
ARTICLE

Chromosome-level assemblies of multiple
Arabidopsis genomes reveal hotspots
of rearrangements with altered evolutionary
dynamics
Wen-Biao Jiao 1 & Korbinian Schneeberger 1,2✉

Despite hundreds of sequenced Arabidopsis genomes, very little is known about the degree of

genomic collinearity within single species, due to the low number of chromosome-level

assemblies. Here, we report chromosome-level reference-quality assemblies of seven Ara-

bidopsis thaliana accessions selected across its global range. Each genome reveals between

13–17Mb rearranged, and 5–6Mb non-reference sequences introducing copy-number

changes in ~5000 genes, including ~1900 non-reference genes. Quantifying the collinearity

between the genomes reveals ~350 euchromatic regions, where accession-specific tandem

duplications destroy the collinearity between the genomes. These hotspots of rearrange-

ments are characterized by reduced meiotic recombination in hybrids and genes implicated in

biotic stress response. This suggests that hotspots of rearrangements undergo altered

evolutionary dynamics, as compared to the rest of the genome, which are mostly based on

the accumulation of new mutations and not on the recombination of existing variation, and

thereby enable a quick response to the biotic stress.
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The individual genomes of sexually reproducing species are
typically highly collinear to enable physical exchange of
alleles during meiosis. This exchange ensures the genera-

tion of diversity and the removal of deleterious alleles1 and at the
same time protects the offspring from major mutations changing
the karyotype of a genome2. Despite the obvious importance of
preserving a common karyotype, the presence of genomic rear-
rangements suggests that the genomes are in fact not entirely
collinear. Genomic rearrangements (and the resulting lack of
allelic exchange) have been shown to contribute to population
diversification including the evolution of different sexes3 or life-
history traits4.

But even though the absence of collinearity can have drastic
effects, there is hardly anything known about the actual degree of
collinearity within populations as most of the current genome
studies are not based on chromosome-level assemblies. The first
complete assembly of a plant genome was the reference sequence
of A. thaliana (Col-0), which was based on a minimal tiling path
of BACs sequenced with Sanger technology5. Since then multiple
hundred Arabidopsis genomes have been studied, however, most
of these studies relied on short-read based resequencing or
reference-guided assembly, where the identification of genomic
rearrangements remained challenging6–12. In contrast, reference-
independent, chromosome-level assemblies with almost complete
reconstruction of the nucleotide sequence enable accurate iden-
tification of all sequence differences and would therefore reveal
the degree of synteny across the genome13. So-far, however,
there are only a few whole-genome de novo assemblies for A.
thaliana available including a re-assembly of the reference
accession Col-0 as well as assemblies of four different accessions
including Cvi-0, KBS-Mac-74, Ler, and Nd-1, which have been
generated in different studies and have not been compared
against each other14–18.

Here we release chromosome-level assemblies of seven Arabi-
dopsis thaliana accessions. We identify 13–17Mb genomic rear-
rangements, 5–6Mb non-reference sequence in each genome. We
find genic copy-number variations in around 5000 genes,
including ~1900 non-reference genes. We develop a metric called
synteny diversity to quantify the collinearity between the genomes
and identify 350 euchromatic hotspots of rearrangements regions
where genome collinearity between the genomes are strongly
impaired. Further evolutionary analysis suggests these regions are
undergoing different evolutionary dynamics as compared to the
rest of the genome, which contribute to the rapid response to the
biotic stress.

Results
Chromosome-level assemblies of seven A. thaliana genomes.
Using deep PacBio (45–71×) and Illumina (56–78×) whole-
genome shotgun sequencing, we assembled the genomes of seven
accessions from geographically diverse regions including An-1
(Antwerpen, Belgium), C24 (Coimbra, Portugal), Cvi-0 (Cape
Verde Islands), Eri-1 (Eringsboda, Sweden), Kyo (Kyoto, Japan),
Ler (Gorzów Wielkopolski, Poland) and Sha (Shahdara, Tadjiki-
stan) (Supplementary Table 1) (see Methods). The assembly of
Ler was already described in the context of the development of a
whole-genome comparison tool used in this study13. The seven
accessions (together with the reference accession Col-0) were
initially used as the founder lines of Arabidopsis Multi-parent
Recombination Inbreeding Lines (AMPRIL)19 population and
were selected to maximize the genetic diversity in this set. The
contig assemblies featured N50 values from 4.8 to 11.2 Mb and
were thus similar to other long-read assemblies of A. thaliana
genomes. Chromosome-normalized L50 (CL50)20 values were 1
or 2 indicating that nearly all chromosomes were assembled into

a few contigs only (Fig. 1, Table 1 and Supplementary Table 2). In
comparison with the reference sequence, we found less collapsed
repeat regions in each of the assemblies as well as 41 (out of 70)
reference sequence gaps, which could be bridged with contigs of
the other assemblies, suggesting that the reference sequence could
be improved using long-read assembly (Supplementary Table 3).

We arranged 43–73 contigs of each assembly to chromosome-
level pseudomolecules based on homology to the reference
sequence. Even though these assemblies do rely on the reference
sequence, we would like to point out that the sequence assembly
itself was independent of the reference sequence, and that the
contigs were large in general, implying that it is unlikely that we
misplaced any of the contigs. To confirm this, we compared two
of the chromosome-level assemblies with three different genetic
maps, where we did not find even a single misplaced contig
(Supplementary Table 4). The seven chromosome-level assem-
blies reached a total length of 117.7–118.8 Mb, which is very
similar to the 119.1 Mb of the reference sequence (Table 1) and
even included parts of the highly complex regions of centromeres,
telomeres and rDNA clusters (Supplementary Data 1 and
Supplementary Table 5). The remaining unanchored contigs
had a total length of 1.5–3.3 Mb and consisted almost entirely of
repeats. This agrees with gaps between the contigs, which were
mostly introduced due to repetitive regions (Supplementary
Table 6). Overall, we annotated 27,098–27,574 protein-coding
genes in each of the assemblies, which is similar to the 27,445
genes annotated in the reference sequence21 (Table 1, Supple-
mentary Data 2 and Supplementary Tables 7–8) (see Methods).

Identification of syntenic and rearranged regions. By compar-
ing each of the new assemblies against the reference sequence
using the whole-genome comparison tool SyRI (V1.1)13, we
found 102.2–106.6 Mb of collinear regions and 12.6–17.0 Mb of
rearranged regions in each of the genomes (Fig. 2a). The rear-
rangements included 1.5–4.2 Mb (33–46) inversions, 1.8–2.9 Mb
(729–1192) translocations, and—most abundantly—polymorphic
duplications, which comprised 7.2–8.7 Mb (4288–5150) within
each of the individual genomes (Supplementary Table 9). Similar
to small-scale sequence variation22, rearrangements were not
evenly distributed along the chromosomes, but were enriched in
pericentromeres (Supplementary Table 10). Their lengths ranged
from a few dozen bp to hundreds of kb and even Mb scale
(Fig. 2b), including a 2.48Mb inversion specific to chromosome 3
of Sha (Supplementary Fig. 1 and Supplementary Table 11),
which explains the suppression of meiotic recombination in this
region in hybrids including the Sha haplotype23–25. Sequence
divergence in rearranged regions was generally higher as com-
pared to collinear regions mostly due to an excess of local copy-
gain and copy-loss variation in rearranged regions (Fig. 2a,
Supplementary Fig. 2 and Supplementary Table 12).

Gene copy-number variations and pan-genome. Genomic
rearrangements have the potential to delete, create or duplicate
genes resulting in gene copy number variation (CNV). Based on
the clustering of orthologous genes across all eight accessions26

we found 22,040 gene families with conserved copy number,
while 4957 gene families showed differences in gene copy num-
bers in at least one accession (Fig. 2c and Supplementary
Table 13). Almost 99% of these copy-variable gene families had a
maximum copy number of 5 or less, while only less than 10% of
them showed more than two different copy numbers across the
eight accessions (Supplementary Fig. 3). Among the copy-variable
genes we found 1941 non-reference gene families including 891
gene families present in at least two of the other accessions
(Fig. 2c). Around 23% of the non-reference gene families featured
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orthologs in the closely related genome of Arabidopsis lyrata and,
according to RNA-seq read mapping, 26–40% of them showed
evidence of expression (Supplementary Table 14). The remaining
1,050 non-reference (accessions-specific) gene families were
evenly distributed across the accessions (Fig. 2c), with the
exception of Cvi-0, where we found nearly twice as many (214)
accession-specific genes, which is in agreement with the divergent
ancestry of this relict accession8,27.

Based on all possible pairwise genome comparisons, we
identified 5.1–6.5 Mb accession-specific sequence and used this
to estimate a pan-genome size of ~135Mb including ~30,000
genes and a core-genome size of ~105Mb with ~24,000 genes
(Fig. 2d)28 illustrating that one reference genome is not sufficient
to capture the entire sequence diversity within A. thaliana29.
Deeper sampling including accessions from other populations

(for example by including more of the highly divergent accessions
from Africa27) could lead to higher estimates of the pan-genome.
This has been observed in short-read sequencing-based pan-
genome analyses of rice and tomatoes30,31, even though such
comparisons are difficult not only due to the different samplings
(even including the integration of subspecies), but also due to the
high-contiguity of chromosome-level assemblies, which will
reveal more of the hidden genes in complex genomic regions.

Quantification of genome collinearity. As only a few
chromosome-level assemblies are available, hardly anything is
known about genome collinearity within A. thaliana. In contrast,
our chromosome-level assemblies allow for an analysis of the
conservation of the genome collinearity between multiple
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Fig. 1 Chromosome-level genome assemblies of seven A. thaliana accessions. The light gray bars outline each of the chromosomes, whereas the dark
gray inlays show the extent of each of the pericentromeric regions. The contig arrangements of the chromosome assemblies is shown in green for contigs
> 1 Mb and dark grey for contigs < 1 Mb. The location of centromeric tandem repeat arrays and rDNA clusters within the assemblies are marked by yellow
and blue boxes above each of the chromosomes. Source Data are provided as a Source Data file.

Table 1 Genome assembly and annotation of seven A. thaliana accessions.

Col-0a An-1 C24 Cvi-0 Eri-1 Kyo Ler Sha

Contigs – 151 167 140 200 230 149 143
Pseudomolecules 5 5 5 5 5 5 5 5
Contig N50 (Mbp) – 8.2 4.8 7.4 4.8 9.1 11.2 7.0
Contig CL50b – 2 2 2 2 2 1 1
Chr. length (Mbp) 119.1 118.4 117.7 118.3 117.7 118.8 118.5 118.4
Genes 27,445 27,342 27,214 27,098 27,285 27,574 27,376 27,293

aReference sequence.
bChromosome number normalized L5020.
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individuals. To quantify collinearity we developed a parameter
called synteny diversity πsyn, which is similar to nucleotide
diversity32, however, instead of measuring average sequence dif-
ferences it measures the degree of collinearity between the gen-
omes of a population (see Methods). πsyn values can range from 0
to 1, where 1 refers to the complete absence of collinearity
between any of the genomes and 0 to regions where all genomes
are collinear. πsyn can be calculated in any given region; however,
the annotation of collinearity still needs to be established within
the context of the whole genomes to avoid false assignments of
homologous but non-allelic regions.

We calculated πsyn in 5-kb sliding windows across the genome
using pairwise comparisons of all eight accessions (Fig. 3a). As
expected, πsyn was generally high in pericentromeric regions and
low in chromosome arms. Overall, this revealed around 90Mb
(76% of the genome) where all genomes were collinear to each
other, while for the remaining 29Mb (24%) the collinearity
between the genomes was not conserved. This, for example,
included a region on chromosome 3 (ranging from Mb ~2.8–5.3),
where πsyn was increased to ~0.25 (i.e., one genome is not
collinear to all other seven genomes) due to the 2.48 Mb inversion
in the Sha genome (Fig. 3a, arrow labelled with (A)).
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Source Data are provided as a Source Data file.
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Hotspots of rearrangements. Unexpectedly, however, some
regions featured πsyn values even larger than 0.5. This implied that
not only two, but also multiple independent, non-collinear hap-
lotypes segregate in these regions. In turn, this suggests that these
regions are more likely to undergo or conserve complex muta-
tions as compared to the rest of the genomes and thereby create
hotspots of rearrangements (HOT regions) where multiple
accessions independently evolved diverse haplotypes. Overall, we
found 576 of such HOT regions with a total size of 10.2 Mb
including 351 HOT regions in the gene-rich chromosome arms
with a total length of 4.1 Mb (or 4% of euchromatic genome)
(Supplementary Data 3).

Even though HOT regions in euchromatic regions included
more transposable elements and fewer genes as compared to the
collinear regions, they still contained substantial numbers of
genes, many of which occurred at high and variable copy-number
between the accessions (Fig. 3b, c). For example, a HOT region on
chromosome 4, which overlapped with the RPP4/RPP5 R gene
cluster33, displayed 5–15 intact or truncated copies of the RPP5
gene across the eight genomes (Fig. 3d and Supplementary
Table 15). The different gene copies were primarily introduced by
an accumulation of forward tandem duplications and large indels
(Fig. 3e).

This remarkable pattern of forward tandem duplications and
large indels was shared by many of the HOT regions (Fig. 3c and
Supplementary Fig. 4). The clear pattern of almost exclusively
forward tandem duplications suggested higher mutation (dupli-
cation) rates, which are specific to these regions in each of the
accessions. In contrast, the borders of the HOT regions were
surprisingly well conserved across the accessions (Fig. 3f). This
suggested that either different selection regimes introduced clear-
cut borders between the HOT regions and their vicinity, or that
HOT regions are specific targets of increased tandem duplication
rates. Such a local increase of mutation rates could potentially be
mediated by non-allelic homologous recombination, which could
be triggered by the high number of local repeats in these
regions34. Figure 4 shows two more examples of these complex
regions.

In contrast, meiotic recombination in Arabidopsis was shown
to be supressed by structural diversity35. To test if HOTs are
indeed depleted for meiotic recombination, we overlapped
rearranged regions with 15,683 crossover (CO) sites previously

identified within Col-0/Ler F2 progenies35,36. Only 64 of them
partially overlapped with non-syntenic regions while all other
COs were found in syntenic regions (Fig. 5a), suggesting that
HOT regions are almost completely silenced for COs (χ2 test, p <
0.001). In consequence, this would imply that HOT regions are
segregating as large non-recombining regions. To test this, we
analysed the linkage disequilibrium (LD) within 1135 genomes of
the 1001 Genomes Project8 around and across the HOT regions.
LD increased in the vicinity of the HOT regions, with increasing
LD close to the HOT regions implying reduced recombination in
the regions surrounding the HOT regions. Likewise, LD was also
high within HOT regions corroborating the recombination
suppression in HOT regions. However, when calculated across
the border of these regions, LD was significantly lower (one-sided
U test, p < 0.001) supporting the idea that HOT regions are not
strongly linked to the surrounding haplotypes and that they
hardly exchange alleles (Fig. 5b).

Reduced meiotic recombination has been linked to the
accumulation of new (deleterious) mutations37. In agreement
with this, HOT regions showed an accumulation of SNPs with
low allele frequencies and potentially deleterious variation (one-
sided U test, p < 0.001) as compared to other regions in the
genome (Fig. 5c, d and Supplementary Fig. 5). Moreover, reduced
recombination combined with geographic isolation can provide
the basis for the development of alleles, which are incompatible
with distantly related haplotypes leading to intra-species
incompatibilities38. To test this, we searched the location of nine
recently reported genetic incompatible loci39 (DM1-9) and found
that all except of one overlapped with HOT regions, while DM3,
the locus which did not overlap with a HOT region, was closely
flanked by two HOT regions (Figs. 3d, 4a and Supplementary
Fig. 6–11). In addition, we also checked the locus of a recently
published single-locus genetic incompatibility40 and found that it
was also residing in a HOT region (Supplementary Fig. 12).

The high structural diversity of the HOT regions was
reminiscent of the patterns that have been described for R gene
clusters41–44. In fact, the 808 reference genes in HOT regions
were significantly enriched for genes involved in defense
response, signal transduction and secondary metabolite biosynth-
esis (Fig. 5e) suggesting a reoccurring role of HOT regions in the
adaptation to biotic stress. Further comparison with the out-
crossing sister species A. lyrata showed that 504 (87.5%) of 576
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HOT regions actually have no homologous sequences in A.
lyrata. The flanking regions of nearly one third HOT regions
remained collinear with A. lyrata, while flanking regions of the
other regions are structurally rearranged, suggesting that HOT
regions are likely to evolve in non-conserved regions between two
species.

Discussion
As biotic stress is an evolving environmental challenge, the Red
Queen hypothesis suggests that the genomes of A. thaliana are in
the constant need to diversify their offspring45. It has been pro-
posed that in response to this, meiotic recombination might
increase and thereby diversified offspring is generated46. How-
ever, exclusively shuffling existing variation might not be suffi-
cient to respond to the evolution of pathogens. Instead, it has
been proposed that the accumulation of new gene duplicates
could enable a rapid genomic response of plants against

pathogens34,47,48. The hotspots of rearrangements have the
potential to build the basis for such a response, as frequent gene
duplications could build the basis for an evolutionary playground
to evolve a quick response to the challenges of biotic stress and
overcome fitness valleys during the evolution of more complex
function. This, in turn, comes at the costs of loss of synteny and
the loss of meiotic recombination between distant haplotypes.
Though it still needs to be analyzed whether local populations
show the same level of diversity or if their haplotypes in HOT
regions are more similar and still exchange alleles, we have
observed the negative consequences of reduced meiotic recom-
bination in this small world-wide population including the
accumulation of deleterious alleles and incompatible epistatic
effects between distant genotypes.

Taken together, using chromosome-level genome assemblies
of a small, highly diverse population of A. thaliana, we have
identified regions where genome collinearity was lost through
genome-specific accumulation of mutations. These quickly
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evolving sequences do not spread through the population based
on meiotic recombination-based exchange between haplotypes
(as recombination is suppressed by structural variation) or based
on haplotype-specific drift or selection (similar to an inversion
allele), as the haplotypes change more rapidly than they are dis-
tributed through the population. Instead it occurs that these
regions evolve through rapid mutations. We propose that these
regions, which we call hotspots of rearrangements or HOT
regions, facilitate evolutionary responses to rapidly changing
environmental challenges and that these regions are thus
undergoing different evolutionary dynamics as compared to the
rest of the genome, where each region segregates with only few
haplotypes. Future genome-wide screens for selection patterns
should take such regions and their specific characteristics into
account in particular as they might be missed with conventional
marker-based selection scans.

Methods
Plant material and whole-genome sequencing. We received the seeds of all seven
accessions from Maarten Koornneef (MPI for Plant Breeding Research), and grew
them under normal greenhouse conditions. The stock center ID of seeds are shown
in the Supplementary Table 1. DNA preparation and next generation sequencing
was performed by the Max Planck Genome center. DNA was extracted from
multiple individuals using the NucleoSpin® Plant II Maxi Kit from Macherey-
Nagel, prepared using SMRTbell Template Prep Kit 1.0-SPv3 with SMRTbell
Damage Repair Kit -SPv3 and BluePippin size selection for fragments >9/10 kb,
and sequenced with a PacBio Sequel system. For each accession, data from two
SMRT cells were generated. Besides, Illumina paired-end libraries were prepared
and sequenced on the Illumina HiSeq system.

Genome assembly. PacBio reads were filtered for short (<50 bp) or low quality
(QV < 80) reads using SMRTLink5 package. De novo assembly of each genome was
initially performed using three different assembly tools including Falcon17, Canu49,
and MECAT50. The resulting assemblies were polished with Arrow from the
SMRTLink5 package and then further corrected with mapping of Illumina short
reads using BWA51 to remove small-scale assembly errors which were identified
with SAMTools52. For each genome, the final assembly was based on the Falcon
assembly as these assemblies always showed highest assembly contiguity. A few
contigs were further connected or extended based on whole-genome alignments
between Falcon and Canu or MECAT assemblies. Contigs were labelled as orga-
nellar contigs if they showed alignment identity and coverage both larger than 95%
when aligned against the mitochondrial or chloroplast reference sequences. A few
of contigs aligned to multiple chromosomes and were split if no Illumina short-
read alignments supported the conflicting regions. Assembly contigs larger than 20
kb were combined to pseudo-chromosomes according to their alignment positions
when aligned against the reference sequence using MUMmer453. Contigs with
consecutive alignments were concatenated with a stretch of 500 Ns. To note, the
assembly of the Ler accession was already described in a recent study13.

Assembly evaluation. We evaluated the assembly completeness by aligning the
reference genes against each of the seven genomes using Blastn54. Reference genes
which were not aligned or only partially aligned might reveal genes which were
missed during the assembly. To examine whether they were really missed, we
mapped Illumina short reads from each genome against the reference genome
using the BWA51 and checked the mapping coverage of these genes. The genes,
which were missing in the assembly, should show full alignment coverage (Sup-
plementary Table 7).

Centromeric and telomeric tandem repeats were annotated by searching for the
178 bp tandem repeat unit55 and the 7 bp tandem repeat unit of TTTAGGG56.
rDNA clusters were annotated with Infernal version 1.157.

The assembly contiguity of Cvi-0 and Ler were further tested using three
previously published genetic maps24,58,59 (Supplementary Table 4). For this we
aligned the marker sequences against the chromosome-level assemblies and
checked the order of the markers in the assembly versus their order in the genetic
map. The ordering of contigs to chromosomes was perfectly supported by all three
maps. Overall, only six (out of 1156) markers showed conflicts between the genetic
and physical map. In all six cases we found evidence that the conflict was likely
caused by structural differences between the parental genomes.

We also searched for potentially collapsed regions in each assembly. For this, we
checked the normalized mapping coverage in non-overlapping 100 bp windows
based on Illumina short-read mapping (using BWA). Collapsed regions are
expected to have significantly higher coverage than the correctly assembled regions.
Here, windows with two-fold increase of mapping coverage were defined as
collapsed regions. Continuous collapsed regions were merged.

Gene annotation. Protein-coding genes were annotated based on ab initio gene
predictions, protein sequence alignments and RNA-seq data. Three ab initio gene
prediction tools were used including Augustus60, GlimmerHMM61 and SNAP62.
The reference protein sequences from the Araport 1121 annotation were aligned to
each genome assembly using exonerate63 with the parameter setting “–percent
70–minintron 10–maxintron 60000”. For five accessions (An-1, C24, Cvi-0, Ler,
and Sha) we downloaded a total of 155 RNA-seq datasets from the NCBI SRA
database (Supplementary Data 2). RNA-seq reads were mapped to the corre-
sponding genome using HISAT264 and then assembled into transcripts using
StringTie65 (both with default parameters). All different evidences were integrated
into consensus gene models using Evidence Modeler66.

The resulting gene models were further evaluated and updated using the
Araport 1121 annotation. Firstly, for each of the seven genomes, the predicted gene
and protein sequences were aligned to the reference sequence, while all reference
gene and protein sequences were aligned to each of the other seven genomes using
Blast54. Then, potentially mis-annotated genes including mis-merged (two or more
genes are annotated as a single gene), mis-split (one gene is annotated as two or
more genes) and unannotated genes were identified based on the alignments using
in-house python scripts. Mis-annotated or unannotated genes were corrected or
added by incorporating the open reading frames generated by ab initio predictions
or protein sequence alignment using Scipio67.

Noncoding genes were annotated by searching the Rfam database68 using
Infernal version 1.157. Transposon elements were annotated with RepeatMasker
(http://www.repeatmasker.org). Disease resistance genes were annotated using
RGAugury69. NB-LRR R gene clusters were defined based on the annotation from a
previous study70.

Pan-genome analysis. Pan-genome analyses were performed at both sequence
and gene level. To construct a pan-genome of sequences, we generated pairwise
whole-genome sequence alignments of all possible pairs of the eight genomes using
the nucmer in the software package MUMmer453. A pan-genome was initiated by
choosing one of the genomes, followed by iteratively adding the non-aligned
sequence of one of the remaining genomes. Here, non-aligned sequences were
required to be longer than 100 bp without alignment with an identity of more than
90%. The core genome was defined as the sequence space shared by all sampled
genomes. Like the pan-genome, the core-genome analysis was initiated with one
genome. Then all other genomes were iteratively added, while excluding all those
regions, which were not aligned against each of the other genomes. The pan- and
core-genome of genes was built in a similar way. The pan-genome of genes was
constructed by selecting the whole protein-coding gene set of one of the accessions
followed by iteratively adding the genes of one of the remaining accessions.
Likewise, the core-genome of genes was defined as the genes shared in all sampled
genomes.

For each pan or core-genomes analysis, all possible combinations of integrating
the eight genomes (or a subset of them) were evaluated (Eq. 1). The exponential
regression model (Eq. 2) was then used to model the pan-genome/core-genomes
by fitting medians using the least square method implemented in the nls function
of R.

X8

n¼1

8!
n!ð8� nÞ
� � !

ð1Þ

y ¼ AeBx þ C ð2Þ

Analysis of structural rearrangements and gene CNV. All assemblies were
aligned to the reference sequence using nucmer from the MUMmer453 toolbox
with parameter setting “-max -l 40 -g 90 -b 100 -c 200”. The resulting alignments
were further filtered for alignment length (>100) and identity (>90). Structural
rearrangements and local variations were identified using SyRI13. The functional
effects of sequence variation were annotated with snpEff 71. The gene CNV were
identified according to the gene family clustering using the tool OrthoFinder26

based on all protein sequences from the eight accessions.

Definition of synteny diversity. Synteny diversity was defined as the average
fraction of non-syntenic sites found within all pairwise genome comparisons
within a given population. Here we denote synteny diversity as (Eq. 3)

πsyn ¼
X

ij

xixjπij; ð3Þ

where xi and xj refer to the frequencies of sequence i and j and πij to the average
probability of a position to be non-syntenic between sequence i and j . Note, πsyn
can be calculated in a given region or for the entire genome. However even when
calculated for small regions the annotation of synteny still needs to be established
within the context of the whole genomes to avoid false assignments of homologous
but non-allelic sequence. Here we used the annotation of SyRI to define syntenic
regions. πsyn values can range from 0 to 1, with higher values referring to a higher
average degree of non-syntenic regions between the genomes.
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Analysis of hotspots of rearrangements. For the analyses, we calculated πsyn in
5-kb sliding windows with 1 kb step-size across the entire genome. HOT regions
were defined as regions with πsyn larger than 0.5. Neighboring regions were merged
into one HOT region if their distance was shorter than 2 kb.

The nucleotide and haplotype diversity were calculated with the R package
PopGenome72 using SNP markers (with MAF > 0.05) from 1001 Genomes
Project8. LD were calculated as correlation coefficients r2 using SNP markers with
MAF > 0.05. GO enrichment analysis was performed using the webtool DAVID73.

We performed a synteny comparison between A. thaliana HOT regions and A.
lyrata74. Although the two species have rearranged karyotypes, they share collinear
regions, so-called Ancestral Crucifer Karyotype blocks (ACK blocks)75. The
genome sequences were split into ACK blocks, and aligned with the tool nucmer.
The syntenic regions were defined by the tool SyRI. We checked the alignment of
each HOT region and its 5 kb flanking regions to see whether the regions were in
syntenic or rearranged regions as compared to A. lyrata.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. The datasets generated and analyzed during the current
study are available from the corresponding author upon request. Raw sequencing data,
assemblies and annotations can be accessed in the European Nucleotide Archive under the
project accession number PRJEB31147. Assemblies, annotation, variation and orthologs can
be found on the 1001 Arabidopsis thaliana Genomes webpage [https://1001genomes.org/
data/MPIPZ/MPIPZJiao2020/releases/current/]. Previously reported RNA-seq data from
the five accessions (An-1, C24, Cvi-0, Ler, and Sha) are downloaded from the NCBI SRA
database (the NCBI and ENA accession codes are included in Supplementary Data 2). The
SNP markers resulted from 1001 Genomes Project can be downloaded from the webpage
https://1001genomes.org/data/GMI-MPI/releases/v3.1/. The source data underlying Figs. 1–
5 and Supplementary Figs. 1–12 are provided as a Source Data file.

Code availability
Custom code used in this study can be freely accessed at https://github.com/
schneebergerlab/AMPRIL-genomes.
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