃RÞI ¼ δRþ6
I; with R ¼ 1; 2; 3: ð4:43Þ

Using (4.41) and (4.43), we obtain the three secondary
Lagrangian constraints as the vanishing of

½φ̃1�1¼ ∂1
_hþ2ð _hG1þ _h1G11þh _G1þh1 _G11Þ;

½φ̃2�11¼ 2ð∂1 _h1− _hGþ _h11G11−h _Gþh11 _G11Þ;
½φ̃3�111 ¼ ∂1

_h11−2ð _h1Gþ _h11G1þh1 _Gþh11 _G1Þ: ð4:44Þ

Notice that the above are the total time derivatives of ½φ7�1,
½φ8�11 and ½φ9�111 in (4.41), respectively. It is easy to check
that the secondary Lagrangian constraints are functionally
dependent on the primary Lagrangian constraints.
Specifically,

½φ̃1�1¼ ∂1½φ4�−h½φ2�1−2h1½φ3�11þ2G1½φ4�
þG11½φ5�1þ2G1

1½φ7�1þG1
11½φ8�11;

½φ̃2�11¼ ∂1½φ5�1þ2ðh½φ1�−h11½φ3�11−G½φ4�þG11½φ6�11
−G1½φ7�1þG1

11½φ9�111 Þ;
½φ̃3�111 ¼ ∂1½φ6�11þ2h1½φ1�þh11½φ2�1

− ðG½φ5�1þ2G1½φ6�11þG1½φ8�11þ2G1
1½φ9�111 Þ:

ð4:45Þ

Therefore, the secondary constraints vanish on TC1:

½φ̃1�1≈
1
0; ½φ̃2�11≈

1
0; ½φ̃3�111 ≈

1
0; ð4:46Þ

and so TC2 ≡ TC1. This in turn implies that there are no
functionally independent secondary constraints: M0

2 ¼ 0.
Here, the algorithm closes nondynamically, as described in
case (iib). It follows that the total number of functionally
independent Lagrangian constraints is l ¼ M0

1 þM0
2 ¼ 9.

We note that this result does not correspond to setting
d ¼ 2 in (4.29).

2. Gauge identities

Given the already pointed out inequivalence between the
d > 2 and d ¼ 2 Palatini theories, it is not too surprising
that the gauge transformations (4.30) preserving the action
(4.6) meet a nonsmooth limit for d ¼ 2. The argument is
more subtle than that of the purely on-shell inequivalence;
for example, see [11]. We shall touch upon it shortly.
It has been proven, e.g., [11,47], that the two-

dimensional Palatini action is invariant under the field
transformations hμν→hμνþδθhμν and Gρ

μν→Gρ
μνþδθG

ρ
μν,

with

δθhμν ¼ 2ϵρðμhνÞσθρσ;

δθG
ρ
μν ¼ ϵρσ∂σθμν þ 2ϵσλGρ

σðμθνÞλ: ð4:47Þ

Here, ϵμν stands for the two-dimensional Levi-Civita
symbol (we work with the convention ϵ01 ¼ 1) and
θμν ¼ θνμ, so there are three arbitrary gauge parameters
that characterize the transformation. It is obvious that all the
gauge parameters explicitly appear in the gauge trans-
formations. Hence, g ¼ 3. Their first time derivatives also
show up, adding to a total number of effective gauge
parameters e ¼ 6. We point out that g does not match the
value predicted in (4.31) for d ¼ 2. There is a match for e,
but this is purely coincidental.
These numbers ðg ¼ 3; e ¼ 6Þ, in contrast to the naively

expected ones ðg ¼ 2; e ¼ 6Þ from the diffeomorphism
transformations (4.31) in d > 2 Palatini, reflect the fact that
d ¼ 2 Palatini is associated to a comparatively larger
symmetry group. Its connection to the d > 2 gauge group
is not obvious but finds its origin in the underlying two-
dimensional geometry. Briefly recall the conformal flatness
of two-dimensional spacetimes, i.e.,

gμν¼Ω2ημν; gμν¼Ω−2ημν; with μ;ν¼0;1; ð4:48Þ

for some conformal factor Ω ¼ ΩðxμÞ. Given this property,
the variable hμν introduced in (4.2) simplifies to

hμν ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−gμνÞ

q
gμν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−Ω2ημνÞ

q
Ω−2ημν ¼ ημν:

ð4:49Þ

Consequently, in the conformal frame, hμν is flat and
detðhμνÞ ¼ −1, independent of detðgμνÞ. This latter equality
can be expressed as an algebraic constraint:

hh11 − ðh1Þ2 þ 1 ¼ 0; ð4:50Þ

referred to as the metricity condition. We will soon get back
to such condition. For a richer discussion on this topic,
though, we refer the reader to [12].
In analogy to the higher dimensional case before, we

provide the gauge generators and identities of d ¼ 2
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Palatini next. Comparing (2.28) to (4.47), we can conven-
iently rewrite the latter as

δθhμν ¼ θαβ½ðΩαβÞμν�;
δθG

ρ
μν ¼ θαβ½ðΩαβÞρμν� − ð∂μ1θαβÞ½ðΩαβÞρμν�μ1 ; ð4:51Þ

with the gauge generators readily recognized as

½ðΩαβÞμν� ¼ 2ðϵαðμhνÞβþ ϵβðμhνÞαÞ;
½ðΩαβÞρμν� ¼ 4ϵσðαjGρ

σðμδ
jβÞ
νÞ ; ½ðΩαβÞρμν�μ1 ¼ 2ϵρμ1δαðμδ

β
νÞ;

ð4:52Þ

where the bar j notation delimits the symmetrized indices.
Besides the generators, the other element needed to
determine the gauge identities are the primary Euler-
Lagrange equations. These are given by the straightforward

evaluation of (4.3) for d ¼ 2. Let us refer to them as Eð2Þ
ðhμνÞ

and Eð2Þ
ðGρ

μνÞ, respectively. Then, their merging together with

(4.52) as indicated in (2.29) yields the gauge identities for
d ¼ 2 Palatini we were seeking, after some tedious yet
elementary algebra:

ϱαβ ¼ Eð2Þ
ðhμνÞ½ðΩαβÞμν� þ Eð2Þ

ðGρ
μνÞ½ðΩαβÞρμν�

þ ∂μ1ðEð2Þ
ðGρ

μνÞ½ðΩαβÞρμν�μ1Þ≡ 0: ð4:53Þ

Observe that the manifest symmetry under the exchange
α ↔ β makes the number of independent gauge identities
coincide with our earlier counting: g ¼ 3.

3. Physical degrees of freedom

Altogether, we have now obtained the constraint struc-
ture characterizing triplet of Palatini in d ¼ 2 in terms of
Lagrangian quantities:

tðNÞ
2Pa ¼ ðl ¼ 9; g ¼ 3; e ¼ 6Þ; ð4:54Þ

where N ¼ 9. Employing (2.4) and (2.5), it is immediate to
rewrite this triplet in Hamiltonian terms:

tðNÞ
2Pa ¼ ðNðPÞ

1 ¼ 3; N1 ¼ 6; N2 ¼ 6Þ: ð4:55Þ

Plugging (4.54) in the master formula (2.2), we confirm the
well-known fact that there are no physical degrees of
freedom propagated by the theory: ndof ¼ 0. We restate
that the above cannot be obtained by simply setting d ¼ 2
in (4.35).
To wrap up this section, we check our results are in good

agreement with some of the previously carried out
Hamiltonian calculations. We begin our comparisons by
looking into the approach closest to our own, the one in
[11]. There, the quantities ðhμν; Gρ

μνÞ were regarded as the

N ¼ 9 a priori independent field variables for d ¼ 2
Palatini, exactly as we did here. Following the Dirac-

Bergmann procedure, it was shown that NðPÞ
1 ¼ 3, N1 ¼ 6

and N2 ¼ 6, which readily confirms our own independent
findings. In [12], the metricity condition (4.50) was taken
into account from the onset. As a result of incorporating
this information in the form of additional terms preceded by
two Lagrange multipliers in the Hamiltonian, their setup
had N ¼ 11 ≠ N ¼ 9 a priori independent field variables.

It was there shown that, in such formulation, NðPÞ
1 ¼ 5,

N1 ¼ 7 and N2 ¼ 8, yielding no propagating degrees of
freedom and thus corroborating again our own final result.
This latter comparison provides another example for our
point around (2.6), this time in Hamiltonian terms. Namely,

tðNÞ
2Pa ¼ ðNðPÞ

1 ¼ 3; N1 ¼ 6; N2 ¼ 6Þ ≠ tðNÞ2Pa

¼ ðNðPÞ
1 ¼ 5;N1 ¼ 7;N2 ¼ 8Þ; ð4:56Þ

but we find that ndof ¼ 0 for both sets of numbers upon
employing (2.3). As a last remark, we notice that our
calculations in this Sec. IV B are comparatively simpler
than those in [11,12]. Namely, our approach is certainly to
be preferred if the goal is to determine the constraint
structure of the theory and thereby manifestly count its
propagating modes.

V. CONTEXTUALIZATION AND
POTENTIALITY OF OUR RESULTS

The study of constrained systems was initiated in the
1930s by Rosenfeld, in a sometimes overlooked work [48],
nowadays acknowledged and revisited [49]. It was later
greatly developed during the 1950s [50] and has since been
a very active field of theoretical research. As such, one may
have the impression that the investigation of manifestly
first-order singular classical field theories must be an
already closed subject. This is not true. There are ongoing
advances in this fundamental topic, particularly within the
Lagrangian picture. Besides the references already pro-
vided in Sec. II, the recent work [4] stands as a neat
example. The methodology there put forward is equivalent
to our own proposal, as we shall show in the next Sec. VA.
To further reassure the reader of the topicality of our

formalism, in Sec. V B we explain how our method lends
itself to a conversion from an analytic machinery to a
constructive one. Indeed, the Lagrangian building principle
originally put forward in [8,9] finds in the contents of
Sec. II a solid footing for attempting the construction of
novel theories. This argumentation is carried out in terms
of a concrete application for clarity, but the general
proposal is much broader. In particular, we explain that
the less elaborated upon procedure in [8,9] was cornerstone
for the development of the so-called Maxwell-Proca theory.
This discussion justifies an interest in the calculations of
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Sec. III well beyond a simple exemplification of the explicit
usage of the proposed method. When gravity is to be
involved, the examples in Sec. IV provide a useful
possible basis.

A. On a recent equivalent Lagrangian approach

During the preparation of this manuscript, a novel
Lagrangian approach to obtain the functionally indepen-
dent Lagrangian constraints and count propagating modes
in constrained systems (of the kind here considered)
appeared [4]. The method therein is physically equi-
valent to that put forward in [2,3], which—as already
mentioned—are complementary references to our own
discussion in Sec. II. This equivalence can be easily
verified, as both [4] and [2,3] provide a mapping between
their proposed Lagrangian parameters and the usual num-
bers of different kinds of Hamiltonian constraints. We have
checked this leads to a consistent mapping between their
different Lagrangian parameters.
In our understanding, the method in [4] distinguishes

itself because it introduces the notion of first- and second-
class (functionally independent) Lagrangian constraints.
In our language, these are easy to identify. They are the sum
of the various functionally independent Lagrangian con-
straints arising at all prior stages whose algorithm finalizes
nondynamically [as in cases (iia) and (iib)] and dynami-
cally [as in case (i)], respectively. This abstract definition is
clarified in the following, by classifying the functionally
independent Lagrangian constraints we found in all the
given examples into first- and second-class Lagrangian
constraints.
In the case of Maxwell electromagnetism, the primary

Lagrangian constraint (3.4) we found is a first-class
Lagrangian constraint. This is because it leads to a
secondary constraint (3.5) that is identically satisfied and
so nondynamically stabilized by means of the closure (iia).
In fact, this same example is worked out in [4] as well.
Next, consider the (hard) Proca theory. There, both the

primary (3.9) and secondary (3.10) Lagrangian constraints
we determined are second-class Lagrangian constraints,
since the algorithm closes dynamically at the next stage by
means of case (i). Such closure implies that the consistency
under time evolution of the secondary constraint is deter-
mined through a tertiary equation of motion.

We move to Schwinger-Plebanski formulation of both
electromagnetism and the (hard) Proca theory. In both
cases, the velocity-independent primary constraints
½φ3�i∶≈

1
0 and ½φ4�i∶≈

1
0 in (3.17) are second-class

Lagrangian constraints. This is because their stability is
dynamically ensured, via the secondary equations of
motion. Thus, the algorithm closes as in case (i) for them.
Similarly, the secondary constraints ½φ̃2�ij∶≈

2
0 in (3.22) are

stabilized dynamically at the subsequent stage. Therefore,
these and also their ascendant primary constraints
½φ2�ij∶≈

1
0 in (3.17) are second-class Lagrangian constraints

∀m ≥ 0. The same is true for ½φ1�∶≈
1
0 and ½φ̃1�∶≈

2
0 in the

massive case. When m ¼ 0, we see that ½φ̃1�≋
1
0. This is a

Lagrangian identity that closes the algorithm nondynami-
cally, following case (iia). As a result, both the said
Lagrangian identity and its ascendant ½φ1�∶≈

1
0 are first-

class Lagrangian constraints.
Turning to d ¼ 2 Palatini, we see it is rather simple to

reclassify the nine functionally independent Lagrangian
constraints we obtained into first and second class. At
the primary level, we notice that there are six velocity-
dependent Lagrangian constraints among the relations that
follow from requiring the vanishing of (4.41). These are

½φa�≈
!

1
0, where a ¼ 1; 2;…; 6 and the tensorial indices

outside the square brackets ½·� have been omitted. Their
stability is dynamically ensured (via the secondary equa-
tions of motion) and so these are second-class Lagrangian
constraints. The three remaining primary Lagrangian con-

straints, ½φa�≈
!

1
0 with a ¼ 7, 8, 9, are manifestly velocity

independent. They show a trivial stability at the secondary
stage; see (4.46). Accordingly, we identify these as three
first-class Lagrangian constraints.
At last, we reclassify the functionally independent

Lagrangian constraints we found for d > 2 Palatini into
first- and second-class Lagrangian constraints. Recall that
we obtained M1 ¼ dðdþ 1Þ2=2 functionally independent
primary Lagrangian constraints, given by the vanishing
of (4.11). Notice now that we can straightforwardly split
these primary constraints into

M1ðvÞ ¼ dðdþ 1Þnumber of velocity-dependent constraints∶ ½φ1�∶≈
!

1
0; ½φ�i∶≈

!

1
0;…; ½φ6�ij∶≈

!

1
0; ð5:1Þ

M1ðnvÞ ¼
d
2
ðd2 − 1Þnumber of velocity-independent constraints∶ ½φ7�i∶≈

!

1
0; ½φ8�ji∶≈

!

1
0; ½φ9�jki ∶≈

!

1
0; ð5:2Þ

where the subscripts (n)v stand for (non)velocity-dependent constraints. The consistency under time evolution of the
velocity-dependent constraints is dynamically fixed at the secondary stage and so these are second-class Lagrangian
constraints. The remaining velocity-independent constraints give rise to the M2 ¼ M1ðnvÞ number of functionally
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independent secondary Lagrangian constraints, which are equal to the vanishing of (4.17). Once more, it is trivial to
differentiate between

M2ðvÞ ¼
d
2
ðd2 − 3Þ number of velocity-dependent constraints∶ ½φ̃2�ji∶≈

!

1
0 with i ≠ j; ½φ̃3�jki ∶≈

!

1
0; ð5:3Þ

M2ðnvÞ ¼ d number of velocity-independent constraints∶ ½φ̃1�i∶≈
!

1
0; ½φ̃2�ii∶≈

!

1
0: ð5:4Þ

The consistency under time evolution of the former is
ensured by the tertiary equations of motion. Equivalently,
the algorithm closes according to the dynamical case (i) for
them. As a result, they are second-class Lagrangian con-
straints. Further, the subset of M2ðvÞ number of velocity-
independent primary constraints they follow from are
second-class Lagrangian constraints as well. Specifically,

½φ8�ji∶≈
!

1
0 with i ≠ j and ½φ9�jki ∶≈

!

1
0 are second class. On the

other hand, the above velocity-independent constraints are
trivially stable, as their time evolution yields tertiary
constraints that identically vanish in TC2: recall (4.28).
The algorithm closes nondynamically as in case (iib) for
them. Consequently, they are first-class Lagrangian con-
straints and their ascendant primary Lagrangian constraints

½φ7�i∶≈
!

1
and ½φ8�ii∶≈

!

1
0 are first class too.

B. Relation to the Maxwell-Proca theory and beyond

As we explicitly showed in Sec. III A, in a purely
Lagrangian formulation with as many a priori independent
field variables as the dimension of the underlying flat
spacetime, the constraint structure of the simplest theory
for a single Maxwell field can be characterized by the triplet

tðNÞ
M in (3.6). The analogous investigation in Sec. III B of the
most elementary theory of one (hard) Proca field yielded the

constraint structure characterizing triplet tðNÞ
P in (3.11).

Employing the results of [2],wealsoverified the correspond-
ing Hamiltonian characterization of these two triplets. We
thus checked that the Maxwell and (hard) Proca fields are
associated with two first- and second-class constraints,
respectively. Although usually Maxwell and Proca fields
are defined in the latterHamiltonianmanner, in the following
we take the former Lagrangian triplets as the vector fields’
defining features. We stress both definitions are equivalent.
The manifestly first-order completions of the Maxwell

and (hard) Proca theories analyzed in Secs. III A and III B
are nonlinear electrodynamics (NLE) and the so-called
generalized Proca (GP) or vector-Galileon theory,12

respectively. NLE encompasses a large class of theories.
The celebrated Born-Infeld theory [52] is part of it, but
also the more recently proposed exponential [53] and
logarithmic [54] electrodynamics, among others.
Schematically, the Lagrangian density for NLE can be
written as

LNLE ¼ LM þ fðAμνÞ; ð5:5Þ

where LM is the Maxwell Lagrangian as introduced in
(3.3) and f is a smooth real function. Notice that the
above depends on the Maxwell field Aμ exclusively
through its field strength Aμν—up to boundary terms.
Indeed, it is well known [35] that a more involved
dependence is not possible, if the Uð1Þ gauge symmetry
is to be respected. This feature remains true even when
coupling the Maxwell field to general relativity [55].
Only a few fine-tuned terms that contract Aμν with the
Riemann tensor are possible in such a case. It is not
hard to convince oneself that the constraint structure of

NLE is characterized by the triplet tðNÞ
M in (3.6). In other

words, it has the same constraint structure as classical
electromagnetism, in its standard formulation of
Sec. III A.
The GP theory was put forward in [30] and its complete

Lagrangian was established in [56]. Again schematically,
we may express it as

LGP ¼ LP þ gðBμÞ þ
Xd
n¼1

T ν1…νnρ1…ρn∂ν1Bρ1…∂ρnBμn

ð5:6Þ

in d dimensions, where LP is the (hard) Proca Lagrangian
in (3.7), g is a real smooth function and each T ν1…νnρ1…ρn is
a certain smooth real object constructed out of the space-
time metric ημν, the d-dimensional Levi-Civita tensor
ϵμ1…μd and the Proca field Bμ. Although GP has only been
formulated for d ¼ 4, its systematic construction allows for
a straightforward inferring of (5.6). Here, the underlying
key idea consists in supplementing the (hard) Proca
Lagrangian with derivative self-interaction terms of the
Proca field Bμ. This implies a nonlocal extension of the
notion of mass for the vector field. As such, we regard GP

12We are aware of the recent proposal in [51]. However, the
Lagrangian there put forward is not in a manifestly first-order
form. The authors leave for further studies this result. In the lack
of it, their theory lies beyond our framework and we cannot
address it.
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as an effective classical field theory.13 It can be readily
inferred from the calculations in [8] that the constraint

structure of GP is characterized by the triplet tðNÞ
P in (3.11).

Namely, GP has the same constraint structure as the (hard)
Proca theory, when the latter is formulated as in Sec. III B.
Next, we consider a multifield scenario, including

nM number of Maxwell fields, as well as nP number of
(generalized) Proca fields. In four-dimensional Minkowski
spacetime, the Maxwell-Proca (MP) theory [8,9] is the
complete set of manifestly first-order (self-)interactions
among an arbitrary number of real Abelian vector fields that
propagates the correct number of degrees of freedom.
These consistent interactions were derived by demanding
that the constraint structure of each Maxwell and Proca

field is characterized by the triplets tðNÞ
M and tðNÞ

P , respec-
tively. Let N 1 ¼ ðnM þ nPÞd. We denote the constraint

structure characterizing the triplet of MP as tðN 1Þ
MP . Then, we

say that the building principle of the theory is based on the
requirement

tðN 1Þ
MP ¼! nM · tðN¼dÞ

M ⊕ nP · t
ðN¼dÞ
P

¼ ðl ¼ nM þ 2nP; g ¼ nM; e ¼ 2nMÞ; ð5:7Þ

where in the last equality we have made use of (3.6)
and (3.11).

At this point, it should be clear that our calculations of

tðNÞ
M and tðNÞ

P in Sec. III, elementary as they are, can be used
as a basis for the construction of nontrivial theories. Having
a ready-to-be-used method optimized to obtain such triplets
(i.e., the method explained in Sec. II and graphically
summarized in Fig. 1) is thus a powerful tool for the
development of manifestly first-order classical field theo-
ries where multiple fields of different spins (self-)interact.
For instance, an interesting open question is that of the

consistent coupling of the MP theory to gravity. It is in
principle possible to combine our calculations in all the
previous sections to attempt this ambitious goal as follows.
Let N 2 ¼ ðnM þ nPÞdþ dðdþ 1Þ2=2, with d ≥ 2 the
dimension of the spacetime. A manifestly first-order
Lagrangian density LMPð2ÞPa that describes the dynamics
of nM number of Maxwell fields and nP number of
(generalized) Proca fields in the presence of Einstein’s
gravity in terms of N 2 a priori independent field variables
must be associated with a constraint structure characteriz-

ing triplet tðN 2Þ
MPð2ÞPa satisfying

tðN 2Þ
MPð2ÞPa¼

!
nM · tðNÞ

M ⊕ nP · t
ðNÞ
P ⊕ tðNÞ

ð2ÞPa; ð5:8Þ

where all the triplets on the right-hand side have already
been calculated in this work; see (3.6), (3.11), (4.36) and
(4.54). Substituting these results, we have that

tðN 2Þ
MPð2ÞPa¼

!

� ðl ¼ nM þ 2nP þ d2ðdþ 1Þ; g ¼ nM þ d; e ¼ 2nM þ 3dÞ if d > 2;

ðl ¼ nM þ 2nP þ 9; g ¼ nM þ 3; e ¼ 2nM þ 6Þ if d ¼ 2:
ð5:9Þ

The conversion of any of the above necessary conditions
into a Lagrangian density building principle is an alge-
braically involved exercise beyond the scope of our present
investigations. We thus leave it for future works.
A last remark is due. As we observed at the very end of

Sec. II A and should be apparent from our calculations in
Sec. IVA, it is in general a conceptually clear but
algebraically nontrivial exercise to obtain the triplet tðNÞ
of a given Lagrangian density L within our framework. It is
even more challenging to determine the (exhaustive) form
of L from the necessary condition that it should be

associated to a certain triplet tðNÞ. The reason is that such
inversion in the logic requires solving sets of coupled
nonlinear partial differential equations in most cases.
Therefore, it is overwhelmingly convenient to use all
freedom of choice available in order to simplify this task
to the utmost. For instance, one is advised to choose
constant null vectors for the Hessians at all stages, if
possible. For the concrete research project here proposed,
it may be the case that (5.8) is not the optimal starting point.
It could happen that the equivalent demand

tðN 3Þ
MPð2ÞPa¼

!
nM · tðNÞM ⊕ nP · t

ðNÞ
P ⊕ tðNÞ

ð2ÞPa with

N 3 ¼ ðnM þ nP þ dþ 1Þdðdþ 1Þ=2; ð5:10Þ

with the right-hand side triplets as given in (3.32), (4.36)
and (4.54), is a more befitting way to try to derive the set of
consistent (self-)interactions of vector fields in a curved
background. For the reasons given at the beginning of

Sec. IV, we believe that tðNÞ
ð2ÞPa is indeed a beneficial basis for

the gravity piece above.

13The quantization of nonlocal field theories generically leads
to acausality, most often for phenomena beyond tree level. It is
sometimes possible to circumvent this problem, especially in the
presence of supersymmetry—for instance, see [57]. The con-
sistent quantization of GP has been investigated in [58]. Although
the results obtained so far justify an optimistic attitude, no
complete and rigorous quantization scheme seems to have been
proposed so far, along the lines of the BRST and path integral
quantization of the (hard) Proca theory in [59,60], respectively.
Therefore, we here adopt the conservative point of view that
regards GP as an effective classical field theory.
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VI. CONCLUSIONS

In the following, we summarize the results we have put
forward in this manuscript. Then, we proceed to discuss
their relevance and pertinence. At last, we comment on the
increasing (in n) computational difficulty of evaluating
Lagrangian constraints on constraint surfaces TCn and
concretize the pathologies a theory may suffer from when
the algorithm of Sec. II A is not verified to close.

A. Summary of results

In Sec. II, we have collected and complemented results
from the extensive literature on constrained systems and
presented a self-contained and ready to be used method to
determine all the constraints in a theory. By postulation, the
theory is required to be described by a manifestly first-order
Lagrangian. We make the mild assumptions of the principle
of stationary action and finite reducibility. When the
theory is covariant, the iterative algorithm presented for
the determination of the functionally independent
Lagrangian constraints does not contravene this feature.
Nonetheless, manifest covariance is generically lost in our
approach. In Secs. III and IV, we have minutely exemplified
the usage of our said procedure. In Sec. V, we have argued
for the pertinence and contemporaneity of both the general
formalism and the given examples. Indeed, an equivalent
but different methodology has been put forward lately [4].
The examples of Sec. III constitute the foundation of the
also recent Maxwell-Proca theory [8,9] and those of
Sec. IV can potentially form the basis for the consistent
coupling of Maxwell-Proca to gravity.

B. Critical discussion of results

The procedure explained in Sec. II presents two main
appealing features. First, it is a coordinate-dependent
approach, as opposed to a geometrical one. It thus readily
allows for its application, given a Lagrangian density
satisfying the initial postulates, without having to work
out any symplectic two-form. With pragmatism in mind,
Sec. II has been written in a way that is (hopefully)
accessible to a broad audience. Even though the method
stands on a rigorous footing, the discussion has been made
largely devoid of mathematical technicalities.
Second, it is an intrinsically Lagrangian procedure, as

opposed to a Hamiltonian or a hybrid one. The appeal of
this characteristic resides in the fact that, in many areas
of high-energy theoretical physics, manifestly first-order
classical field theories are predominantly posed and studied
in their Lagrangian formulation. This is the case for
instance in cosmology, astrophysics, black hole physics
and holographic condensed matter. In all these disciplines,
GP, MP and allied theories, especially in the presence of
gravity, have been convincingly argued to be of significant
interest, e.g., [9,30,61]. As such, our proposed procedure
avoids non-negligible obstacles that typically arise in the

transformation from the Lagrangian to the Hamiltonian
picture. Besides, as already noted in the end of Secs. IVA
and IV B, our Lagrangian approach is a computationally
faster and simpler way to obtain the constraint structures of
these theories, compared to representative Hamiltonian
analyses. (The examples in Sec. III are so effortless
comparatively that they do not substantiate an analogous
argumentation.)
In more detail, implementing our algorithm in Sec. II A

is considerably easier than carrying out a Hamiltonian
counterpart algorithm based on the Dirac-Bergman [50]
procedure. As the attentive reader will have already noticed
in our explicit examples of Sec. IV and we shall address
shortly, the most demanding step in our approach consists
in evaluating the nth stage Lagrangian constraints in the
(n − 1)th constraint surface, with n ≥ 1. An analogous
evaluation is necessary within the Hamiltonian picture as
well, where two additional hurdles arise. On the one hand,
one must classify the Dirac constraints into first and second
class. This entails calculating the Poisson brackets of all
Dirac constraints, a generically challenging task in field
theory because nonlocal algebras usually arise,14 e.g.,
[13,14]. On the other hand, in the standard Hamiltonian
transition from one stage to the next, novel constraints
emerge and must be consistently included via Lagrange
multipliers. Closure of the algorithm requires the determi-
nation of as many Lagrange multipliers as possible, which
in turn implies the resolution of algebraic or even differ-
ential equations. Even in the comparatively benign alge-
braic scenario, finding a solution is an increasingly (in
stage) laborious and nontrivial task that involves inverting
field-dependent matrices with complicated spatial index
structures.
For a suggestive utility of the examples in Secs. III

and IV, the reader is referred to Sec. V B. Recall that the
proposal therein is illustrative of the general theory-
construction idea outlined in the introduction Sec. I and
at the beginning of Sec. V.

C. Two final observations

In the first of our observations, we bring to light a series
of considerations that must be taken into account when
applying our method. In particular, we wish to discuss the
practical complications that field theories of the kind here
considered commonly exhibit when their Lagrangian con-
straints are to be evaluated on the suitable constraint
surface.
First, we debunk what naively may look like an

ambiguity. Recall that any constraint surface TCn for some
finite n ≥ 1 is defined by the weak vanishing of the

14This nonlocality is as a consequence of the distributional
nature of fields. Dirac constraints must be smeared with suitable
test functions and integrated over for a correct evaluation of the
Poisson brackets.
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functionally independent Lagrangian constraints at all prior
stages:

φIðQA; _QA; ∂iQAÞ∶≈!
1
0;

φ̃RðQA; _QA; ∂iQAÞ∶≈!
2
0;

φ̂UðQA; _QA; ∂iQAÞ≈!
3
0; etc:; ð6:1Þ

As a direct consequence of the above, one can determine a
maximal set of functionally independent relations of the
form

_QB≈
!

n
_QBðQA; _QA; ∂iQAÞ;

∂iQB≈
!

n
∂iQBðQA; _QA; ∂iQAÞ;

QB≈
!

n
QBðQAÞ: ð6:2Þ

Though it should be clear by now, we confirm the different
role played by the generalized velocities _QA and the
spacelike derivatives of the generalized coordinates
∂iQA. The former are independent coordinates on TC,
while the latter are functionally related to the generalized
coordinates QA. This clarification becomes pertinent when
evaluating the secondary Lagrangian constraints in TC1
already. At this point (and in subsequent stages), derivatives
of the form ∂i

_QA generically show up. In such expressions,
one must first replace the primary weak expression for the
generalized velocity _QA—if pertinent—and then apply the
spatial derivative on it.
Having clarified this point, we notice that its consistent

implementation leads to the following nested situation.
Substitution of _QA according to (6.2) in ∂i

_QA normally
leads to the presence of terms of the form ∂iQB in (6.2).
These are again prone to be evaluated in TCn and can in
turn contribute terms depending on QB’s in (6.2), etc.
We emphasize that one must reach an expression where
this nesting ceases to occur, before proceeding with the
algorithm. Not doing so would imply a wrong evalua-
tion of the Lagrangian constraints in TCn, may lead
to a misidentification of the functionally independent
Lagrangian constraints and will almost invariably yield
wrong results at the following (nþ 1)th stage. In fact, a
wrong evaluation will typically land the researcher in a
physically inequivalent theory from the one he or she
started with.
Additionally and normally, when evaluating some

Lagrangian constraints in TCn, potentially contrived func-
tions of the previous stages’ functionally independent
Lagrangian constraints also show up. To understand the
difficulty their appearance implies, consider the tertiary
Lagrangian constraints (4.25) we found for d > 2 Palatini.

Their raw expressions, prior to any evaluation in a con-
straint surface, contain quantities f ¼ fðQA; _QA; ∂iQAÞ
that vanish in TC1. However, recognizing such f’s as
primary weak zeros is a challenging task. Specifically,

½φ̂1�i⊃Gjfij; fij¼∂½i½φ7�j�−2Gði½φ7�jÞ−Gkði½φ8�kjÞ≈1 0;
ð6:3Þ

where in the ⊃ relation we have omitted numerical factors
and the φ’s are as given in (4.11). In the expression for fij,
the first equality is nontrivial, while the subsequent primary
weak equality is obvious. An analogous situation arises
with other f’s that are based on both functionally inde-
pendent primary (4.11) and secondary (4.17) Lagrangian
constraints. A brute force resolution to identify all such f’s
consists in putting forward the most general ansatz com-
patible with the tensorial character of each of the
Lagrangian constraints one is trying to evaluate and
comparing it to their explicit expressions. This is indeed
how we laboriously arrived at (4.27).
For the second and last observation, the reader should

heed (2.2) and (2.27). We already stressed the importance
of closing the iterative algorithm for obtaining the func-
tionally independent Lagrangian constraints toward the end
of Sec. II A. Now, we are equipped to better grasp the
implications of not doing so, mentioned in the introductory
Sec. I. Most often, failure to close the algorithm will give
rise to the propagation of unphysical modes. These are
Ostrogradsky instabilities [5], but we shall loosely refer to
them as ghosts. Even after ensuring ghost freedom, not
closing the algorithm can lead to trouble: it may over-
constrain the theory, so that fewer than the desired number
of degrees of freedom are propagated.
Let us consider the MP theory [8,9] discussed in

Sec. V B as a concrete framework to clarify the above
two unwanted scenarios. For our present purposes, it will
suffice to consider the case when there are no Maxwell
fields nM ¼ 0 and there are an arbitrary but finite number of
Proca fields nP. Recall that, in the standard formulation, we
already saw in Sec. III B that a Proca field is associated to
l ¼ M0

1 þM0
2 ¼ 1þ 1 ¼ 2 number of functionally inde-

pendent Lagrangian constraints. Bear in mind that this is
also true for a generalized Proca field.
We denote the natural generalization of the GP theory in

(5.6) to a multifield setup asLPP.LPP automatically leads to
M0

1 ¼ nP number of functionally independent primary
constraints. The consistency under time evolution of these
constraints does not generically yield the M0

2 ¼ nP number
of functionally independent secondary constraints one
would naively expect. Only a fine-tuned subset of terms
in LPP does, precisely the terms that are part of the MP
theory. For all those terms, it was shown that no tertiary
constraints arise (M3 ¼ 0) and the algorithm closes
dynamically giving rise to l ¼ 2nP. Therefore, the correct
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number of physical modes ndof ¼ d − nP are present in the
theory. (To obtain this result, notice that, since there are no
gauge identities, g ¼ 0 ¼ e.)
Notice that, if one studies only the primary stage for LPP,

one will be deceived into thinking that the theory is valid, as
it suitably extends the primary stage of GP. However, LPP
has M0

2 < nP in general and therefore l < 2nP and
ndof > d − nP. The additional propagating modes are
precisely the ghosts of the first scenario we warn against.
If one studies both the primary and secondary stages for

LPP, then one can fine-tune the Lagrangian density so that
M0

2 ¼ nP as desired. But these functionally independent
secondary constraints in the fine-tuned theory are at this
point not necessarily stable. Their consistency under time
evolution could in principle lead to further functionally
independent tertiary constraints, so that l > 2nP and
ndof < d − nP. This would place us in the second unwel-
come scenario. For the given example, it so happens that
the fine-tuned LPP is associated to a full-rank tertiary
Hessian. Consequently, the functionally independent sec-
ondary constraints are dynamically stabilized without
further fine-tunings of the theory. However, this cannot
be assumed; it has to be checked, so as to ensure the theory
is not overconstrained.
It is interesting to point out that in [62] our very same

admonition against the overconstrained scenario is made,
albeit in a different context. The authors look into second-
order field theories with no gauge symmetry and derive the
necessary conditions for such Lagrangians to not propagate
ghosts. They show that, in the presence of Lorentz
symmetry, the existence of any number M0

1 > 0 of func-
tionally independent Lagrangian constraints automatically
leads to the same number M0

2 ¼ M0
1 of functionally

independent Lagrangian constraints. They unequivocally
recognize our second scenario: thoseM0

2 are not necessarily
stable, so one could be facing an overconstrained theory.
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APPENDIX: FORMULAS AT AN ARBITRARY
STAGE OF THE ALGORITHM

In this Appendix, we show the explicit expressions of all
quantities involved in an arbitrary ath stage of the iterative
algorithm for irreducible theories presented in Sec. II A.
Needless to say, in the appropriate limit, the general
expressions here given yield the primary and secondary
stages’ formulas there shown.

Let φAa
∶≈
!

a
0 be a set of Ma number of functionally

independent Lagrangian constraints in the ath stage, with
Aa ¼ 1; 2;…;Ma. These constraints are relations between
the generalized coordinates QA and velocities _QA of the
field theory under consideration. They define the so-called
ath constraint surface

TCa ≔ fðQA; _QAÞjφAa
≈
a−1

0g
⊆ TCa−1 ⊂ TCa−2 ⊂ � � �TC1 ⊆ TC0; ðA1Þ

where TC0 is the moduli space of the theory, defined in
(2.18). In order to ensure the preservation of the said
constraints under time evolution, we demand

EAa
≔ _φAa

≈
!

a
0: ðA2Þ

We refer to EAa
as the (aþ 1)th stage Euler-Lagrange

equations. Next, we will explicitly write EAa
. But to do so,

we must first define the following objects.
Let WAaAb

denote the (aþ 1)th stage Hessian. This is a
square matrix of dimension Ma that allows us to define
Maþ1 ≔ dimðWAaAb

Þ − rankðWAaAb
Þ. We refer to theMaþ1

number of linearly independent null vectors associated
to WAaAb

as γAaþ1
. Explicitly, ðγAaþ1

ÞAaWAaAb
¼ 0, with

Aaþ1 ¼ 1; 2;…;Maþ1. We require them to fulfill the
normalization condition

ðγAaþ1
ÞAaðγAbþ1ÞAa

¼ δAaþ1

Abþ1 ; with γAaþ1 ≔ ðγAaþ1
ÞT;
ðA3Þ

so that they form a basis in the kernel of WAaAb
. Here, T

stands for the transpose operation. With the help of the
above null vectors, the (aþ 1)th stage Hessian can be
expressed in terms of the functionally independent ath
stage Lagrangian constraints as follows:

WAaAb
¼ ðγAa

ÞAa−1ðγAa−1
ÞAa−2…ðγA1

ÞA∂ _AφAb
;

with A ¼ 1; 2;…; N ¼ dimðCÞ: ðA4Þ
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Finally, we introduce the auxiliary matrix MAaAb (the
Moore-Penrose pseudoinverse of WAaAb

), which always
exists and is uniquely determined from the relations

MAaAbWAbAc
− δAa

Ac
þ ðγAaþ1ÞAc

ðγAaþ1
ÞAa ¼ 0;

MAaAbðγAaþ1ÞAb
¼ 0: ðA5Þ

Using the above, the (aþ 1)th stage Euler-Lagrange
equations in (A2) can be written as

EAb
¼ Q̈AðγA1ÞAðγA2ÞA1

…ðγAaÞAa−1
WAaAb

þ αAb
≈
!

a
0; ðA6Þ

where the expression (A4) is to be employed forWAaAb
and

where we have (recursively) defined

αAb
≔ ½−αAa−1

MAa−1Ab−1ðγAb−1
ÞAa−2ðγAa−2

ÞAa−3…ðγA1
ÞA∂ _A − αAa−2

MAa−2Ab−2ðγAb−2
ÞAa−3ðγAa−3

ÞAa−4…ðγA1
ÞA∂ _A

− � � � − αAMAB
∂ _B þ _QA

∂A þ ð∂i _QAÞ∂iA�φAb
; ðA7Þ

with αA as given in (2.12). To obtain the presented αAb
, the previous ath stage Euler-Lagrange equations are employed.

These in turn depend on the (a − 1)th stage Euler-Lagrange equations and so on. This is the origin of the noted recursion.
Notice we therefore explicitly employ the primary Euler-Lagrange equations and so the expression (A6) is an on-shell
statement.
In order to reproduce the results in Sec. II A from the above discussion, the reader only needs to do the index

replacements ðA0 ≡ A;B;…Þ, ðA1 → I; J;…Þ, ðA2 → R; S;…Þ, etc., as well as take footnote 7 into account.

[1] K. Kamimura, Nuovo Cimento B 68, 33 (1982).
[2] B. Díaz, D. Higuita, and M. Montesinos, J. Math. Phys.

(N.Y.) 55, 122901 (2014).
[3] B. Díaz and M. Montesinos, J. Math. Phys. (N.Y.) 59,

052901 (2018).
[4] M. J. Heidari and A. Shirzad, arXiv:2003.13269.
[5] M. Ostrogradsky, Mem. Ac. St. PetersbourgVI, 385 (1850).
[6] F. Sbisa, Eur. J. Phys. 36, 015009 (2015).
[7] C. Deffayet, G. Esposito-Farese, and A. Vikman, Phys. Rev.

D 79, 084003 (2009); C. Deffayet, S. Deser, and G.
Esposito-Farese, Phys. Rev. D 82, 061501 (2010); S. F.
Hassan, R. A. Rosen, and A. Schmidt-May, J. High Energy
Phys. 02 (2012) 026; L. Buoninfante and W. Li, Phys. Lett.
B 779, 485 (2018); L. Heisenberg, J. Cosmol. Astropart.
Phys. 10 (2018) 054.

[8] V. E. Díez, B. Gording, J. A. Méndez-Zavaleta, and A.
Schmidt-May, Phys. Rev. D 101, 045009 (2020).

[9] V. E. Díez, B. Gording, J. A. Méndez-Zavaleta, and A.
Schmidt-May, Phys. Rev. D 101, 045008 (2020).

[10] M. Ferraris, M. Francaviglia, and C. Reina, Gen. Relativ.
Gravit. 14, 243 (1982).

[11] N. Kiriushcheva, S. V. Kuzmin, and D. G. C. McKeon,
Mod. Phys. Lett. A 20, 1895 (2005).

[12] N. Kiriushcheva, S. V. Kuzmin, and D. G. C. McKeon,
Int. J. Mod. Phys. A 21, 3401 (2006).

[13] R. N. Ghalati and D. G. C. McKeon, arXiv:0712.2861.
[14] D. G. C. McKeon, Int. J. Mod. Phys. A 25, 3453 (2010).
[15] E. C. G. Sudarshan and N. Mukunda, Classical Dynamics:

A Modern Perspective (John Wiley, New York, 1974);
T. Regge and C. Teitelboim, Constrained Hamiltonian
Systems (Academia Nazionale dei Lincei, Rome 1976);

N. Mukunda, Ann. Phys. (N.Y.) 99, 408 (1976); Phys. Ser.
21, 783 (1980).

[16] J. Lee and R. M. Wald, J. Math. Phys. (N.Y.) 31, 725 (1990).
[17] J. D. Bekenstein and B. R. Majhi, Nucl. Phys. B892, 337

(2015).
[18] I. Bengtsson, Phys. Lett. B 172, 342 (1986).
[19] C. Batlle and J. Gomis, Phys. Lett. B 187, 61 (1987).
[20] A. Shirzad, J. Phys. A 31, 2747 (1998); H. J. Rothe and

K. D. Rothe, Classical and Quantum Dynamics of Con-
strained Hamiltonian Systems (World Scientific, Singapore,
2010).

[21] R. Sugano, Prog. Theor. Phys. 68, 1377 (1982); J. M. Pons,
J. Phys. A 21, 2705 (1988); X. Gràcia and J. M. Pons, Ann.
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