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Abstract. Air pollution is a serious environmental issue and
leading contributor to disease burden in China. Rapid reduc-
tions in fine particulate matter (PM2.5) concentrations and
increased ozone concentrations occurred across China dur-
ing 2015 to 2017. We used measurements of particulate mat-
ter with a diameter < 2.5 µm (PM2.5) and ozone (O3) from
more than 1000 stations across China along with Weather
Research and Forecasting model coupled with Chemistry
(WRF-Chem) regional air quality simulations, to explore the
drivers and impacts of observed trends. The measured nation-
wide median PM2.5 trend of−3.4µgm−3 yr−1 was well sim-
ulated by the model (−3.5µgm−3 yr−1). With anthropogenic
emissions fixed at 2015 levels, the simulated trend was much
weaker (−0.6µgm−3 yr−1), demonstrating that interannual
variability in meteorology played a minor role in the ob-
served PM2.5 trend. The model simulated increased ozone
concentrations in line with the measurements but underes-
timated the magnitude of the observed absolute trend by a
factor of 2. We combined simulated trends in PM2.5 concen-
trations with an exposure–response function to estimate that
reductions in PM2.5 concentrations over this period have re-
duced PM2.5-attributable premature mortality across China
by 150 000 deaths yr−1.

1 Introduction

Concentrations of particulate matter and ozone across China
largely exceed international air quality standards (Redding-
ton et al., 2019; Silver et al., 2018). This poor air quality
is estimated to hasten the deaths of 870 000–2 470 000 peo-
ple across China each year (Apte et al., 2015; Burnett et al.,

2018; Cohen et al., 2017; Gu and Yim, 2016; Lelieveld et al.,
2015). The Chinese government’s efforts to improve air qual-
ity began in the 1990s, but emissions of pollutants continued
to increase into the 21st century, and air pollution has wors-
ened (Krotkov et al., 2016; Streets et al., 2008; Zhang et al.,
2012). In 2013, China experienced episodes of severe par-
ticulate matter pollution (Zhang et al., 2016). In response,
the Chinese government announced the “Air Pollution Pre-
vention and Control Action Plan”, which focused on the re-
duction of fine particulate matter (PM2.5) through stringent
emission controls during 2012–2017 (Zheng et al., 2017).

1.1 Previous studies of trends in China’s air quality

Satellite remote sensing studies have been used to show large
changes in air pollution across China in recent decades, with
positive trends in nitrogen dioxide (NO2) (van der A et al.,
2006), sulfur dioxide (SO2) (Zhang et al., 2017) and PM2.5
(Ma et al., 2016) during the 1990s and early 2000s. Trends
in aerosol optical depth have been used to estimate changes
in PM2.5, which peaked around 2011 (Ma et al., 2016). NO2
across China peaked around 2011 (De Foy et al., 2016; Irie et
al., 2016), although concentrations in the Pearl River Delta
(PRD) peaked earlier, and in western regions they may have
peaked later (Cui et al., 2016). Several remote sensing studies
show that SO2 concentrations in China peaked around 2006
(van der A et al., 2017; Krotkov et al., 2016; Zhang et al.,
2017), matching the period of maximum emissions (Duan
et al., 2016; M. Li et al., 2017; Zheng et al., 2018). Analy-
sis of measurements from the Acid Deposition Monitoring
Network in East Asia (EANET) shows a negative pH trend
(i.e. becoming more acidic) from 1999 until a reversal oc-
curred in 2006, matching peak SO2 emissions and concen-
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trations (Duan et al., 2016). Measurements of O3 concentra-
tions at background monitoring sites indicate positive trends
in western China during 1994–2013 (Xu et al., 2016) and
Taiwan during 1994–2003 (Chang and Lee, 2007), suggest-
ing that O3 has been increasing across China during the past
two decades. More recently, measurements at urban sites also
showed positive O3 trends during 2005–2011 (Zhang et al.,
2014). The establishment of China’s air pollution monitor-
ing network, operated by the China National Environmental
Monitoring Centre (CNEMC; Wang et al., 2015), which in-
cludes measurements from over 1600 locations, has enabled
more detailed analysis of recent air pollution changes (Sil-
ver et al., 2018; Zhai et al., 2019). Between 2015 and 2017,
PM2.5 concentrations across China decreased by 28 % (Sil-
ver et al., 2018). Zhai et al. (2019) reported a 30 %–40 %
decrease in PM2.5 concentrations during 2013–2017. In con-
trast O3 concentrations have increased, with median concen-
tration of O3 across 74 key cities increasing from 141µgm−3

in 2013 to 164µg m−3 in 2017 (Huang et al., 2018). Sil-
ver et al. (2018) found that O3 maximum 8 h mean concentra-
tions (O3MDA8) increased by 4.6 % yr−1 over 2015–2017.
Lu et al. (2020) reported positive trends in April–September
O3MDA8 at 90 % of sites during 2013 to 2019. Positive re-
gional O3 trends remain even after meteorological variabil-
ity has been removed (K. Li et al., 2019). Trends in NO2 are
more variable, with a negative trend reported in eastern China
and positive trends in western areas (Li and Bai, 2019). Sil-
ver et al. (2018) found that NO2 had negative trends in Hong
Kong and North China Plain regions, positive trends in the
Yangtze River Delta (YRD), Sichuan Basin (SCB) and PRD,
and no overall trend at the national scale.

1.2 Identifying drivers of recent trends

Changes in the concentrations of air pollutants may be
caused by changing emissions or by interannual variabil-
ity of meteorology. Stringent emission controls have started
to reduce emissions of various pollutants across China. Be-
tween 2013 and 2017, emissions of PM2.5, SO2 and NOx

(NO2 + nitrogen oxide) declined, whereas emissions of am-
monia (NH3) and non-methane volatile organic compounds
(NMVOCs) remained fairly constant (Zheng et al., 2018).
Zheng et al. (2018) also demonstrate that emission reduc-
tions were primarily driven by pollution controls, rather than
decreasing activity rates. Meteorological variability alters at-
mospheric mixing, deposition and transport, all of which can
influence the concentration of pollutants. Separating the in-
fluence of meteorology and emissions on air pollutant con-
centrations is difficult, due to the interlinked nature of the
chemistry–climate system (Jacob and Winner, 2009). How-
ever, to assess the efficacy of China’s emissions reductions,
it is necessary to separate these two factors. There are two
commonly used approaches to separate the influences of me-
teorology and emissions on variability in atmospheric pol-
lutant abundances. The first approach uses statistical mod-

els, such as multi-linear regression, to control for the influ-
ence of meteorology and to allow the proportion of air pol-
lutant concentration variability that can be explained by me-
teorological variables to be calculated (Tai et al., 2010). The
second approach is to use an atmospheric chemistry trans-
port model to simulate pollutant concentrations (Ansari et
al., 2019; Xing et al., 2011).

There are a limited number of modelling studies that at-
tempt to separate the influence of meteorology and emis-
sions changes on recent air quality trends in China. Chen et
al. (2019) used the Weather Research and Forecasting model
coupled with Chemistry (WRF-Chem) with 2010 emissions
to examine the drivers of trends in wintertime PM. Ding et
al. (2019) used the Community Multiscale Air Quality
(CMAQ) model with meteorological inputs from the WRF
model to evaluate the importance of emissions, meteorology
and demographic changes to PM2.5-related mortality during
2013–2017. Our paper adds to these previous studies by eval-
uating the ability of an online coupled model (WRF-Chem)
to capture trends in NO2, O3 and SO2 as well as PM, using
the most recent emissions and evaluated against a compre-
hensive measurement dataset. Through a comparison of mul-
tiple simulations, where either annual variability in emissions
or meteorology is held constant, the relative influence of the
two factors can be estimated. Here we analyse measurements
and a regional air quality model to explore the role of chang-
ing anthropogenic emissions on air pollutant concentrations
and human health across China during 2015 to 2017.

2 Materials and methods

2.1 Measurement dataset

We used hourly measurements from the CNEMC monitoring
network (Wang et al., 2015) of PM2.5, O3, NO2 and SO2 for
the period 2015–2017, which include data from over 1600
monitoring stations across mainland China and are avail-
able to download from https://quotsoft.net/ (last access: 6
October 2020). These were combined with data from the
Hong Kong Environmental Protection Department (https://
cd.epic.epd.gov.hk/EPICDI/air/station/) (last access: 6 Octo-
ber 2020) and Taiwan’s Environmental Protection Adminis-
tration (https://airtw.epa.gov.tw/CHT/Query/His_Data.aspx)
(last access: 6 October 2020). We conducted quality con-
trol on the measured data following the methods outlined
in Silver et al. (2018), which include excluding data with
a high proportion of repeated measurements and periods of
low variability, which represent periods of missing or invalid
data. The cleaned dataset included measurements from 1155
sites.

2.2 WRF-Chem model setup

We used the Weather Research and Forecasting model cou-
pled with Chemistry (WRF-Chem) version 3.7.1 (Grell et al.,
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2005) to simulate trace gas and particulate pollution over
China for 2015 to 2017. The model domain uses a Lam-
bert conformal grid (11–48◦ N, 93–128◦ E) centred on east-
ern China with a horizontal resolution of 30 km. The model
has 33 vertical layers, with the lowest layer∼ 29 m above the
surface and the highest at 50 hPa (∼ 19.6 km).

European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-Interim fields were used to provide meteo-
rological boundary and initial conditions, as well as to nudge
the model temperature, winds and humidity above the bound-
ary layer every 6 h. Restricting nudging to above the bound-
ary layer allowed a more realistic representation of vertical
mixing (Otte et al., 2012). Chemical boundary and initial
conditions were provided by global fields from the Model for
Ozone and Related Chemical Tracers version 4 (MOZART-
4) chemical transport model (Emmons et al., 2010).

Anthropogenic emissions were from the Multi-
resolution Emission Inventory for China (MEIC;
http://www.meicmodel.org). (last access: 6 October 2020.)
MEIC estimates emissions using a database of activity
rates across residential, industrial, electricity generation,
transportation and agricultural emission sectors combined
with China-specific emission factors (Hong et al., 2017).
We used the 2015 MEIC dataset, then used sector-specific
and species-specific scaling for 2016 and 2017 based on the
emission totals estimated in Zheng et al. (2018). Table 1
shows emission totals for 2015, 2016 and 2017. Over the
2015 to 2017 period, Chinese emissions decreased by 38 %
for SO2, 16 % for PM2.5 and 8 % for NOx. For regions
outside the MEIC dataset, we used anthropogenic emissions
from the EDGAR-HTAP_v2.2 emission inventory for 2010.

Biogenic emissions were generated online by the Model
of Emissions of Gases and Aerosol from Nature (MEGAN)
(Guenther et al., 2000). Biomass burning emissions were
provided by the Fire Inventory from NCAR (FINN) ver-
sion 1.5 (Wiedinmyer et al., 2011), which uses satellite
fire observations of fires and land cover to estimate daily
1 km2 emissions. Dust emissions were generated online us-
ing the Georgia Institute of Technology–Goddard Global
Ozone Chemistry Aerosol Radiation and Transport (GO-
CART) model with Air Force Weather Agency (AFWA)
modifications (LeGrand et al., 2019).

Gas-phase chemistry is simulated using the MOZART-4
scheme, and aerosol is treated by the Model for Simulat-
ing Aerosol Interactions and Chemistry (MOSAIC; Zaveri et
al., 2008) scheme, including grid-scale aqueous chemistry
and an extended treatment of organic aerosol (Hodzic and
Jimenez, 2011; Hodzic and Knote, 2014). Four discrete size
bins were used within MOSAIC (0.039–0.156, 0.156–0.625,
0.625–2.5, 2.5–10 µm) to represent the aerosol size distribu-
tion.

2.3 Model and measurement trend estimation

To separate the influence of changing anthropogenic emis-
sions from interannual variability in meteorology, we con-
ducted two 3-year simulations, both for 2015–2017. The first
simulation (control) included interannual variability in both
anthropogenic emissions and meteorology. The second sim-
ulation (fixed emissions) included interannual variability in
meteorology but with anthropogenic emissions fixed at 2015
levels. Both simulations include interannual variability in
biogenic and biomass burning emissions, allowing us to iso-
late the impacts of changing anthropogenic emissions.

Trends in the model data were calculated using the same
method as the measurement data (Silver et al., 2018). The
hourly data are averaged to monthly means, which are then
deseasonalised using locally weighted scatterplot smoothing.
The magnitude and direction of linear trends were calculated
using the Theil–Sen estimator, a non-parametric method that
is resistant to outliers (Carslaw, 2015). The Mann–Kendall
test was used to assess the significance of trends, using a
threshold of p < 0.05. This stage of the analysis was per-
formed using the R package openair (Carslaw and Ropkins,
2012).

2.4 Health impact estimation

Health impacts are estimated for ambient PM2.5 using the
Global Exposure Mortality Model (GEMM; Burnett et al.,
2018), which uses cohort studies to estimate health risks inte-
grated over a range of PM2.5 concentrations. GEMM applies
a supralinear association between exposure and risk at lower
concentrations and then a near-linear association at higher
concentrations. We used the GEMM for non-accidental mor-
tality (non-communicable disease, NCD, plus lower respira-
tory infection, LRI), using parameters including the China
cohort (Burnett et al., 2018). For ambient O3, we used the
methodology of the Global Burden of Disease (GBD) study
for 2017 (GBD 2017 Risk Factor Collaborators, 2018) to
estimate the mortality caused by chronic obstructive pul-
monary disease, which is based on exposure and risk infor-
mation from five epidemiological cohorts. It estimates a near-
linear relationship between exposure and risk at lower con-
centrations of O3 and a sub-linear association at higher con-
centrations. The United Nations-adjusted population count
dataset for 2015 at 0.05◦× 0.05◦ resolution was obtained
from the Gridded Population of the World, Version 4, along
with population age distribution from GBD2017. Health im-
pacts depend on population count, population age and base-
line mortality rates, which have changed over the period stud-
ied (Butt et al., 2017). To isolate the impacts of changing air
pollution, other variables were kept constant for 2015–2017.
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Table 1. Chinese pollutant emissions (Tg yr−1) during 2015 to 2017 from the MEIC. NMVOCs refer to non-methane volatile organic
compounds; TSPs refer to total suspended particles.

SO2 NOx NMVOCs NH3 CO TSPs PM10 PM2.5 BC OC CO2

2015 16.9 23.7 28.6 10.5 153.6 21.9 12.3 9.1 1.4 2.5 10 347.2
2016 13.4 22.5 28.4 10.2 142 17.9 10.8 8.1 1.3 2.3 10 290.7
2017 10.5 21.9 28.6 10.2 136.2 16.7 10.2 7.6 1.2 2.1 10 434.3

3 Measured and modelled trend comparison

3.1 Model evaluation

For comparison with the measurements, we sampled the
model at the station locations using linear interpolation. Over
2015–2017, the model simulated PM2.5 (normalised mean
bias (NMB)= 0.45), O3 (NMB=−0.13) and SO2 (NMB=
0.07) well, while it overestimated NO2 concentrations by a
factor of around 2 (NMB= 1.17). Model biases were similar
to previous model studies in China (Supplement Table S1).
We also evaluated the model against speciated aerosol mea-
surements from the Surface PARTiculate mAtter Network
(SPARTAN; Snider et al., 2015, 2016) site in Beijing (https:
//www.spartan-network.org/beijing-china, last access: 2 July
2020) (Fig. S4), as well as from Zhou et al. (2019) (Fig. S5)
and from across China (Y. J. Li et al., 2017) (Fig. S6). Mea-
surements reported by Y. J. Li et al. (2017) were made from
various years spanning 2006 to 2013 and do not match the
years simulated by the model. Comparison against these data
shows that the model underestimates the sulfate fraction in
PM2.5, while it overestimates the nitrate fraction. Underesti-
mation of sulfate in comparison to Y. J. Li et al. (2017) will
partly be caused by the large decline in SO2 emissions that
has occurred in the last decade (Zheng et al., 2018). Under-
estimate of sulfate, particularly in winter, and overestima-
tion of nitrate are consistent with previous modelling stud-
ies (Shao et al., 2019), including those using WRF-Chem
(Zhou et al., 2019). Newly proposed mechanisms to explain
the rapid sulfate formation in China’s winter haze (Gen et al.,
2019; Shao et al., 2019; Xue et al., 2014; Zhang et al., 2019)
need to be included and evaluated in models.

3.2 Varying emissions scenario

Figures 1 and 2 compare measured and simulated air qual-
ity trends over China during 2015 to 2017. The measure-
ments show widespread decline in PM2.5 and SO2 concentra-
tions, widespread increase in O3MDA8 and spatially variable
trends in NO2 concentrations, as reported previously (Sil-
ver et al., 2018). The model (control simulation) simulates
the widespread decline in PM2.5 concentrations, with the me-
dian measured trend across China (−3.4µgm−3 yr−1) well
simulated by the model (−3.5µgm−3 yr−1). However, as
the above comparisons with speciated aerosol measurements
show, the underlying trends in individual aerosol species may

contain inaccuracies that affect the overall PM2.5 trend. In the
measurements, 90 % of significant trends are negative, and
10 % of significant trends are positive, with positive trends
mostly being in the Fenwei Plain region, Jiangxi and Anhui.
No significant positive trends are simulated by the model,
possibly due to the coarse resolution of the model and the
simplified scaling we apply to emissions for 2016 and 2017.

WRF-Chem captures the widespread increase in O3MDA8
but underestimates the magnitude of the trend by a fac-
tor of 2 (2.7µgm−3 yr−1) in the measurements, versus
1.3µgm−3 yr−1 simulated by WRF-Chem. WRF-Chem sim-
ulates negative O3MDA8 trends in the Sichuan Basin and
Taiwan, whereas in the measured data, all regions have posi-
tive median trends.

The measurements show zero overall median trend in NO2
concentrations, with 46 % of sites with significant trends be-
ing negative and 54 % positive. In contrast, WRF-Chem sim-
ulates widespread reductions in NO2 concentrations, with
100 % of significant sites exhibiting negative trends and a
negative nationwide median trend of −2.2µgm−3 yr−1. The
7.0 % nationwide median decline in simulated NO2 concen-
trations over 2015–2017 matches the 7.6 % decline in Chi-
nese NOx emissions in the MEIC. The measurements show
a widespread decline in SO2 concentrations, with a median
nationwide trend of −1.9µgm−3 yr−1. WRF-Chem captures
the direction of the trend, but the magnitude of the trend is
overestimated by a factor of 2. The 32.5 % decline in sim-
ulated nationwide median SO2 concentrations over 2015–
2017 matches the 37.8 % decline in SO2 emissions in the
MEIC.

3.3 Fixed emissions scenario

The model simulation where anthropogenic emissions in
China were fixed at 2015 levels has a weak negative PM2.5
trend (−0.6µgm−3 yr−1), a factor of 6 smaller than either
the control simulation or the measurements (Fig. 3). This
suggests that the measured negative PM2.5 trend has largely
been driven by decreased anthropogenic emissions, with
limited impact from interannual variability in meteorology.
Chen et al. (2019) also concluded that emission reductions
were the primary cause of reduced wintertime PM2.5 across
China during 2015–2017. Cheng et al. (2019) found that lo-
cal and regional reductions in anthropogenic emissions were
the dominant cause of reduced PM2.5 concentrations in Bei-
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Figure 1. Histograms showing the frequency distribution of trends in concentrations of (a, b) PM2.5, (c, d) O3MDA8, (e, f) NO2 and (g, h)
SO2 across China and Taiwan during 2015–2017. Measured trends (left-hand panels) are compared to simulated trends (right-hand panels).
The median relative and absolute trend as well as the percentage of stations with significant trends are shown in each panel. The percentage
of significant trends that are negative (blue) or positive (red) are also shown. The dotted black line shows the median trend across all sites,
while the dotted white line shows zero. Arrows show the median trend for the regional domains: Pearl River Delta (PRD), Yangtze River
Delta (YRD), North China Plain (NCP), Sichuan Basin (SCB), Hong Kong (HK), Taiwan (TW) and the Fenwei Plain (FWP).

jing between 2013 and 2017. The median O3MDA8 trend
in the fixed emission simulation is 0.0µgm−3 yr−1. This
suggests that interannual meteorological variation had lit-
tle influence on O3 trends at the China-wide scale during
2015–2017, which were largely driven by changing emis-
sions. However, meteorological variability did drive regional

changes in O3. For example, in Guizhou province, a trend of
−2.5µgm−3 yr−1 was calculated in the fixed emissions sim-
ulation. H. Li et al. (2019) also report that the positive ozone
trend over 2013 to 2017 is due to changes in anthropogenic
emissions, and the magnitude of their estimated trend of 1–
3 ppbv yr−1 (approximately 2–6µgm−3 yr−1) is compara-

https://doi.org/10.5194/acp-20-11683-2020 Atmos. Chem. Phys., 20, 11683–11695, 2020



11688 B. Silver et al.: Emission reductions decrease PM2.5 mortality across China

Figure 2. Map showing the spatial distribution of trends in concentrations of (a, b) PM2.5, (c, d) O3MDA8, (e, f) NO2 and (g, h) SO2 across
China and Taiwan during 2015–2017. Measured trends (left-hand panels) are compared to simulated trends (right-hand panels). Red indicates
a significant positive trend, whereas blue indicates a significant negative trend. Light coloured circles indicated a statistically insignificant
trend. Coloured boxes show the regional domains: Pearl River Delta (blue), Yangtze River Delta (orange), North China Plain (green), Sichuan
Basin (red), Hong Kong (purple), Taiwan (brown) and the Fenwei Plain (pink).

ble to the 2.6µgm−3 yr−1 trend found in this study. Lu et
al. (2019) analysed changes in O3 between 2016 and 2017
and concluded that hotter and drier conditions in 2017 con-
tributed to higher O3 concentrations in that year. Liu and
Wang (2020a) reported a complex O3 response during 2013

to 2017, with changing anthropogenic emission increasing
O3MDA8 in urban areas and decreasing it in rural areas,
whereas meteorological changes drove regionally contrast-
ing changes in O3MDA8 through changes in cloud cover,
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wind and temperature and through driving changes in bio-
genic emissions.

The fixed emission simulation also has a smaller NO2
trend (−0.5µgm−3) compared to the control simulation
(−2.2µgm−3 yr−1), demonstrating that emission reductions
that are estimated in the MEIC are also the main reason for
the negative simulated NO2 trend. However, unlike PM2.5
and O3, the NO2 trend calculated from the fixed emission
simulation more closely matches the measured trend. This
may suggest that the MEIC has overestimated the NO2 emis-
sion reductions during 2015–2017. This suggestion is sup-
ported by recent satellite studies which found a slowing down
or even reversal of NO2 reductions during 2016–2019 (R.
Li et al., 2019), no significant trend in NO2 during 2013–
2017 (Huang et al., 2018) and increases in NO2 concentra-
tion in the YRD, PRD and Fenwei Plain (FWP) regions dur-
ing 2015–2017 (Feng et al., 2019). If NOx emissions decline
too strongly in the MEIC, this may contribute to the simu-
lated underestimate of the positive observed O3MDA8 trend
in areas of China with NOx-limited or mixed ozone regimes
that cover the majority of China (Jin and Holloway, 2015).
Other work has suggested that increased O3 concentrations
are possibly linked to the rapid decline in aerosol (K. Li et
al., 2019). Liu and Wang (2020b) found that the reasons
for increased O3 concentrations during 2013–2017 were re-
gionally dependent and that anthropogenic volatile organic
compound (VOC) emission reductions of 16 %–24 % would
have been needed to avoid increased concentrations. Table 2
compares the PM2.5, O3, SO2 and NO2 measurements for
the control and fixed emission simulations in 2015, 2016
and 2017. In the control simulation, model biases remain
similar during 2015–2017. In the fixed emission simulation,
model biases for PM2.5, O3 and SO2 increase between 2015
and 2017. This further suggests that changing anthropogenic
emissions during 2015–2017 have been the dominant cause
of changing concentrations.

An important future step is to understand how changing
anthropogenic emissions, in terms of emission species or
emission sectors, have contributed to observed trends in pol-
lutant concentrations. Residential and industrial emissions
are dominant causes of PM2.5 concentrations across much
of China (Reddington et al., 2019), but it is not clear which
emission sectors have contributed most to observed PM2.5
trends. Cheng et al. (2019) suggest that emission controls
in the residential and industrial sectors were the dominant
causes for reduced PM2.5 in Beijing between 2014 and 2017.
Measurements of aerosol composition (Y. J. Li et al., 2017;
Weagle et al., 2018) add confidence to model simulations
and can inform our understanding of how aerosol chemistry
responds to emission changes. However, except for Beijing,
there are insufficient measurement data of how aerosol com-
position has changed across China in recent years. H. Li et
al. (2019) found large declines in wintertime organics and
sulfate and smaller declines in nitrate and ammonium in Bei-
jing between 2014 and 2017. Zhou et al. (2019) also analysed

Table 2. Model evaluation shown as a normalised mean bias
(NMB). Evaluation is shown separately for the control and fixed
emission simulations. The NMB for 2015–2017 is compared to in-
dividual years.

PM2.5 O3 NO2 SO2

Control

2015–2017 0.49 −0.15 1.2 0.09
2015 0.5 −0.12 1.32 0.17
2016 0.47 −0.14 1.20 0.05
2017 0.5 −0.21 1.10 0.04

Fixed emissions

2015–2017 0.57 −0.18 1.26 0.35
2015 0.50 −0.12 1.32 0.17
2016 0.56 −0.16 1.28 0.31
2017 0.66 −0.24 1.20 0.65

aerosol composition data from Beijing and found large de-
clines in all aerosol components except nitrate between the
periods 2011–2012 and 2017–2018. Continuous measure-
ments of aerosol composition across China are required to
determine how different aerosol components are contribut-
ing to the observed PM2.5 trend and to evaluate simulated
responses to emission changes.

4 Health impacts of changes to PM2.5 and O3
concentrations

4.1 PM2.5 health impacts

The control run simulated nationwide population-
weighted mean PM2.5 concentration decreased by 12.8 %
(10.1µgm−3), from 79.2µgm−3 in 2015 to 69.1µgm−3

in 2017. Greater decreases were simulated in more
polluted and highly populated regions such as Beijing
(−15.3µgm−3), Tianjin (−19.4µgm−3), Chongqing
(province) (−14.2µgm−3) and Henan (−22.3µgm−3).
Using the methodology of Burnett et al. (2018), we estimate
that mortality due to exposure to PM2.5 decreased from
2 800 000 (confidence interval, CI: 2 299 000–3 302 000)
premature mortalities in 2015 to 2 650 000 premature
mortalities in 2017. The simulated reduction in PM2.5
concentrations therefore reduced the number of premature
mortalities attributable to PM2.5 exposure by 150 000 (CI:
129 000–170 000) annual premature mortalities across
China. The 12.8 % reduction in PM2.5 exposure only led
to a 5 % reduction in attributable mortality due to the non-
linearity of the exposure–response function, which is less
sensitive at higher exposure ranges (Conibear et al., 2018).
The largest absolute reductions in premature mortality occur
in Henan (15 000 deaths yr−1), Sichuan, Hebei and Tianjin
(11 000 deaths yr−1) (Fig. 4). The decline in PM2.5 exposure
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Figure 3. Comparison of measured and simulated concentration trends during 2015 to 2017. The left violin plot shows the measured trend,
the centre shows the simulated trend with varying emissions and meteorology (control) and the right shows the simulated trends for the fixed
emissions simulation. (a) PM2.5, (b) O3MDA8, (c) NO2 and (d) SO2. The solid line shows the median absolute trend, and the shaded area
shows a smoothed relative frequency distribution.

also led to reduced morbidity, with the rate of disability-
adjusted life years (DALYs) per 100 000 population reduced
from 159 to 150, with the largest changes occurring in
central provinces such as Hubei (Supplement Fig. S3). Our
results are comparable to Zheng et al. (2017), who found that
population-weighted annual mean PM2.5 concentrations de-
creased 21.5 % during 2013–2015, resulting in a premature
mortality decrease of 120 000 deaths yr−1. Ding et al. (2019)
estimated that during 2013–2017, a nationwide PM2.5
decrease of 9µgm−3 yr−1 caused premature mortalities per
year to decrease by 287 000, using the methodology from the
GBD 2015 study, which estimates health impacts as having a
weaker and less linear relationship to PM2.5 concentrations.
Yue et al. (2020) estimated that the annual number of mor-
talities in China attributable to PM2.5 decreased by 64 000
(7 %) from 2013 to 2017. Zhang et al. (2019) reported a
32 % decline in population-weighted PM2.5 concentration
during 2013 to 2017, largely due to strengthened industrial
emission standards and cleaner residential fuels.

4.2 O3 health impacts

Increasing O3 concentrations will result in an increase in
health impacts that will act to offset some of the health ben-
efits from declining PM2.5 concentrations. WRF-Chem sim-

Figure 4. Simulated change during 2015–2017 in annual premature
mortality per year due to changes in exposure to ambient PM2.5.
Results are shown at the province scale.

ulated O3 concentrations across China during 2015–2017 to
within 15 % (NMB=−0.13), which is consistent with pre-
vious studies, but underestimated the magnitude of the ob-
served O3 trend. To provide an estimate of the health im-
pacts due to exposure to O3 we used simulated concentra-
tions to estimate average exposure to O3 over the 2015–2017
period. We estimate that exposure to O3 caused an average
of 143 000 (CI: 106 000–193 000) premature mortalities each
year over 2015–2017. Applying the simulated change in O3
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concentrations would underestimate the change in exposure
that has occurred. Instead, we estimated the impacts of in-
creased O3 by multiplying the average health impacts over
2015–2017 by the measured relative change in O3MDA8.
Assuming linear behaviour, the 15 % measured increase in
O3MDA8 would result in an increase of 21 000 premature
mortalities per year. The exposure–outcome function is in
reality sub-linear, so this is likely to be an overestimate. Re-
gardless, this is substantially smaller than the 150 000 reduc-
tion in annual premature mortality due to reduced PM2.5. We
therefore suggest that changes in Chinese air pollution over
2015–2017 have likely had an overall beneficial impact on
human health. The dominance of the PM2.5 reduction over
the O3 increase on health impacts is also found in Dang and
Liao (2019), who reported that a 21 % reduction in PM2.5 and
a 12 % increase in O3 concentration between 2012 and 2017
resulted in 268 000 fewer annual mortalities overall.

5 Conclusions

We used the WRF-Chem model to explore the drivers and
impacts of changing air pollution across China during 2015–
2017. A simulation with annually updated emissions was
able to reproduce the measured negative trends in PM2.5
concentrations over China during 2015–2017 while overes-
timating the negative trend in SO2 and NO2 and underesti-
mating the positive trend in O3. By comparing this with a
simulation where emissions are held constant at 2015 lev-
els, but meteorological forcing was updated, we show that
interannual meteorological variation was not the main driver
of the substantial trends in air pollutants that were observed
across China during 2015–2017. Our work shows that re-
duced anthropogenic emissions are the main cause of re-
duced PM2.5 concentrations across China, suggesting that the
Chinese government’s “Air Pollution Prevention and Control
Action Plan” has been effective at starting to control par-
ticulate pollution. We estimate that the 12.8 % reduction in
population-weighted PM2.5 concentrations that occurred dur-
ing 2015–2017 has reduced premature mortality due to expo-
sure to PM2.5 by 5.3 %, preventing 150 000 premature mor-
talities across China annually. Despite these substantial re-
ductions, PM2.5 concentrations still exceed air quality guide-
lines and cause negative impacts on human health. We esti-
mate that exposure to O3 during 2015–2017 causes on aver-
age 143 000 premature mortalities across China each year.
Increases in O3 concentration over 2015–2017 may have
increased this annual mortality by about 20 000 premature
mortalities per year, substantially less than the reduction in
premature mortality due to declining particulate pollution.
Changes in air pollution across China during 2015–2017 are
therefore likely to have led to overall positive benefits to hu-
man health, amounting to a ∼ 5 % reduction of the ambient
air pollution disease burden. However, to achieve larger re-
ductions in disease burden, further reductions in PM2.5 con-

centrations are required, and pollution controls need to be
designed that simultaneously reduce PM2.5 and O3 concen-
trations.
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